Lockheed Martin Shows off its new Space Habitat

Artist illustration of Habitation Module. Credit: Lockheed Martin

In their pursuit of returning astronauts to the Moon, and sending crewed missions to Mars, NASA has contracted with a number of aerospace companies to develop all the infrastructure it will need. In addition to the Space Launch System (SLS) and the Orion spacecraft – which will fly the astronauts into space and see them safety to their destinations – they have teamed up with Lockheed Martin and other contractors to develop the Deep Space Gateway.

This orbiting lunar habitat will not only facilitate missions to and from the Moon and Mars, it will also allow human beings to live and work in space like never before. On Thursday, August 16th, Lockheed Martin provided a first glimpse of what one the of habitats aboard the Deep Space Gateway would look like. It all took place at the Kennedy Space Center in Florida, where attendees were given a tour of the habitat prototype.

At it’s core, the habitat uses the Donatello Multi-Purpose Logistics Module (MPLM), a refurbished module designed by the Italian Space Agency that dates back to the Space Shuttle era. Like all MPLMs, the Donatello is a pressurized module that was intended to carry equipment, experiments and supplies to and from the International Space Station aboard the Space Shuttle.

While the Donatello was never sent into space, Lockheed Martin has re-purposed it to create their prototype habitat. Measuring 6.7 meters (22 feet) long and 4.57 meters (15 feet) wide, the pressurized capsule is designed to house astronauts for a period of 30 to 60 days. According to Bill Pratt, the program’s manager, it contains racks for science, life support systems, sleep stations, exercise machines, and robotic workstations.

The team also relied on “mixed-reality prototyping” to create the prototype habitat, a process where virtual and augmented reality are used to solve engineering issues in the early design phase. As Pratt explained in an interview with the Orlando Sentinel, their design makes optimal use of limited space, and also seeks to reuse already-build components:

“You think of it as an RV in deep space. When you’re in an RV, your table becomes your bed and things are always moving around, so you have to be really efficient with the space. That’s a lot of what we are testing here… We want to get to the moon and to Mars as quickly as possible, and we feel like we actually have a lot of stuff that we can use to do that.”

This habitat is one of several components that will eventually go into creating the Deep Space Gateway. These will include the habitat, an airlock, a propulsion module, a docking port and a power bus, which together would weigh 68 metric tonnes (75 US tons). This makes it considerably smaller than the International Space Station (ISS), which weighs in at a hefty 408 metric tonnes (450 US tons).

Artist's impression of the Deep Space Gateway, currently under development by Lockheed Martin. Credit: NASA
Artist’s impression of the Deep Space Gateway, currently under development by Lockheed Martin. Credit: NASA

Moreover, the DSG is one of several components that will be used to return astronauts to the Moon and to Mars. As noted, these include the Space Launch System (SLS), which will be the most powerful launch vehicle since the Saturn V (the rocket that carried the Apollo astronauts to the Moon) and the Orion Multi-Purpose Crew Vehicle (MPCV), which will house the crew.

However, for their planned missions to Mars, NASA is also looking to develop the Deep Space Transport and the Mars Base Camp and Lander. The former calls for a reusable vehicle that would rely on a combination of Solar Electric Propulsion (SEP) and chemical propulsion to transport crews to and from the Gateway, whereas the latter would orbit Mars and provide the means to land on and return from the surface.

All told, NASA has awarded a combined $65 million to six contractors – Lockheed Martin, Boeing, Sierra Nevada Corp.’s Space Systems, Orbital ATK, NanoRacks and Bigelow Aerospace – to build the habitat prototype by the end of the year. The agency will then review the proposals to determine which systems and interfaces will be incorporated into the design of the Deep Space Gateway.

In the meantime, development of the Orion spacecraft continues at the Kennedy Space Center, which recently had its heat shields attached. Next month, the European Space Agency (ESA) will also be delivering the European Service Module to the Kennedy Space Center, which will be integrated with the Orion crew module and will provide it with the electricity, propulsion, thermal control, air and water it will need to sustain a crew in space.

Artist’s impression of the Mars Base Camp in orbit around Mars. When missions to Mars begin, one of the greatest risks will be that posed by space radiation. Credit: Lockheed Martin

Once this is complete, NASA will begin the process of integrating the spacecraft with the SLS. NASA hopes to conduct the first uncrewed mission using the Orion spacecraft by 2020, in what is known as Exploration Mission-1 (EM-1). Exploration Mission-2 (EM-2), which will involve a crew performing a lunar flyby test and returning to Earth, is expected to take place by mid-2022.

Development on the the Deep Space Transport and the Mars Base Camp and Lander is also expected to continue. Whereas the Gateway is part of the first phase of NASA’s “Journey to Mars” plan – the “Earth Reliant” phase, which involves exploration near the Moon using current technologies – these components will be part of Phase II, which is on developing long-duration capabilities beyond the Moon.

If all goes according to plan, and depending on the future budget environment, NASA still hopes to mount a crewed mission to Mars by the 2030s.

Further Reading: Orlando Sentinel

NASA Moving Ahead with Deployment of Orion Capsule and Space Launch System

On October 11th, 2010, Congress signed the bipartisan NASA Authorization Act, which allocated the necessary funding for the space agency to commence preparations for itsJourney to Mars“. For the sake of mounting the first crewed missions to the Red Planet, several components were designated as being crucial. These included the Space Launch System (SLS) and the Orion Multi-Purpose Crew Vehicle.

Despite a recent announcement that NASA would be prioritizing a return to the Moon in the coming years, both the SLS and Orion are on track with the eventual goal of mounting crewed missions to Mars. In recent weeks, NASA conducted critical assessments of both components and their proposed launch schedules, and determined that they will be launched together in 2020 for the sake of conducting Exploration Mission-1 (EM-1).

This test flight, which will be uncrewed, will test both systems and lay the foundations for the first crewed mission of the SLS and Orion. Known as Exploration Mission- 2 (EM-2), which was originally scheduled for 2021, this flight is now expected to take place in 2023. EM-1 will also serve to establish a regular cadence of mission launches that will take astronauts back to the Moon and eventually on to Mars.

NASA’s Orion spacecraft will carry astronauts further into space than ever before using a module based on Europe’s Automated Transfer Vehicles (ATV). Credit: NASA

The recent review came on the heels of an earlier assessment where NASA evaluated the cost, risk and technical factors of adding crew to the mission. This review was initiated as a result of the crew study and the challenges related to building the core stage of the SLS. Foremost among these was the recent tornado damage caused to the Michoud Assembly Facility in New Orleans, where the SLS is currently being built.

On top of that, there are also the challenges related to the manufacture and supply of the first Orion Service Module. This module, which is being developed by the European Space Agency (ESA), serves as the Orion’s primary power and propulsion component, until it is discarded at the end of each mission. During the summer of 2016, the design of the Service Module was also the subject of a critical design review, and passed.

After conducting their review, NASA reaffirmed the original plan to fly the EM-1 uncrewed. As acting NASA Administrator Robert Lightfoot announced in a recent NASA press release:

“While the review of the possible manufacturing and production schedule risks indicate a launch date of June 2020, the agency is managing to December 2019. Since several of the key risks identified have not been actually realized, we are able to put in place mitigation strategies for those risks to protect the December 2019 date.”

In addition, NASA has established new production performance milestones to address a key issue identified by the review, which was scheduling risks. Based on lesson learned from first-time builds, NASA and its contractors have adopted new measures to optimize building plans which will ensure flexibility – specifically if contractors are unable to deliver on schedule.

At this juncture, NASA is on track to develop the new deep space exploration systems that will take astronauts back to the Moon and beyond. Cost assessments for EM-1, which include the SLS and ground systems, are currently within their original targets. By June 2020, NASA estimates that cost overruns will remain within a 15% limit for the SLS and just slightly above for the ground systems.

