NASA has Plans for More Cargo Deliveries to the Moon

Early conceptual renderings of cargo variants of human lunar landing systems from NASA’s providers SpaceX, left, and Blue Origin, right. Credit: SpaceX/Blue Origin

Through the Artemis Program, NASA hopes to lay the foundations for a program of “sustained lunar exploration and development.” This will include regular missions to the surface, the creation of infrastructure and habitats, and a long-term human presence. To facilitate this, NASA is teaming up with industry and international partners to develop Human Landing Systems (HLS) that can transport crews to and from the lunar surface and landers that can deliver payloads of equipment, vehicles, and supplies to the lunar surface.

In a recent statement, NASA indicated that it intends to award Blue Origin and SpaceX additional work under their existing contracts to develop landers that will deliver equipment and infrastructure to the lunar surface. NASA also plans to assign demonstration missions to these companies, in addition to design certification reviews, which will validate their concepts. This decision builds on NASA’s earlier request, made in 2023, that the two companies develop cargo versions of their HLS concepts, which are currently in development for the Artemis III, Artemis IV, and Artemis V missions.

Continue reading “NASA has Plans for More Cargo Deliveries to the Moon”

NASA, SpaceX Illustrate Key Moments of Artemis Lunar Lander Mission

Artist's rendering of the Starship HLS on the lunar surface. NASA has contracted with SpaceX to provide the lunar landing system. Credit: SpaceX
Artist's rendering of the Starship HLS on the Moon's surface. NASA has contracted with SpaceX to provide the lunar landing system. Credit: SpaceX

Before the decade is out, as part of the Artemis Program, NASA plans to send astronauts to the Moon for the first time since the Apollo Era. To realize this goal, they have contracted with commercial space industries to develop all the necessary components. This includes the Space Launch System (SLS) and the Orion spacecraft that will take the Artemis astronauts to the Moon. There’s also the Lunar Gateway and the Artemis Base Camp, the infrastructure that will facilitate regular missions to the Moon after 2028.

In between, NASA has also partnered with companies to develop the Human Landing Systems (HLS) that will transport the Artemis astronauts to the lunar surface and back. This includes the Starship HLS SpaceX is currently developing for NASA, which will rendezvous with the Orion spacecraft in lunar orbit and allow the Artemis III astronauts to land on the Moon (which will take place no sooner than September 2026). In a series of newly-updated images, SpaceX has provided artistic renders of what key moments in this mission will look like.

Continue reading “NASA, SpaceX Illustrate Key Moments of Artemis Lunar Lander Mission”

NASA Wants to Move Heavy Cargo on the Moon

Illustration of logistics elements on the lunar surface. Credit: NASA

While new rockets and human missions to the Moon are in the press, NASA is quietly thinking through the nuts and bolts of a long-term presence on the Moon. They have already released two white papers about the lunar logistics they’ll require in the future and are now requesting proposals from companies to supply some serious cargo transportation. But this isn’t just for space transport; NASA is also looking for ground transportation on the Moon that can move cargo weighing as much as 2,000 to 6,000 kg (4,400 to 13,000 pounds.)

Continue reading “NASA Wants to Move Heavy Cargo on the Moon”

China Releases its First Roadmap for Space Science and Exploration Through 2050.

China has released its first national plan for space 2024 and 2050. Credit: CFP

China’s space program has advanced considerably since the turn of the century. In addition to developing heavy-launch vehicles like the Long March 5 and building a modular space station in orbit, China has also embarked on an ambitious program of lunar exploration (Chang’e) – which has launched six robotic missions to explore the Moon’s surface since 2007. These missions are paving the way for crewed missions to the Moon by 2030 and creating a permanent habitat around the Moon’s southern polar region – the International Lunar Research Station (ILRS).

They also plan to send crewed missions to Mars by 2033, which will culminate in the creation of a permanent base there too. Earlier today, the Chinese Academy of Sciences (CAS), the China National Space Administration (CNSA), and the China Manned Space Agency (CMSE) jointly released the country’s first long-term scheme for space science and exploration. Titled “National Medium—and Long-Term Development Plan for Space Science (2024-2050),” this plan elaborated on the basic principles, development goals, and roadmap for the country’s space science and exploration through 2050.

Continue reading “China Releases its First Roadmap for Space Science and Exploration Through 2050.”

The Polaris Dawn Crew is Back on Earth

The Polaris Dawn crew (left to right): Anna Menon, Scott Poteet, Jared Isaacman, and Sarah Gillis. Credit: Polaris Program/John Kraus

On September 15th, 2024, the Polaris Dawn crew returned to Earth after spending five days in orbit. The mission was the first of three planned for the Polaris program, a private space project to advance human spaceflight capabilities and raise funds and awareness for charitable causes. The mission’s Dragon spacecraft safely splashed down off the coast of Florida at 3:36:54 a.m. EDT (12:36:54 p.m. PDT). Once their spacecraft was retrieved, the crew was flown to the Kennedy Space Center to see their families and undergo medical examinations before traveling to Houston to complete more of the mission’s studies.

Continue reading “The Polaris Dawn Crew is Back on Earth”

A Review of Humanity’s Planned Expansion Between the Earth and the Moon

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

Between Low Earth Orbit (LEO) and the Moon, there is a region of space measuring 384,400 km (238,855 mi) wide known as Cislunar space. In the coming decades, multiple space agencies will send missions to this region to support the development of infrastructure that will lead to a permanent human presence on the Moon. This includes orbital and surface habitats, landing pads, surface vehicles, technologies for in-situ resource utilization (ISRU), and other elements that will enable the long-term exploration and development of the lunar surface.

