Ulysses Passes Over Sun’s North Pole

Continuing on its epic journey around the Sun, Ulysses has reached the Sun’s north pole just in the nick of time. In fact, its timing couldn’t be better, just as the Sun begins “Solar Cycle 24”. The probe is in a unique orbit, passing over the solar north and south poles, out of the ecliptic plane of the solar system, giving it an unprecedented view of parts of the Sun we cannot observe on Earth. “Graveyards for sunspots” and mysterious coronal holes lurk in these regions and Ulysses will be perfectly placed, directly above.

The joint NASA and ESA Ulysses mission has been a resounding success in its 18 years of operation since launch on board Space Shuttle Discovery (STS-41) in October 1990. The intrepid spacecraft was helped on it’s way by a gravitational assist by the planet Jupiter which flung it over the poles of the Sun. Quietly travelling in a perpendicular orbit (space missions and the planets usually orbit around the Sun’s equator), Ulysses has been measuring the distribution of solar wind particles emanating from latitudinal locations for one and a half orbits.

As Ulysses passes over the north polar region, the Sun will be observed during a period of minimum activity at this location for the first time. The poles of the Sun are of particular interest to scientists as this is where the fast solar wind originates from open magnetic field lines reaching into space. The dynamics of solar material in this location provides information on how the Sun interacts with interplanetary space and how the solar wind is generated. Observing the solar wind at “solar minimum” will be of massive interest as it may provide some answers as to why the solar wind is accelerated hundreds of kilometers per hour even when activity is at its lowest.

Just as Earth’s poles are crucial to studies of terrestrial climate change, the sun’s poles may be crucial to studies of the solar cycle.” – Ed Smith, Ulysses project scientist, NASA Jet Propulsion Laboratory.

The dynamics of low altitude magnetic fields in polar regions are also a focus for interest. As 11-year solar cycles progress, sunspot population increase near the solar equator. As the magnetic field is “wound up”, sunspots (and their associated magnetic flux) drift toward the poles where they slowly disappear as the old magnetic field sinks back into the Sun, quite accurately described as sunspot graveyards. Understanding how this cycle works will help to reveal the secrets of the solar cycle and ultimately help us understand the mechanisms behind Space Weather.

Source: NASA Featured News

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

1 day ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

1 day ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

1 day ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

2 days ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

2 days ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

2 days ago