As part of the review, NASA also considered when the test of the Orion’s launch abort system (which needs to happen ahead of EM-1) would take place – which they chose to move up to April 2019. Known as Ascent-Abort 2, this test will validate the launch abort system’s ability to land the crew safely during descent, and ensure that the agency can remain on track for a crewed flight in 2023.

To build the SLS and Orion, NASA is relying on several new and advanced manufacturing techniques. These include additive manufacturing (3-D printing), which is being used to fashion more than 100 parts for the Orion spacecraft. NASA is also using a technique known as self-reaction friction stir welding to join the two largest core stages of the rocket, which are the thickest structures ever joined using this technique.

Space Launch System (SLS) Block 1 Expanded View. Credit: NASA

Integration of the first service module is well under way in Bremen, Germany, with work already starting on the second. This is taking place at the Airbus integration room, where crews on eight-hour shifts are busy installing more than 11 km (6.8 mi) of cables that will connect the module’s central computers to everything from solar planes and fuel systems to the module’s engines and air and water systems.

These crews also finished installing the Orion’s 24 orientation thrusters recently, which complement the eight larger engines that will back up the main engine. The complex design of the module’s propulsion system requires that some 1100 welds be completed, and only 173 remain. At present, the ESA crews are aiming to finish work on the Orion and ship it to the USA by the summer of 2018.

As far as the assembly of the SLS is concerned, NASA has completed welding on all the major structures to the rocket stages is on track to assemble them together. Once that is complete, they will be able to complete an engine test that will fire up the four RS-25 engines on the core stage simultaneously – the EM-1 “green run”. When EM-1 takes place, the launch will be supported by ground systems and crews at NASA’s Kennedy Space Center in Florida.

The agency is also developing a Deep Space Gateway (DSG) concept with Roscosmos and industry partners like Boeing and Lockheed Martin. This space station, which will be placed in orbit around the Moon, will facilitate missions to the lunar surface, Mars, and other locations deeper into the Solar System. Other components currently under consideration include the Deep Space Transport, and the Martian Basecamp and Lander.

These latter two components are what will allow for missions beyond the Earth-Moon system. Whereas the combination of the SLS, Orion and the DSG will allow for renewed lunar missions (which have not taken place since the Apollo Era) the creation of a Deep Space Transport and Martian Basecamp are intrinsic to NASA’s plans to mount a crewed mission to the Red Planet by the 2030s.

But in the meantime, NASA is focused on the first test flight of the Orion and the SLS, which will pave the way towards a crewed mission in a few years’ time. As William Gerstenmaier, the associate administrator for NASA’s Human Exploration and Operations Mission Directorate, indicated:

“Hardware progress continues every day for the early flights of SLS and Orion. EM-1 will mark a significant achievement for NASA, and our nation’s future of human deep space exploration. Our investments in SLS and Orion will take us to the Moon and beyond, advancing American leadership in space.”

For almost forty years, no crewed spaceflights have been conducted beyond Low-Earth Orbit. And with the retiring of the Space Shuttle Program in 2011, NASA has lost the ability to conduct domestic launches. For these reasons, the past three presidential administrations have indicated their commitment to develop the necessary tools to return to the Moon and send astronauts to Mars.

Not only will this restore the United State’s leadership in space exploration, it also will open up new venues for human exploration and create new opportunities for collaboration between nations and between federal agencies and industry partners. And be sure to check out this video showcases NASA’s plans for Deep Space Exploration:

Further Reading: ESA, NASA

Where Do We Go Next? Building the Deep Space Gateway

Where do we go next? The Deep Space Gateway


I don’t have to tell you that the vision of human space exploration in the Solar System has kind of stalled. Half a century ago, humans set foot on the Moon, and we haven’t been back since. Instead, we’ve thoroughly explored every cubic meter of low Earth orbit, going around and around the Earth. In fact, back in 2016, the International Space Station celebrated 100,000 orbits around the Earth.

The space shuttle was the last US vehicle capable of taking humans up into orbit, and it was retired back in 2011. So things look pretty bleak for sending humans out to explore the Solar System.

Earlier this year, however, NASA announced their next great step in their human space exploration efforts: the Deep Space Gateway. And if all goes well, we’ll see humans living and working farther from Earth, and for longer periods than ever before.

After the space shuttle program was wrapped up, NASA had a bunch of challenges facing it. Perhaps the greatest of these, was what to do with the enormous workforce that built and maintained the space shuttle fleet. Thousands were laid off, and moved to other aerospace jobs and other industries, but the space agency worked to develop the next big launch system after the shuttle.

Originally there were the Ares rockets, as part of the Constellation Program, but these were canceled and replaced with the Space Launch System. We’ve done a whole episode on the SLS, but the short version is that this new rocket will be capable of lifting more cargo into orbit than any rocket ever.

The first version, known as the Block 1 will be capable of lofting 70,000 kg into low-Earth orbit, while the upcoming Block 2 will be able to carry 130,000 kg into LEO – more than the mighty Saturn V rocket.

What are you going to do with a rocket this powerful? Launch new space telescopes, robotic missions to the outer Solar System, and put humans into space, of course.

In addition to the SLS, NASA is also working on a new capsule, known as the Orion Crew Module. This Apollo-esque capsule will be capable of carrying a crew of 4 astronauts out beyond low-Earth orbit, and returning them safely back to Earth.

But if you can send astronauts out beyond low-Earth orbit, where will they go?

Artist's impression of the Deep Space Gateway, currently under development by Lockheed Martin. Credit: NASA
Artist’s impression of the Deep Space Gateway, currently under development by Lockheed Martin. Credit: NASA

The Deep Space Gateway.

The plan is to put a brand new space station into a cis-lunar orbit. Specifically, it’s known as a near-rectilinear halo orbit. It won’t actually be orbiting the Moon, but it’ll be on an orbit that allows it to serve as a stepping stone to the Moon. Sort of a bridge between Lagrange points. This station will range in distance from 1,500 to 70,000 km from the Moon in a way that keeps it relatively easy to reach.

From the outside, it’ll look like a smaller version of the International Space Station, with a group of 4 pressurized modules connected together: a power module, habitation module, cargo logistics pod, and an EVA module.

Space inside the Gateway will be cramped, with astronauts needing to share their living quarters, reconfiguring the space as necessary. Seriously, the ISS is going to feel like a luxury hotel after spending time in the Gateway.

Artist illustration of Habitation Module. Credit: Lockheed Martin
Artist illustration of Habitation Module. Credit: Lockheed Martin

The station will be solar powered, with arrays providing 40 kW of energy. It’ll also have 12 kW ion thrusters which will be used for station keeping, as well as traditional hydrazine thrusters. The first habitation module will be capable of supplying the astronauts for 30-60 days, but a later cargo logistics pod will extend the length of missions.

Right now, there are a group of contractors being considered to build the Deep Space Gateway. The designs I’m showing you come from Lockheed Martin, but things could change.

The goal of the Deep Space Gateway will be to keep humans alive in space outside the Earth’s protective magnetosphere for at least a year, studying the effects of deep space on the human body.

But in the long term, the Gateway will serve as a stepping stone to Mars. The astronauts will assemble the future Deep Space Transport, a spacecraft that will carry humans to the Red Planet. But more on that later.

On the International Space Station, astronauts are protected by the Earth’s magnetosphere from solar radiation and cosmic rays. But on board the Deep Space Gateway, there’ll be no such protection. Instead, the station will need to be reinforced with radiation protection. At the same time, the region actually has less space junk, so it won’t need to same kind of micrometeorite protection.

In addition to being a science platform, the DSG will serve as a base of operations for exploring the Moon. In the near term, NASA is planning new lander and rover missions to the Moon. The Gateway could serve as a dock for missions blasting off from the Moon, where astronauts could unload science samples, and refurbish a rover for another mission down on the lunar surface.

