Here’s The First 3-D Part Printed In Space. Where Will That Take Us Next?

Here’s the 22nd-century version of breaking the surly bonds of Earth: NASA and private company Made In Space have just collaborated on the first 3-D printed part in space, ever.

The milestone yesterday (Nov. 25) is a baby step towards off-Earth manufacturing, but the implications are huge. If these testbeds prove effective enough, eventually we can think of creating these parts in other destinations such as the Moon, or an asteroid, or even Mars.

“We look at the operation of the 3-D printer as a transformative moment, not just for space development, but for the capability of our species to live away from Earth,” stated Aaron Kemmer, CEO of Made In Space — the company that developed the printer.

There are still kinks to be worked out, however. The “part adhesion” on the tray after the piece was created had a bond that was mightier than controllers anticipated, which could mean that bonding is different in microgravity. A second calibration coupon should be created shortly as controllers make adjustments to the process.

Artist’s conception of a lunar dome based on 3-D printing. Credit: ESA/Foster + Partners

We’ll see several of these “test coupons” manufactured in the next few months and then sent back to Earth for more detailed analysis. Meanwhile, we have two more 3-D printers to look forward to in space: one created by the Italians that should arrive while their citizen, Samantha Cristoforetti, is still on station (she just arrived a few days ago) and a second one created by Made In Space that is supposed to commercialize the process.

The idea of 3-D printing has been discussed extensively in the media by both NASA and the European Space Agency in the past year or so. ESA has released media speculating on how additive manufacturing could be used to create Moon bases at some distant date. Meanwhile, NASA has talked about perhaps creating food using a 3-D printer.

If additive manufacturing takes off, so to speak, it could reduce shipping costs from Earth to the International Space Station because controllers could just send up a set of instructions to replace a part or tool. But NASA should move quickly to test this stuff out, according to a recent National Research Council report; the station is approved for operations only until 2020 (so far), which leaves only about five years or so to do testing before agencies possibly move to other destinations.

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

4 hours ago

NASA’s New Solar Sail Has Launched and Deployed

Solar Sails are an enigmatic and majestic way to travel across the gulf of space.…

5 hours ago

Here’s Why We Should Put a Gravitational Wave Observatory on the Moon

Scientists detected the first long-predicted gravitational wave in 2015, and since then, researchers have been…

11 hours ago

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

1 day ago

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

2 days ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

2 days ago