Higgs Boson Threatened The Early Universe, But Gravity Saved The Day

All the physical properties of our Universe – indeed, the fact that we even exist within a Universe that we can contemplate and explore – owe to events that occurred very early in its history. Cosmologists believe that our Universe looks the way it does thanks to a rapid period of inflation immediately before the Big Bang that smoothed fluctuations in the vacuum energy of space and flattened out the fabric of the cosmos itself.

According to current theories, however, interactions between the famed Higgs boson and the inflationary field should have caused the nascent Universe to collapse. Clearly, this didn’t happen. So what is going on? Scientists have worked out a new theory: It was gravity that (literally) held it all together.

The interaction between the curvature of spacetime (more commonly known as gravity) and the Higgs field has never been well understood. Resolving the apparent problem of our Universe’s stubborn existence, however, provides a good excuse to do some investigating. In a paper published this week in Physical Review Letters, researchers from the University of Copenhagen, the University of Helsinki, and Imperial College London show that even a small interaction between gravity and the Higgs would have been sufficient to stave off a collapse of the early cosmos.

The researchers modified the Higgs equations to include the effect of gravity generated by UV-scale energies. These corrections were found to stabilize the inflationary vacuum at all but a narrow range of energies, allowing expansion to continue and the Universe as we know it to exist… without the need for new physics beyond the Standard Model.

This new theory is based on the controversial evidence of inflation announced by BICEP2 earlier this summer, so its true applicability will depend on whether or not those results turn out to be real. Until then, the researchers are hoping to support their work with additional observational studies that seek out gravitational waves and more deeply examine the cosmic microwave background.

At this juncture, the Higgs-gravity interaction is not a testable hypothesis because the graviton (the particle that handles all of gravity’s interactions) itself has yet to be detected. Based purely on the mathematics, however, the new theory presents an elegant and efficient solution to the potential conundrum of why we exist at all.

Vanessa Janek

Vanessa earned her bachelor's degree in Astronomy and Physics in 2009 from Wheaton College in Massachusetts. Her credits in astronomy include observing and analyzing eclipsing binary star systems and taking a walk on the theory side as a NSF intern, investigating the expansion of the Universe by analyzing its traces in observations of type 1a supernovae. In her spare time she enjoys writing about astrophysics, cosmology, environmental science, biology, and medicine, making delicious vegetarian meals, taking adventures with her husband and/or Nikon D50, and saving the world. Vanessa is currently a science writer at Brown University.

Recent Posts

Construction of Roman Continues With the Addition of its Sunshade

NASA continues to progress with the development of the Nancy Grace Roman Space Telescope (RST),…

4 minutes ago

A Flaming Flower in the Large Magellanic Cloud

Our neighbour, the Large Magellanic Cloud (LMC), is rich in gas and dust and hosts…

1 hour ago

A Bola Robot Could Provide Stable Jumping Capability on Low-Gravity Bodies

New research on locomotion techniques that could be used in space exploration is constantly coming…

3 hours ago

White Dwarfs Could Be More Habitable Than We Thought

White dwarfs are the remnants of once brilliant main sequence stars like our Sun. They're…

4 hours ago

Dramatically Decreasing the Time it Takes to Measure Asteroid Distances

We all know that asteroids are out there, that some of them come dangerously close…

7 hours ago

Should Astronauts Add Jumping to their Workout Routine?

It’s a familiar sight to see astronauts on board ISS on exercise equipment to minimise…

12 hours ago