Another intriguing idea is that the Deep Space Gateway could be used as a place to study samples from Mars without a risk of contaminating Earth. Under the current planetary contamination guidelines, samples from Mars need to be sterilized before they can be brought to Earth.

It’s hard to search for life in your samples, when you need to kill all life in your samples. But I’m sure the astronauts would be willing to take the risk of catching Martian flu for a chance to discover there’s life on Mars.

When will we actually see the Deep Space Gateway?

Not for a few years, sadly. Building the Gateway is going to require a few launches of the SLS, and there are already a bunch of missions queued up to use this new launcher.

SLS Block 1 Expanded View. Credit: NASA
SLS Block 1 Expanded View. Credit: NASA

The first launch of SLS will be an uncrewed test with an Orion capsule, sometime in 2019, known as EM-1. This will be followed by the launch of the Europa Clipper mission, also in 2019.

Once those missions are out of the way, the first crewed launch with SLS blasts off some time between 2021 and 2023. Designated as EM-2, this is when the construction of the Deep Space Gateway begins. 4 astronauts will spend 3 weeks beyond low Earth orbit, delivering the first module to the Deep Space Gateway: the Solar Power Electric Bus.

In 2024, EM-3 will have another crew of 4 blast off with the Deep Space Gateway’s Habitation Module. EM-4 should lift off by 2025 with the Logistics module. Finally, some time around 2026, mission EM-5 will deliver the station’s Airlock module.

SLS Block 2. Credit: NASA
SLS Block 2. Credit: NASA

What comes next? After the Deep Space Gateway, there’ll be the Deep Space Transport. If you’ve seen The Martian, think of the Hermes spacecraft that ferries the crew to and from Mars. The details are thin right now, but if all goes well, the pieces of the Transport will launch to the Gateway by 2027.

The various components will be assembled by the astronauts over the course of several launches, and once completed, the Deep Space Transport would make a series of 1-3 year missions to and from Mars. It’ll carry a crew of a six astronauts in a large habitation module and keep them alive for the journey.

The first mission could head out in 2033, with a human flyby of Mars. Side note, wouldn’t it be heartbreaking to get that close to Mars, and not actually be able to set foot on the surface? Anyway, future missions to Mars will include landings, and perhaps a visit to the SpaceX luxury Martian hotel where the astronauts can relax and apologize to each other for what they did when they all got space madness.

But this is so far in the future, it’s pretty hard to even wrap my mind around it yet.

Of course, these are all long term plans. And as I’ve mentioned in previous episodes, long term plans have a tendency of getting canceled. Who knows if the Deep Space Gateway actually get constructed, or if NASA will shift its support to private missions to Mars.

We’ll just have to stay tuned.

Ready to Leave Low Earth Orbit? Prototype Construction Begins for a Deep Space Habitat

In 2010, NASA announced its commitment to mount a crewed mission to Mars by the third decade of the 21st century. Towards this end, they have working hard to create the necessary technologies – such as the Space Launch System (SLS) rocket and the Orion spacecraft. At the same time, they have partnered with the private sector to develop the necessary components and expertise needed to get crews beyond Earth and the Moon.

To this end, NASA recently awarded a Phase II contract to Lockheed Martin to create a new space habitat that will build on the lessons learned from the International Space Station (ISS). Known as the Deep Space Gateway, this habitat will serve as a spaceport in lunar orbit that will facilitate exploration near the Moon and assist in longer-duration missions that take us far from Earth.

The contract was awarded as part of the Next Space Technologies for Exploration Partnership (NextSTEP) program, which NASA launched in 2014. In April of 2016, as part of the second NextSTEP Broad Agency Announcement (NextSTEP-2) NASA selected six U.S. companies to begin building full-sized ground prototypes and concepts for this deep space habitat.

Artist’s impression of the Deep Space Gateway, currently under development by Lockheed Martin. Credit: NASA

Alongside such well-known companies like Bigelow Aerospace, Orbital ATK and Sierra Nevada, Lockheed Martin was charged with investigating habitat designs that would enhance missions in space near the Moon, and also serve as a proving ground for missions to Mars. Intrinsic to this is the creation of something that can take effectively integrate with SLS and the Orion capsule.

In accordance with NASA’s specifications on what constitutes an effective habitat, the design of the Deep Space Gateway must include a pressurized crew module, docking capability, environmental control and life support systems (ECLSS), logistics management, radiation mitigation and monitoring, fire safety technologies, and crew health capabilities.

The design specifications for the Deep Space Gateway also include a power bus, a small habitat to extend crew time, and logistics modules that would be intended for scientific research. The propulsion system on the gateway would rely on high-power electric propulsion to maintain its orbit, and to transfer the station to different orbits in the vicinity of the Moon when required.

With a Phase II contract now in hand, Lockheed Martin will be refining the design concept they developed for Phase I. This will include building a full-scale prototype at the Space Station Processing Facility at NASA’s Kennedy Space Center at Cape Canaveral, Florida, as well as the creation of a next-generation Deep Space Avionics Integration Lab near the Johnson Space Center in Houston.

Artist’s concept of space habitat operating beyond Earth and the Moon. Credit: NASA

As Bill Pratt, Lockheed Martin’s NextSTEP program manager, said in a recent press statement:

“It is easy to take things for granted when you are living at home, but the recently selected astronauts will face unique challenges. Something as simple as calling your family is completely different when you are outside of low Earth orbit. While building this habitat, we have to operate in a different mindset that’s more akin to long trips to Mars to ensure we keep them safe, healthy and productive.”

The full-scale prototype will essentially be a refurbished Donatello Multi-Purpose Logistics Module (MPLM), which was one of three large modules that was flown in the Space Shuttle payload bay and used to transfer cargo to the ISS. The team will also be relying on “mixed-reality prototyping”, a process where virtual and augmented reality are used to solve engineering issues in the early design phase.

“We are excited to work with NASA to repurpose a historic piece of flight hardware, originally designed for low Earth orbit exploration, to play a role in humanity’s push into deep space,” said Pratt. “Making use of existing capabilities will be a guiding philosophy for Lockheed Martin to minimize development time and meet NASA’s affordability goals.”

The Deep Space Gateway will also rely on the Orion crew capsule’s advanced capabilities while crews are docked with the habitat. Basically, this will consist of the crew using the Orion as their command deck until a more permanent command module can be built and incorporated into the habitat. This process will allow for an incremental build-up of the habitat and the deep space exploration capabilities of its crews.

Credit: NASA

As Pratt indicated, when uncrewed, the habitat will rely on systems that Lockheed Martin has incorporated into their Juno and MAVEN spacecraft in the past:

“Because the Deep Space Gateway would be uninhabited for several months at a time, it has to be rugged, reliable and have the robotic capabilities to operate autonomously. Essentially it is a robotic spacecraft that is well-suited for humans when Orion is present. Lockheed Martin’s experience building autonomous planetary spacecraft plays a large role in making that possible.”

The Phase II work will take place over the next 18 months and the results (provided by NASA) are expected to improve our understanding of what is needed to make long-term living in deep space possible. As noted, Lockheed Martin will also be using this time to build their Deep Space Avionics Integration Laboratory, which will serve as an astronaut training module and assist with command and control between the Gateway and the Orion capsule.

Beyond the development of the Deep Space Gateway, NASA is also committed to the creation of a Deep Space Transport – both of which are crucial for NASA’s proposed “Journey to Mars”. Whereas the Gateway is part of the first phase of this plan – the “Earth Reliant” phase, which involves exploration near the Moon using current technologies – the second phase will be focused on developing long-duration capabilities beyond the Moon.

NASA’s Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

For this purpose, NASA is seeking to create a reusable vehicle specifically designed for crewed missions to Mars and deeper into the Solar System. The Deep Space Transport would rely on a combination of Solar Electric Propulsion (SEP) and chemical propulsion to transport crews to and from the Gateway – which would also serve as a servicing and refueling station for the spacecraft.

