Categories: AsteroidsESO

Astronomers Look “Inside” an Asteroid for the First Time

From directly inferring the inside of an asteroid for the first time, astronomers have discovered these space rocks can have strange variations in density. The observations of Itokawa — which you may remember from the Japanese Hayabusa mission that landed on the asteroid in 2005 — not only teach us more about how asteroids came to be, but could help protect Earth against stray space rocks in the future, the researchers said.

“This is the first time we have ever been able to to determine what it is like inside an asteroid,” stated Stephen Lowry, a University of Kent scientist who led the research. “We can see that Itokawa has a highly varied structure; this finding is a significant step forward in our understanding of rocky bodies in the solar system.”

It’s not clear why Itokawa has such different densities at opposite sides of its peanut shape; perhaps it was two asteroids that rubbed up against each other and merged. At just shy of six American football fields long, the space rock has density varying from 1.75 to 2.85 grams per cubic centimetre. This precise measurement came courtesy of the European Southern Observatory’s New Technology Telescope in Chile.

The telescope calculated the speed and speed changes of Itokawa’s spin and combined that information with data on how sunlight can affect the spin rate. Asteroids are generally tiny and irregularly shaped sorts of bodies, which means the effect of heat on the body is not evenly distributed. That small difference makes the asteroid’s spin rate change.

This heat effect (more properly called the Yarkovsky-O’Keefe-Radzievskii-Paddack effect) is slowly making Itokawa’s spin rate go faster, at a rate of 0.045 seconds every Earth year. This change, previously unexpected by scientists, is only possible if the peanut bulges have different densities, the scientists said.

“Finding that asteroids don’t have homogeneous interiors has far-reaching implications, particularly for models of binary asteroid formation,” added Lowry.  “It could also help with work on reducing the danger of asteroid collisions with Earth, or with plans for future trips to these rocky bodies.”

More details on the research will be available in the journal Astronomy and Astrophysics.

Source: European Southern Observatory

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Artemis Astronauts Will Deploy New Seismometers on the Moon

Back in the 1960s and 1970s, Apollo astronauts set up a collection of lunar seismometers…

11 hours ago

Ice Deposits on Ceres Might Only Be a Few Thousand Years Old

The dwarf planet Ceres has some permanently dark craters that hold ice. Astronomers thought the…

12 hours ago

The Mystery of Cosmic Rays Deepens

Cosmic rays are high-energy particles accelerated to extreme velocities approaching the speed of light. It…

14 hours ago

NASA Confirms that a Piece of its Battery Pack Smashed into a Florida Home

NASA is in the business of launching things into orbit. But what goes up must…

14 hours ago

Are Titan's Dunes Made of Comet Dust?

A new theory suggests that Titan's majestic dune fields may have come from outer space.…

22 hours ago

The Solar Wind is Stripping Oxygen and Carbon Away From Venus

The BepiColombo mission, a joint effort between JAXA and the ESA, was only the second…

1 day ago