NASA Studies Whether to Add Crew to 1st SLS Megarocket Moon Launch in 2019

NASA’s Space Launch System rocket will be the most powerful rocket in the world and, with the agency’s Orion spacecraft, will launch America into a new era of exploration to destinations beyond Earth’s orbit. Their first integrated mission is planned as uncrewed, but NASA now is assessing the feasibility of adding crew. Credits: NASA/MSFC

KENNEDY SPACE CENTER, FL – At the request of the new Trump Administration, NASA has initiated a month long study to determine the feasibility of converting the first integrated unmanned launch of the agency’s new Space Launch System (SLS) megarocket and Orion capsule into a crewed mission that would propel two astronauts to the Moon and back by 2019 – 50 years after the first human lunar landing.

Top NASA officials outlined the details of the study at a hastily arranged media teleconference briefing on Friday, Feb 24. It will examine the feasibility of what it would take to add a crew of 2 astronauts to significantly modified maiden SLS/Orion mission hardware and whether a launch could be accomplished technically and safely by the end of 2019.

On Feb. 15, Acting Administrator Robert Lightfoot announced that he had asked Bill Gerstenmaier, associate administrator for NASA’s Human Exploration and Operations Mission Directorate in Washington, to start detailed studies of what it would take to host astronauts inside the Orion capsule on what the agency calls Exploration Mission-1, or EM-1.

Gerstenmaier, joined by Bill Hill, deputy associate administrator for Exploration Systems Development in Washington, at the briefing said a team was quickly assembled and the study is already underway.

They expect the study to be completed in early spring, possibly by late March and it will focus on assessing the possibilities – but not making a conclusion on whether to actually implement changes to the current uncrewed EM-1 flight profile targeted for blastoff later in 2018.

“I want to stress to you this is a feasibility study. So when we get done with this we won’t come out with a hard recommendation, one way or the other,” Gerstenmaier stated.

“We’re going to talk about essentially the advantages and disadvantages of adding crew to EM-1.”

“We were given this task a week ago, appointed a team and have held one telecon.”

“Our priority is to ensure the safe and effective execution of all our planned exploration missions with the Orion spacecraft and Space Launch System rocket,” said Gerstenmaier.

“This is an assessment and not a decision as the primary mission for EM-1 remains an uncrewed flight test.”

Artist concept of the SLS Block 1 configuration on the Mobile Launcher at KSC. Credit: NASA/MSFC

Gerstenmaier further stipulated that the study should focus on determining if a crewed EM-1 could liftoff by the end of 2019. The study team includes one astronaut.

If a change resulted in a maiden SLS/Orion launch date stretching beyond 2019 it has little value – and NASA is best to stick to the current EM-1 flight plan.

The first SLS/Orion crewed flight is slated for Exploration Mission-2 (EM-2) launching in 2021.

“I felt that if we went much beyond 2019, then we might as well fly EM-2 and actually do the plan we’re on,” Gerstenmaier said.

NASA’s current plans call for the unmanned blastoff of Orion EM-1 on the SLS-1 rocket later next year on its first test flight on a 3 week long mission to a distant lunar retrograde orbit. It is slated to occur roughly in the September to November timeframe from Launch Complex 39B at the Kennedy Space Center.

Lightfoot initially revealed the study in a speech to the Space Launch System/Orion Suppliers Conference in Washington, D.C. and an agency wide memo circulated to NASA employees on Feb. 15 – as I reported here.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

To launch astronauts, Orion EM-1 would require very significant upgrades since it will not have the life support systems, display panels, abort systems and more needed to safely support humans on board.

“We know there are certain systems that needed to be added to EM-1 to add crew,” Gerstenmaier elaborated. “So we have a good, crisp list of all the things we would physically have to change from a hardware standpoint.

In fact since EM-1 assembly is already well underway, some hardware already installed would have to be pulled out in order to allow access behind to add the life support hardware and other systems, Hill explained.

The EM-1 pressure shell arrived last February as I witnessed and reported here.

Thus adding crew at this latter date in the manufacturing cycle is no easy task and would absolutely require additional time and additional funding to the NASA budget – which as everyone knows is difficult in these tough fiscal times.

“Then we asked the team to take a look at what additional tests would be needed to add crew, what the additional risk would be, and then we also wanted the teams to talk about the benefits of having crew on the first flight,” Gerstenmaier explained.

“It’s going to take a significant amount of money, and money that will be required fairly quickly to implement what we need to do,” Hill stated. “So it’s a question of how we refine the funding levels and the phasing of the funding for the next three years and see where it comes out.”