This second phase (the “Proving Ground” phase) is expected to culminate at the end of the 2020s, at which time a one-year crewed mission will take place. This mission will consist of a crew being flown to the Deep Space Gateway and back to Earth for the purpose of validating the readiness of the system and its ability to conduct long-duration missions independent of Earth.

This will open the door to Phase Three of the proposed Journey, the so-called “Earth Indepedent” phase. At this juncture, the habitation module and all other necessary mission components (like a Mars Cargo Vehicle) will be transferred to an orbit around Mars. This is expected to take place by the early 2030s, and will be followed (if all goes well) by missions to the Martian surface.

While the proposed crewed mission to Mars is still a ways off, the architecture is gradually taking shape. Between the development of spacecraft that will get the mission components and crew to cislunar space – the SLS and Orion – and the development of space habitats that will house them, we are getting closer to the day when astronauts finally set foot on the Red Planet!

Further Reading: NASA, Lockheed Martin

VP Pence Vows Return to the Moon, Boots on Mars during KSC Visit

Vice President Mike Pence (holding Orion model) receives up close tour of NASA’s Orion EM-1 deep space crew capsule (at right) being manufactured for 1st integrated flight with NASA’s SLS megarocket in 2019; with briefing from KSC Director/astronaut Robert D. Cabana during his July 6, tour of NASA’s Kennedy Space Center – along with acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Vice President Mike Pence, during a whirlwind visit to NASA’s Kennedy Space Center in Florida, vowed that America would fortify our leadership in space under the Trump Administration with impressive goals by forcefully stating that “our nation will return to the moon, and we will put American boots on the face of Mars.”

“American will once again lead in space for the benefit and security of all of our people and all of the world,” Vice President Mike Pence said during a speech on Thursday, July 6, addressing a huge crowd of more than 500 NASA officials and workers, government dignitaries and space industry leaders gathered inside the cavernous Vehicle Assembly Building at the Kennedy Space Center – where Apollo/Saturn Moon landing rockets and Space Shuttles were assembled for decades in the past and where NASA’s new Space Launch System (SLS) megarocket and Orion deep space crew capsule will be assembled for future human missions to the Moon, Mars and beyond.

Pence pronounced the bold space exploration goals and a reemphasis on NASA’s human spaceflight efforts from his new perch as Chairman of the newly reinstated National Space Council just established under an executive order signed by President Trump.

“We will re-orient America’s space program toward human space exploration and discovery for the benefit of the American people and all of the world.”

Vice President Mike Pence speaks before an audience of NASA leaders, U.S. and Florida government officials, and employees inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Pence thanked employees for advancing American leadership in space. Behind the podium is the Orion spacecraft flown on Exploration Flight test-1 in 2014. Credits: NASA/Kim Shiflett

However Pence was short on details and he did not announce any specific plans, timetables or funding during his 25 minute long speech inside the iconic VAB at KSC.

It remains to been seen how the rhetoric will turn to reality and all important funding support.

The Trump Administration actually cut their NASA 2018 budget request by $0.5 Billion to $19.1 Billion compared to the enacted 2017 NASA budget of $19.6 Billion – including cuts to SLS and Orion.

By contrast, the Republican led Congress – with bipartisan support – is working on a 2018 NASA budget of around 19.8 Billion.

“Let us do what our nation has always done since its very founding and beyond: We’ve pushed the boundaries on frontiers, not just of territory, but of knowledge. We’ve blazed new trails, and we’ve astonished the world as we’ve boldly grasped our future without fear.”

“From this ‘Bridge to Space,’ our nation will return to the moon, and we will put American boots on the face of Mars.” Pence declared.

Lined up behind Pence on the podium was the Orion spacecraft flown on Exploration Flight Test-1 (EFT-1) in 2014 flanked by a flown SpaceX cargo Dragon and a mockup of the Boeing CST-100 Starliner crew capsule.

The crewed Dragon and Starliner capsules are being developed by SpaceX and Boeing under NASA contracts as commercial crew vehicles to ferry astronauts to the International Space Station (ISS).

Pence reiterated the Trump Administrations support of the ISS and working with industry to cut the cost of access to space.

Vice President Mike Pence (holding Orion model) tours manufacturing of NASA’s Orion EM-1 crew capsule during July 6 KSC visit – posing with KSC Director/astronaut Robert Cabana, acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio, Lockheed Martin CEO Marillyn Hewson and KSC Deputy Director Janet Petro inside the Neil Armstrong Operations and Checkout Building. Credit: Julian Leek

Acting NASA Administrator Robert Lightfoot also welcomed Vice President Pence to KSC and thanked the Trump Administration for its strong support of NASA missions.

“Here, of all places, we can see we’re not looking at an ‘and/or proposition’,” Lightfoot said.

“We need government and commercial entities. We need large companies and small companies. We need international partners and our domestic suppliers. And we need academia to bring that innovation and excitement that they bring to the next workforce that we’re going to use to actually keep going further into space than we ever have before.”

View shows the state of assembly of NASA’s Orion EM-1 deep space crew capsule during inspection tour by Vice President Mike Pence on July 6, 2017 inside the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center. 1st integrated flight with NASA’s SLS megarocket is slated for 2019. Credit: Ken Kremer/kenkremer.com

After the VAB speech, Pence went on an extensive up close inspection tour of KSC facilities led by Kennedy Space Center Director and former shuttle astronaut Robert Cabana, showcasing the SLS and Orion hardware and infrastructure critical for NASA’s plans to send humans on a ‘Journey to Mars’ by the 2030s.

“We are in a great position here at Kennedy, we made our vision a reality; it couldn’t have been done without the passion and energy of our workforce,” said Kennedy Space Center Director Cabana.

“Kennedy is fully established as a multi-user spaceport supporting both government and commercial partners in the space industry. As America’s premier multi-user spaceport, Kennedy continues to make history as it evolves, launching to low-Earth orbit and beyond.”

Vice President Mike Pence holds and inspects an Orion capsule heat shield tile with KSC Director/astronaut Robert Cabana during his July 6, 2017 tour/speech at NASA’s Kennedy Space Center – accompanied by acting NASA administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com

Pence toured the Neil Armstrong Operations and Checkout Building (O & C) where the Orion deep space capsule is being manufactured for launch in 2019 on the first integrated flight with SLS on the uncrewed EM-1 mission to the Moon and back – as I witnessed for Universe Today.

Vice President Mike Pence tours manufacturing of NASA’s Orion EM-1 crew capsule during July 6, 2017 KSC visit with KSC Director/astronaut Robert Cabana inside the Neil Armstrong Operations and Checkout Building. Credit: Julian Leek

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2019 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

Opportunity Reaches ‘Perseverance Valley’ Precipice – Ancient Fluid Carved Gully on Mars

Opportunity rover looks south from the top of Perseverance Valley along the rim of Endeavour Crater on Mars in this partial self portrait including the rover deck and solar panels. Perseverance Valley descends from the right and terminates down near the crater floor. This navcam camera photo mosaic was assembled from raw images taken on Sol 4736 (20 May 2017) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Now well into her 13th year roving the Red Planet, NASA’s astoundingly resilient Opportunity rover has arrived at the precipice of “Perseverance Valley” – overlooking the upper end of an ancient fluid-carved valley on Mars “possibly water-cut” that flows down into the unimaginably vast eeriness of alien Endeavour crater.

Opportunity’s unprecedented goal ahead is to go ‘Where No Rover Has Gone Before!’

In a remarkable first time feat and treat for having ‘persevered’ so long on the inhospitably frigid Martian terrain, Opportunity has been tasked by her human handlers to drive down a Martian gully carved billions of years ago – by a fluid that might have been water – and conduct unparalleled scientific exploration, that will also extend into the interior of Endeavour Crater for the first time.