For all parties concerned, Cislunar space holds immense potential in terms of scientific, commercial, and military applications. The vastly increased level of activity on and around the Moon makes space domain awareness (SDA) – knowledge of all operations within a region of space – paramount. It is also necessary to ensure the continued success and utilization of the covered region. In a recent paper, a team of aerospace engineers considered the missions planned for the coming decades and evaluated the state and shortcomings of their space domain awareness.

Continue reading “A Review of Humanity’s Planned Expansion Between the Earth and the Moon”

JAXA Officially Wraps Up its SLIM Lander Mission

Illustration: SLIM lander on the moon
An artist's conception shows Japan's SLIM lander on the moon. Credit: ISAS/JAXA

On January 20th, 2024, the Japan Aerospace Exploration Agency (JAXA) made history when its Smart Lander for Investigating Moon (SLIM) made a soft landing on the Moon, becoming the first Japanese robotic mission to do so. This small-scale lander was designed to investigate the origins of the Moon and test technologies that are fundamental to exploring the low-gravity lunar environment. Unfortunately, mission controllers lost contact with the lander after April 28th, 2024, and have spent the last few months trying to reestablish communications.

Continue reading “JAXA Officially Wraps Up its SLIM Lander Mission”

Chinese Researchers Devise New Strategy for Producing Water on the Moon

The strategy for in-situ water production on the Moon through the reaction between lunar regolith and endogenous hydrogen. Credit: NIMTE)

In the coming years, China and Roscosmos plan to create the International Lunar Research PStation (ILRSP), a permanent base in the Moon’s southern polar region. Construction of the base will begin with the delivery of the first surface elements by 2030 and is expected to last until about 2040. This base will rival NASA’s Artemis Program, which will include the creation of the Lunar Gateway in orbit around the Moon and the various surface elements that make up the Artemis Base Camp. In addition to the cost of building these facilities, there are many considerable challenges that need to be addressed first.

Crews operating on the lunar surface for extended periods will require regular shipments of supplies. Unlike the International Space Station, which can be resupplied in a matter of hours, sending resupply spacecraft to the Moon will take about three days. As a result, NASA, China, and other space agencies are developing methods to harvest resources directly from the lunar environment – a process known as In-Situ Resource Utilization (ISRU). In a recent paper, a research team with the Chinese Academy of Sciences (CAS) announced a new method for producing massive amounts of water through a reaction between lunar regolith and endogenous hydrogen.

Continue reading “Chinese Researchers Devise New Strategy for Producing Water on the Moon”

China Proposes Magnetic Launch System for Sending Resources Back to Earth

Distance Between the Earth and Moon
The Earth rising over the Moon's surface, as seen by the Apollo 8 mission. Credit: NASA

In his famous novel The Moon is a Harsh Mistress, Robert A. Heinlein describes a future lunar settlement where future lunar residents (“Loonies”) send payloads of wheat and water ice to Earth using an electromagnetic catapult. In this story, a group of Loonies conspire to take control of this catapult and threaten to “throw rocks at Earth” unless they recognize Luna as an independent world. Interestingly enough, scientists have explored this concept for decades as a means of transferring lunar resources to Earth someday.

Given that space agencies are planning on sending missions to the Moon to create permanent infrastructure, there is renewed interest in this concept. In a recent paper, a team of scientists from China’s Shanghai Institute of Satellite Engineering (SAST) detailed how a magnetic launcher on the lunar surface could provide a cost-effective means of sending resources back to Earth. This proposal could become part of China’s long-term vision for a lunar settlement known as the International Lunar Research Station (ILRS) – a joint project they are pursuing with the Russian space agency (Roscosmos).

Continue reading “China Proposes Magnetic Launch System for Sending Resources Back to Earth”

China's Lunar Samples Contain Graphene Flakes

Artist’s impression of the graphenes (C24) and fullerenes found in a Planetary Nebula. The detection of graphenes and fullerenes around old stars as common as our Sun suggests that these molecules and other allotropic forms of carbon may be widespread in space. Credits: IAC; original image of the Helix Nebula (NASA, NOAO, ESA, the Hubble Helix Nebula Team, M. Meixner, STScI, & T.A. Rector, NRAO.)

In 2004, scientists at the University of Manchester first isolated and investigated graphene, the supermaterial composed of single-layer carbon atoms arranged in a hexagonal honeycomb lattice. Since then, it has become a wonder, with properties that make it extremely useful in numerous applications. Among scientists, it is generally believed that about 1.9% of carbon in the interstellar medium (ISM) exists in the form of graphene, with its shape and structure determined by the process of its formation.

As it happens, there could be lots of this supermaterial on the surface of the Moon. In a recent study, researchers from the Chinese Academy of Science (CAS) revealed naturally formed graphene arranged in a special thin-layered structure on the Moon. These findings could have drastic implications for our understanding of how the Moon formed and lead to new methods for the manufacture of graphene, with applications ranging from electronics, power storage, construction, and supermaterials. They could also prove useful for future missions that will create permanent infrastructure on the lunar surface.

Continue reading “China's Lunar Samples Contain Graphene Flakes”