Hill also stated that NASA would maintain the Interim Cryogenic Propulsion stage for the first flight, and not switch to the more advanced and powerful Exploration Upper Stage (EUS) planned for first use on EM-2.

Furthermore NASA would move up the AA-2 ascent abort test for Orion to take place before crewed EM-1 mission.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Michoud is building the huge fuel liquid oxygen/liquid hydrogen SLS core stage fuel tank, derived from the Space Shuttle External Tank (ET) – as I detailed here.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

Gerstenmaier noted that Michoud did suffer some damage during the recent tornado strike which will necessitate several months worth of repairs.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The 2018 launch of NASA’s Orion on the unpiloted EM-1 mission counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago.

SLS is the most powerful booster the world has even seen – even more powerful than NASA’s Saturn V moon landing rocket of the 1960s and 1970s.

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds.

If NASA can pull off a 2019 EM-1 human launch it will coincide with the 50th anniversary of Apollo 11 – NASA’s first lunar landing mission manned by Neil Armstrong and Buzz Aldrin, along with Michael Collins.

If crew are added to EM-1 it would essentially adopt the mission profile currently planned for Orion EM-2.

“If the agency decides to put crew on the first flight, the mission profile for Exploration Mission-2 would likely replace it, which is an approximately eight-day mission with a multi-translunar injection with a free return trajectory,” said NASA. It would be similar to Apollo 8 and Apollo 13.

This artist concept depicts the Space Launch System rocket rolling out of the Vehicle Assembly Building at NASA’s Kennedy Space Center. SLS will be the most powerful rocket ever built and will launch the agency’s Orion spacecraft into a new era of exploration to destinations beyond low-Earth orbit. Credits: NASA/Marshall Space Flight Center

Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet.

NASA is developing SLS and Orion for sending humans on a ‘Journey to Mars’ in the 2030s.

They are but the first hardware elements required to carry out such an ambitious initiative.

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

An artist’s interpretation of NASA’s Space Launch System Block 1 configuration with an Orion vehicle. Image: NASA

5 Replies to “NASA Studies Whether to Add Crew to 1st SLS Megarocket Moon Launch in 2019”

  1. Changing horses in midstream is not usually a good idea. Plus, this is a new system.
    My opinion, stay with unmanned.

  2. “To launch astronauts, Orion EM-1 would require very significant upgrades since it will not have the life support systems, display panels, abort systems and more needed to safely support humans on board.” This statement alone should set off all kinds of alarms…

    I feel obligated to note here that the first shuttle mission was crewed AND there were several significant problems that arose. The first being that acoustic reverberations from the engines almost destroyed the booster. Later the flame trench was enlarged and more water injected to dampen the acoustic load. There were several other anomalies too. The astronauts aboard noticed white flakes(?) or something coming off the main tank. These were probably just paint? Foam too? but could have been ice which we all know ended up destroying Columbia during re-entry. Then, of course we all remember the tiles that fell off.

    The upshot is – extremely complex new systems like the SLS needs to be tested! How many total parts are there aboard? How many can fail before a total system failure occurs? I’m sorry about the delay and extra funds, but you’d better do a test flight first! That is unless we can talk ‘The Donald’ into being one of the crew..

    P.S. If that sucker blew up on the launch pad, IT WOULD destroy that entire infrastructure like a Hiroshima bomb going off! Right? End of lives and end of program.. period. Should we really take that chance given the investment and man hours already in place? Better to be safe than sorry!

    Like CHFOSMITH, I vote NO!

  3. I say DO IT! The parallels between this and Apollo 8 are uncanny.

    Apollo 8 was a massive risk, but it ended up being one of the most daring, greatest crewed missions ever.

    1. Apollo 8 was the 3rd launch of the Saturn V. The 1st, designated Apollo 4, occurred on Nov 9th 1967, more than a year before Apollo 8. It experienced an unplanned problem called the “pogo” effect(a longitudinal vibration) during ascent of the 1st stage that could have injured astronauts had the Apollo command module had been manned.

      1. Yes, but keep in mind, prior to Apollo 8, they had never sent an Apollo module to the Moon. Further, they had never safely returned ANYTHING from the Moon, not even a sample return probe.

        The parallels are pretty damn close, so ease off with your POGO problem. Keep in mind too, POGO showed back up at the deployment of Skylab with the Saturn-IVB launch, so some find it utterly fortuitous that it somehow didn’t happen on ANY of the crewed missions, yet somehow returned as soon as Apollo 17 was in the books.

Comments are closed.