No Mars rover has done that before.

“This will be the first time we will acquire ground truth on a gully system that just might be formed by fluvial processes,” Ray Arvidson, Opportunity Deputy Principal Investigator of Washington University in St. Louis, told Universe Today.

“Opportunity has arrived at the head of Perseverance Valley, a possible water-cut valley here at a low spot along the rim of the 22-km diameter Endeavour impact crater,” says Larry Crumpler, a rover science team member from the New Mexico Museum of Natural History & Science.

NASA’s unbelievably long lived Martian robot reached a “spillway” at the top of “Perseverance Valley” in May after driving southwards for weeks from the prior science campaign at a crater rim segment called “Cape Tribulation.”

“The next month or so will be an exciting time, for no rover has ever driven down a potential ancient water-cut valley before,” Crumpler gushes.

“Perseverance Valley” is located along the eroded western rim of gigantic Endeavour crater – as illustrated by our exclusive photo mosaics herein created by the imaging team of Ken Kremer and Marco Di Lorenzo.

Read an Italian language version of this story here by Marco Di Lorenzo.

The mosaics show the “spillway” as the entry point to the ancient valley.

NASA’s Opportunity rover acquired this Martian panoramic view from a promontory that overlooks Perseverance Valley below – scanning from north to south. It is centered on due East and into the interior of Endeavour crater. Perseverance Valley descends from the right and terminates down near the crater floor in the center of the panorama. The far rim of Endeavour crater is seen in the distance, beyond the dark floor. Rover deck and wheel tracks at right. This navcam camera photo mosaic was assembled from raw images taken on Sol 4730 (14 May 2017) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

“Investigations in the coming weeks will “endeavor” to determine whether this valley was eroded by water or some other dry process like debris flows,” explains Crumpler.

“It certainly looks like a water cut valley. But looks aren’t good enough. We need additional evidence to test that idea.”

The valley slices downward from the crest line through the rim from west to east at a breathtaking slope of about 15 to 17 degrees – and measures about two football fields in length!

Huge Endeavour crater spans some 22 kilometers (14 miles) in diameter on the Red Planet. Perseverance Valley slices eastwards at approximately the 8 o’clock position of the circular shaped crater. It sits just north of a rim segment called “Cape Byron.”

Why go and explore the gully at Perseverance Valley?

“Opportunity will traverse to the head of the gully system [at Perseverance] and head downhill into one or more of the gullies to characterize the morphology and search for evidence of deposits,” Arvidson elaborated.

“Hopefully test among dry mass movements, debris flow, and fluvial processes for gully formation. The importance is that this will be the first time we will acquire ground truth on a gully system that just might be formed by fluvial processes. Will search for cross bedding, gravel beds, fining or coarsening upward sequences, etc., to test among hypotheses.”

Perspective view of Opportunity’s traverse along Endeavour crater rim over the last few weeks towards the Perseverance Valley “spillway” on Mars during Spring 2017. The entry point for the planned drive back into the crater is visible as the low notch just to the left (east) of the current (sol 4718) rover position. Credit: NASA/JPL/Cornell/NMMNH /Larry Crumpler

Exploring the ancient valley is the main science destination of the current two-year extended mission (EM #10) for the teenaged robot, that officially began Oct. 1, 2016. It’s just the latest in a series of extensions going back to the end of Opportunity’s prime mission in April 2004.

What are the immediate tasks ahead that Opportunity must accomplish before descending down the gully to thoroughly and efficiently investigate the research objectives?

In a nutshell, extensive imaging from a local high point promontory to create a long-baseline 3 D stereo image of the valley and a “walk-about” to assess the local geology.

The rover is collecting images from two widely separated points at a dip at the valley spillway to build an “extraordinarily detailed three-dimensional analysis of the terrain” called a digital elevation map.

“Opportunity has been working on a panorama from the overlook for the past couple of sols. The idea is to get a good overview of the valley from a high point before driving down it,” Crumpler explains.

“But before we drive down the valley, we want to get a good sense of the geologic features here on the head of the valley. It could come in handy as we drive down the valley and may help us understand some things, particularly the lithology of any materials we find on the valley floor or at the terminus down near the crater floor.”

“So we will be doing a short “walk-about” here on the outside of the crater rim near the “spillway” into the valley.”

“We will drive down it to further assess its origin and to further explore the structure and stratigraphy of this large impact crater.”

NASA’s Opportunity Mars rover passed near this small, 90-foot-wide and relatively fresh crater in April 2017, during the 45th anniversary of the Apollo 16 mission to the moon. The rover team chose to call it “Orion Crater,” after the Apollo 16 lunar module, Orion, which carried astronauts John Young and Charles Duke to and from the surface of the moon in April 1972 while crewmate Ken Mattingly piloted the Apollo 16 command module, Casper, in orbit around the moon. The rover’s Navigation Camera (Navcam) recorded this view assembled from raw images taken on Sol 4712 (26 April 2017) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer/kenkremer.com

The six wheeled rover landed on Mars on January 24, 2004 PST on the alien Martian plains at Meridiani Planum – as the second half of a stupendous sister act.

Expected to last just 3 months or 90 days, Opportunity has now endured nearly 13 ½ years or an unfathomable 53 times beyond the “warrantied” design lifetime.

Her twin sister Spirit, had successfully touched down 3 weeks earlier on January 3, 2004 inside 100-mile-wide Gusev crater and survived more than six years.

Opportunity has been exploring Endeavour almost six years – since arriving at the humongous crater in 2011. Endeavour crater was formed when it was carved out of the Red Planet by a huge meteor impact billions of years ago.

“Endeavour crater dates from the earliest Martian geologic history, a time when water was abundant and erosion was relatively rapid and somewhat Earth-like,” explains Crumpler.

Exactly what the geologic process was that carved Perseverance Valley into the rim of Endeavour Crater billions of years ago has not yet been determined, but there are a wide range of options researchers are considering.

“Among the possibilities: It might have been flowing water, or might have been a debris flow in which a small amount of water lubricated a turbulent mix of mud and boulders, or might have been an even drier process, such as wind erosion,” say NASA scientists.

“The mission’s main objective with Opportunity at this site is to assess which possibility is best supported by the evidence still in place.”

Extensive imaging with the mast mounted pancam and navcam cameras is currently in progress.

“The long-baseline stereo imaging will be used to generate a digital elevation map that will help the team carefully evaluate possible driving routes down the valley before starting the descent,” said Opportunity Project Manager John Callas of JPL, in a statement.

“Reversing course back uphill when partway down could be difficult, so finding a path with minimum obstacles will be important for driving Opportunity through the whole valley. Researchers intend to use the rover to examine textures and compositions at the top, throughout the length and at the bottom, as part of investigating the valley’s history.”

The team is also dealing with a new wheel issue and evaluating fixes. The left-front wheel is stuck due to an actuator stall.

“The rover experienced a left-front wheel steering actuator stall on Sol 4750 (June 4, 2017) leaving the wheel ‘toed-out’ by 33 degrees,” the team reported in a new update.

Thus the extensive Pancam panorama is humorously being called the “Sprained Ankle Panorama.” Selected high-value targets of the surrounding area will be imaged with the full 13-filter Pancam suite.

After reaching the bottom of Perseverance Valley, Opportunity will explore the craters interior for the first time during the mission.

“Once down at the end of the valley, Opportunity will be directed to explore the crater fill on a drive south at the foot of the crater walls,” states Crumpler.

As of today, June 17, 2017, long lived Opportunity has survived over 4763 Sols (or Martian days) roving the harsh environment of the Red Planet.

Opportunity has taken over 220,800 images and traversed over 27.87 miles (44.86 kilometers) – more than a marathon.

See our updated route map below. It shows the context of the rovers over 13 year long traverse spanning more than the 26 mile distance of a Marathon runners race.

The rover surpassed the 27 mile mark milestone on November 6, 2016 (Sol 4546).

NASA’s Opportunity rover acquired this Martian panoramic view from a promontory that overlooks Perseverance Valley below – scanning from north to south. It is centered on due East and into the interior of Endeavour crater. Perseverance Valley descends from the right and terminates down near the crater floor in the center of the panorama. The far rim of Endeavour crater is seen in the distance, beyond the dark floor. Rover deck and wheel tracks at right. This navcam camera photo mosaic was assembled from raw images taken on Sol 4730 (14 May 2017) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

As of Sol 4759 (June 13, 2017) the power output from solar array energy production is currently 343 watt-hours with an atmospheric opacity (Tau) of 0.842 and a solar array dust factor of 0.529, before heading into another southern hemisphere Martian winter later in 2017. It will count as Opportunity’s 8th winter on Mars.

“The science team is really jazzed at starting to see this area up close and looking for clues to help us distinguish among multiple hypotheses about how the valley formed,” said Opportunity Project Scientist Matt Golombek of NASA’s Jet Propulsion Laboratory, Pasadena, California.

NASA’s Opportunity rover scans around and across to vast Endeavour crater on Dec. 19, 2016, as she climbs steep slopes on the way to reach a water carved gully along the eroded craters western rim. Note rover wheel tracks at center. This navcam camera photo mosaic was assembled from raw images taken on Sol 4587 (19 Dec. 2016) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

Meanwhile Opportunity’s younger sister rover Curiosity traverses and drills into the lower sedimentary layers at the base of Mount Sharp.

And NASA continues building the next two robotic missions due to touch down in 2018 and 2020.

NASA as well is focusing its human spaceflight effort on sending humans on a ‘Journey to Mars’ in the 2030s with the Space Launch System (SLS) mega rocket and Orion deep space crew capsule.

13 Year Traverse Map for NASA’s Opportunity rover from 2004 to 2017. This map shows the entire 44 kilometer (27 mi) path the rover has driven on the Red Planet during over 13 years and more than a marathon runners distance for over 4763 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 – to current location at the western rim of Endeavour Crater at the head of Perseverance Valley. After studying Spirit Mound and ascending back uphill the rover has reached her next destination in May 2017- the Martian water carved gully at Perseverance Valley near Orion crater. Rover surpassed Marathon distance on Sol 3968 after reaching 11th Martian anniversary on Sol 3911. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone – and searched for more at Marathon Valley. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the Opportunity rover and upcoming SpaceX launch of BulgariaSat 1, recent SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

June 17-19: “Opportunity Mars rover, SpaceX BulgariaSat 1 launch, SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

This graphic shows the route that NASA’s Mars Exploration Rover Opportunity drove in its final approach to “Perseverance Valley” on the western rim of Endeavour Crater during spring 2017. Credits: NASA/JPL-Caltech/Univ. of Arizona/NMMNH
13 Years on Mars! On Christmas Day 2016, NASA’s Opportunity rover scans around vast Endeavour crater as she ascends steep rocky slopes on the way to reach a water carved gully along the eroded craters western rim. This navcam camera photo mosaic was assembled from raw images taken on Sol 4593 (25 Dec. 2016) and colorized. Credit: NASA/JPL/Cornell/Ken Kremer/kenkremer.com/Marco Di Lorenzo

KSC Director/Shuttle Commander Robert Cabana Talks NASA 2018 Budget- ‘Stay on the path’ with SLS, Orion, Commercial Crew: One-on-One Interview

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Following up last week’s announcement of NASA’s proposed Fiscal Year 2018 top line budget of $19.1 Billion by the Trump Administration, Universe Today spoke to NASA’ s Kennedy Space Center (KSC) Director Robert Cabana to get his perspective on the new budget and what it means for NASA and KSC; “Stay on the path!” – with SLS, Orion, ISS and Commercial Crew was his message in a nutshell.

The highlights of NASA’s $19.1 Billion FY 2018 budget request were outlined last week by NASA Acting Administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV on May 23.

In order to get a better idea of the implications of the 2018 NASA budget proposal for KSC, I spoke one-on-one with Robert Cabana – one of NASA’s top officials, who currently serves as Director of the Kennedy Space Center (KSC) as well as being a former astronaut and Space Shuttle Commander. Cabana is a veteran of four space shuttle missions.

How did NASA and KSC fare with the newly announced 2018 Budget?

“We at KSC and NASA as a whole did very well with the 2018 budget,” KSC Director Robert Cabana explained during an interview with Universe Today by the Rocket Garden at the Kennedy Space Center Visitor Complex (KSCVC) in Florida.

“I think it really solidifies that the President has confidence in us, on the path that we are on,” Cabana noted while attending a student robotics competition at KSCVC sponsored by NASA.

“With only a 1 percent cut – when you look at what other agency’s got cut – this budget allows us to stay on the path that we are on.”

Trump cut NASA’s 2018 budget request by $0.5 Billion compared to the recently enacted FY 2017 budget of $19.6 Billion approved by the US Congress and signed by the President.

Other Federal science agency’s also critically vital to the health of US scientific research such as the NIH, the NSF, the EPA, DOE and NIST suffered terrible double digit slashes of 10 to 20% or more.

KSC is the focal point for NASA’s human spaceflight programs currently under intense development by NASA – namely the Space Launch System (SLS) Mars megarocket, the Orion deep space crew capsule to be launched beyond Earth orbit (BEO) atop SLS, and the duo of Commercial Crew Program (CCP) space taxis being manufactured by Boeing and SpaceX that will ferry our astronauts to low Earth orbit (LEO) and the International Space Station (ISS).

Numerous NASA science missions also launch from the Florida Space Coast.

“At KSC the budget keeps us on a path that continues to provide a commercial crew vehicle to fly crews to the ISS in 2018,” Cabana stated.

“The budget also keeps us on track to launch SLS and Orion in 2019.”

“I think that’s really important – along with all the other stuff we are doing here at KSC.”

“From our point of view it’s a good budget. We need to press ahead and continue on with what we promised.”

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

What’s ahead for commercial crew at KSC?

“We are moving forward with commercial crew,” Cabana told me.

“Within the next calendar year [2018] we are moving ahead with flying the first certification flight with crew to the ISS. So that’s test flights and by the end of the year an actual crewed flight to the ISS. I want to see that happen.”

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2018. Credit: NASA

Industry partners Boeing and SpaceX are building the private CST-100 Starliner and Crew Dragon spaceships respectively, as part of NASA’s commercial crew initiative aimed at restoring America’s human spaceflight capability to launch our astronauts aboard American spaceships on American rockets from American soil.

Commercial Crew is a public/private partnership initiative with commercial contracts valued at $4.2 Billion and signed by Boeing and SpaceX with NASA in September 2014 under the Obama Administration.

The goal of commercial crew is to end our sole reliance on the Russian Soyuz capsule for astronaut flights to the space station since the retirement of the space shuttles back in 2011 – by manufacturing indigenous rockets and human rated spaceships.

However the CCP program suffered severe budget reductions by the US Congress for several years which forced significant work stretch-outs and delays in the maiden crew launches by both companies from 2015 to 2018 – and thus forced additional payments to the Russians for Soyuz seat purchases.

Both the Boeing Starliner and SpaceX Dragon crew vehicles can carry 4 or more astronauts to the ISS. This will enable NASA to add another crew member and thereby enlarge the ISS crew from 6 to 7 permanent residents after they become operational.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Meanwhile NASA is focusing on developing the SLS heavy lift rocket and Orion crew capsule with prime contractors Boeing and Lockheed Martin in an agency wide effort to send humans on a ‘Journey to Mars’ in the 2030s.

The European Space Agency(ESA) is also partnered with NASA and providing the service module for Orion.

What’s the status of the delivery of the European Space Agency’s service module?

“The service module will be here sometime next year,” Cabana said.

He noted that the details and exact timing are yet to be determined.

The first integrated launch of SLS and Orion on the unpiloted Exploration Mission-1 (EM-1) is now slated for sometime in 2019 after NASA recently slipped the date to the right from Fall 2018.

At the request of the Trump Administration, NASA also just completed a detailed study to ascertain the feasibility of adding a crew of two NASA astronauts to the EM-1 flight and launch it by the end of 2019.

In the end, NASA officials decided to stick with the baselined plan of no crew on EM-1 for a variety of technical and safety reasons, as well as cost – as I reported here.

I asked Cabana for his insight and opinion on NASA not adding crew to Orion on the EM-1 flight.

“No we are not launching crew on the first flight [EM-1],” Cabana stated.

“With the budget that we have and what we need to do, this is the answer we got to at the end.”

“You know the crew study was still very important. It allowed us to find some things that we should still do on [EM-1], even though we are not going to launch crew on that flight.

“So we will make some further modifications that will reduce the risk even further when we do fly crew [on the next flight of EM-2].”

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

So for 2017 what are the major milestone you hope to complete here at KSC for SLS and Orion?

“So for me here at the Kennedy Space Center, my goal for the end of this calendar year 2017 we will have completed all of the construction of all of the [ground systems] hardware and facilities that are necessary to process and launch the Space Launch System (SLS) and Orion,” Cabana elaborated.

‘We will still have a lot of work to do with the software for the spacecraft command and control systems and the ground systems.”

“But my goal is to have the hardware for the ground systems complete by the end of this year.”

What are those KSC facilities?

“Those facilities include the VAB [Vehicle Assembly Building] which will be complete to accept the mobile launcher in September and pad 39B will be complete in August,” Cabana said.

“The RPSF is already complete. The NPFF is already complete and we are doing testing in there. The LASF [Launch Abort System Facility] is complete – where they put the abort rocket on.”

“The Mobile Launcher will be complete from a structural point of view, with all the systems installed by the end of the year [including the umbilical’s and while room].”

Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft for launches from Space Launch Complex 39B the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

View of the Vehicle Assembly Building (VAB), Launch Control Center and Mobile Launcher from the KSC Launch Complex 39 Press Site. NASA is upgrading the VAB with new platforms to assemble and launch NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

.……….

Learn more about the SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

May 30/31: “SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Robert Cabana, Director of NASA’s Kennedy Space Center (KSC) and former Space Shuttle Commander, and Ken Kremer/Universe Today discuss the newly proposed NASA FY2018 budget backdropped by the Rocket Garden at the Kennedy Space Center Visitor Complex, FL in May 2017. Credit: Ken Kremer/kenkremer.com

NASA Nixes Proposal Adding Crew to First SLS/Orion Deep Space Flight

Artist concept of the SLS Block 1 configuration on the Mobile Launcher at KSC. Credit: NASA/MSFC

KENNEDY SPACE CENTER, FL – After conducting a thorough review examining the feasibility of adding a two person crew to the first integrated launch of America’s new Space Launch System (SLS) megarocket and Orion capsule on a mission that would propel two astronauts to the Moon and back by late 2019, NASA nixed the proposal during a media briefing held Friday.

The announcement to forgo adding crew to the flight dubbed Exploration Mission-1 (EM-1) was made by NASA acting Administrator Robert Lightfoot during a briefing with reporters on May 13.

“We appreciate the opportunity to evaluate the possibility of this crewed flight,” said NASA acting Administrator Robert Lightfoot during the briefing.

“The bi-partisan support of Congress and the President for our efforts to send astronauts deeper into the solar system than we have ever gone before is valued and does not go unnoticed. Presidential support for space has been strong.”

Although the outcome of the study determined that NASA could be “technically capable of launching crew on EM-1,” top agency leaders decided that there was too much additional cost and technical risk to accommodate and retire in the limited time span allowed.

Lightfoot said it would cost in the range of $600 to $900 million to add the life support systems, display panels and other gear required to Orion and SLS in order to enable adding astronauts to EM-1.

“It would be difficult to accommodate changes needed to add crew at this point in mission planning.”

Thus NASA will continue implementing the current baseline plan for EM-1 that will eventually lead to deep space human exploration missions starting with the follow on EM-2 mission which will be crewed.

At the request of the new Trump Administration in February, NASA initiated a comprehensive two month long study to determine the feasibility of converting the first integrated SLS/Orion flight from its baselined uncrewed mission to cislunar space into a crewed mission looping around the Moon.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

Had the crewed lunar SLS/Orion flight been approved it would have roughly coincided with the 50th anniversary the first human lunar landing by NASA astronauts Neil Armstrong and Buzz Aldrin during the Apollo 11 mission in July 1969.

Instead NASA will keep to the agencies current flight plan.

The first SLS/Orion crewed flight is slated for Exploration Mission-2 (EM-2) launching no earlier than 2021.

If crew had been added to EM-1 it would have essentially adopted the mission profile currently planned for Orion EM-2.

“If the agency decides to put crew on the first flight, the mission profile for Exploration Mission-2 would likely replace it, which is an approximately eight-day mission with a multi-translunar injection with a free return trajectory,” said NASA earlier. It would be similar to Apollo 8 and Apollo 13.

Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

NASA is developing SLS and Orion for sending humans initially to cislunar space and eventually on a ‘Journey to Mars’ in the 2030s.

They are but the first hardware elements required to carry out such an ambitious initiative.

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA Test Fires New Engine Controlling ‘Brain’ for First SLS MegaRocket Mission

NASA engineers conduct a test of the first RS-25 engine controller that will be used on an actual Space Launch System flight on the A-2 Test Stand at Stennis Space Center on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC

Engineers carried out a critical hot fire engine test firing with the first new engine controlling ‘brain’ that will command the shuttle-era liquid fueled engines powering the inaugural mission of NASA’s new Space Launch System (SLS) megarocket.

The first integrated SLS launch combining the SLS-1 rocket and Orion EM-1 deep space crew capsule could liftoff as soon as late 2018 on a mission around the Moon and back.

The full duration static fire test involved an RS-25 engine integrated with the first engine controller flight unit that will actually fly on the maiden SLS launch and took place on Thursday, March 23 at the agency’s Stennis Space Center in Bay St. Louis, Mississippi.

The 500 second-long test firing was conducted with the engine controller flight unit installed on RS-25 development engine no. 0528 on the A-2 Test Stand at Stennis.

The RS-25 engine controller is the ‘brain’ that commands the RS-25 engine and communicates between the engine and the SLS rocket. It is about the size of a dorm refrigerator.

RS-25 new engine controller. Credit: NASA/SSC

The newly developed engine controller is a modern version from the RS-25 controller that helped propel all 135 space shuttle missions to space.

“This an important – and exciting – step in our return to deep space missions,” Stennis Director Rick Gilbrech said. “With every test of flight hardware, we get closer and closer to launching humans deeper into space than we ever have traveled before.”

The modernized RS-25 engine controller was funded by NASA and created in a collaborative effort of engineers from NASA, RS-25 prime contractor Aerojet Rocketdyne of Sacramento, California, and subcontractor Honeywell of Clearwater, Florida.

“The controller manages the engine by regulating the thrust and fuel mixture ratio and monitors the engine’s health and status – much like the computer in your car,” say NASA officials.

“The controller then communicates the performance specifications programmed into the controller and monitors engine conditions to ensure they are being met, controlling such factors as propellant mixture ratio and thrust level.”

A quartet of RS-25 engines, leftover from the space shuttle era and repeatedly reused, will be installed at the base of the core stage to power the SLS at liftoff, along with a pair of extended solid rocket boosters.

The four RS-25 core stage engine will provide a combined 2 million pounds of thrust at liftoff.

In addition to being commanded by the new engine controller, the engines are being upgraded in multiple ways for SLS. For example they will operate at a higher thrust level and under different operating conditions compared to shuttle times.

To achieve the higher thrust level required, the RS-25 engines must fire at 109 percent of capability for SLS compared to operating at 104.5 percent of power level capability for shuttle flights.

The RS-25 engines “also will operate with colder liquid oxygen and engine compartment temperatures, higher propellant pressure and greater exhaust nozzle heating.”
SLS will be the world’s most powerful rocket and send astronauts on journeys into deep space, further than human have ever travelled before.

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

NASA engineers conduct a test of the first RS-25 engine controller that will be used on an actual Space Launch System flight on the A-2 Test Stand at Stennis Space Center on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC

The next step is evaluating the engine firing test results, confirming that all test objectives were met and certifying that the engine controller can be removed from the RS-25 development engine and then be installed on one of four flight engines that will help power SLS-1.

During 2017, two additional engine controllers for SLS-1 will be tested on the same development engine at Stennis and then be installed on flight engines after certification.

Finally, “the fourth controller will be tested when NASA tests the entire core stage during a “green run” on the B-2 Test Stand at Stennis. That testing will involve installing the core stage on the stand and firing its four RS-25 flight engines simultaneously, as during a mission launch,” says NASA.

Numerous RS-25 engine tests have been conducted at Stennis over more than 4 decades to certify them as flight worthy for the human rated shuttle and SLS rockets.

NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18, 2016 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

Although NASA is still targeting SLS-1 for launch in Fall 2018 on an uncrewed mission, the agency is currently conducting a high level evaluation to determine whether the Orion EM-1 capsule can be upgraded in time to instead fly a human crewed mission with two astronauts before the end of 2019 – as I reported here.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Aerojet Rocketdyne technicians inspect the engine controller that will be used for the first integrated flight of NASA’s Space Launch System and Orion in late 2018. The engine controller was installed on RS-25 development engine no. 0528 for testing at Stennis Space Center on the A-2 Test Stand on March 23, 2017. The RS-25 engine, with the flight controller, was test fired for a full-duration 500 seconds. Credits: NASA/SSC

1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018

Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)

PORT CANAVERAL – Bit by bit, piece by piece, the first of NASA’s SLS megarockets designed to propel American astronauts on deep space missions back to the Moon and beyond to Mars is at last coming together on the Florida Space Coast. And the first big integrated piece of actual flight hardware – the powerful second stage named the Interim Cryogenic Propulsion Stage (ICPS) – has just arrived by way of barge today (Mar. 7) at Port Canaveral, Fl.

The ICPS will propel NASA’s new Orion crew capsule on its maiden uncrewed mission around the Moon – currently slated for blastoff on the inaugural SLS monster rocket on the Exploration Mission-1 (EM-1) mission late next year.

SLS-1/Orion EM-1 will launch from pad 39B at NASA’s Kennedy Space Center in late 2018. The SLS will be the most powerful rocket in world history.

NASA is currently evaluating whether to add a crew of 2 astronauts to the SLS-1 launch which would result in postponing the inaugural liftoff into 2019 – as I reported here.

The interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket arrived at Port Canaveral, Florida on March 7, 2017 loaded inside a shipping canister (right) aboard the ULA Delta Mariner barge that set sail from Decatur, Alabama a week ago. The ICPS shared the shipping voyage along with a ULA Delta IV first stage rocket core seen at left. Credit: Ken Kremer/kenkremer.com

The SLS upper stage – designed and built by United Launch Alliance (ULA) and Boeing – arrived safely by way of the specially-designed ship called the Delta Mariner early Tuesday morning, Mar. 7, into the channel of Port Canaveral, Florida – as witnessed by this author.

“We are proud to be working with The Boeing Company and NASA to further deep space exploration!” ULA said in a statement.

Major assembly of the ICPS was completed at ULA’s Decatur, Alabama, manufacturing facility in December 2016.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket has arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. The ICPS will be moved to United Launch Alliance’s Delta IV Operation Center at the Cape for processing for the SLS-1/Orion EM-1 launch currently slated for late 2018 launch from pad 39B at NASA’s Kennedy Space Center. Credit: ULA

The ICPS is the designated upper stage for the first maiden launch of the initial Block 1 version of the SLS.

It is based on ULA’s Delta Cryogenic Second Stage which has successfully flown numerous times on the firm’s Delta IV family of rockets.

In the event that NASA decides to add a two person crew to the EM-1 mission, Bill Hill, NASA’s deputy associate administrator for Exploration Systems Development in Washington, D.C., stated that the agency would maintain the Interim Cryogenic Propulsion stage for the first flight, and not switch to the more advanced and powerful Exploration Upper Stage (EUS) planned for first use on the EM-2 mission.

The ULA Delta Mariner barge arriving in Port Canaveral, Florida on March 7, 2017 after transporting the interim cryogenic propulsion stage (ICPS) hardware for the first flight of NASA’s Space Launch System (SLS) rocket from Decatur, Alabama. SLS-1 launch from the Kennedy Space Center is slated for late 2018. Credit: Ken Kremer/kenkremer.com

The ICPS was loaded onto the Delta Mariner and departed Decatur last week to began its sea going voyage of more than 2,100 miles (3300 km). The barge trip normally takes 8 to 10 days.

“ULA has completed production on the interim cryogenic propulsion stage (ICPS) flight hardware for NASA’s Space Launch System and it’s on the way to Cape Canaveral aboard the Mariner,” ULA noted in a statement last week.

The 312-foot-long (95-meter-long) ULA ship docked Tuesday morning at the wharf at Port Canaveral to prepare for off loading from the roll-on, roll-off vessel.

The Delta Mariner can travel on both rivers and open seas and navigate in waters as shallow as nine feet.

“ICPS, the first integrated SLS hardware to arrive at the Cape, will provide in-space propulsion for the SLS rocket on its Exploration Mission-1 (EM-1) mission,” according to ULA.

The next step for the upper stage is ground transport to United Launch Alliance’s Delta IV Operation Center on Cape Canaveral Air Force Station in Florida for further testing and processing before being moved to the Kennedy Space Center.

ULA will deliver the ICPS to NASA in mid-2017.

“It will be the first integrated piece of SLS hardware to arrive at the Cape and undergo final processing and testing before being moved to Ground Systems Development Operations at NASA’s Kennedy Space Center,” said NASA officials.

“The ICPS is a liquid oxygen/liquid hydrogen-based system that will provide the thrust needed to send the Orion spacecraft and 13 secondary payloads beyond the moon before Orion returns to Earth.”

The upper stage is powered by a single RL-10B-2 engine fueled by liquid hydrogen and oxygen and generates 24,750 pounds of thrust. It measures 44 ft 11 in (13.7 m ) in length and 16 ft 5 in (5 m) in width.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket as it completed major assembly at United Launch Alliance in Decatur, Alabama in December 2016. The ICPS just arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. It will propel the Orion EM-1 crew module around the Moon. The SLS-1/Orion EM-1 launch is currently slated for late 2018 launch from NASA’s Kennedy Space Center. Credit: ULA

All major elements of the SLS will be assembled for flight inside the high bay of NASA’s iconic Vehicle Assembly Building which is undergoing a major overhaul to accommodate the SLS. The VAB high bay was extensively refurbished to convert it from Space Shuttle to SLS assembly and launch operations.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Michoud is building the huge liquid oxygen/liquid hydrogen SLS core stage fuel tank, derived from the Space Shuttle External Tank (ET) – as I detailed here.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

The ICPS sits on top of the SLS core stage.

The next Delta IV rocket launching with a Delta Cryogenic Second Stage is tentatively slated for March 14 from pad 37 at the Cape.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

File photo of the ULA Delta Mariner barge arriving in Port Canaveral, Florida after transporting rocket hardware from Decatur, Alabama