‘Death Star’ Ocean? Seven Moons That Could Host Huge Hidden Liquid Reservoirs

Could there be an ocean hidden somewhere in that Death Star-like picture? This is an image of Mimas, a moon of Saturn, and just yesterday (Oct. 15) newly released data from the Cassini spacecraft suggests there are big liquid reservoirs underneath its surface.

“The amount of the to-and-fro motion indicates that Mimas’ interior is not uniform. These wobbles can be produced if the moon contains a weirdly shaped, rocky core or if a sub-surface ocean exists beneath its icy shell,” said Cornell University in a press release. More flybys with the Cassini spacecraft will be required to learn more about what lies beneath.

You can read more about the study (led by Cornell astronomy research associate Radwan Tajeddine) in Science, where it was published. Below, learn more about other worlds in the Solar System that could host oceans under their surface.


Recent Cassini images of Saturn's moon Enceladus backlit by the sun show the fountain-like sources of the fine spray of material that towers over the south polar region. This image was taken looking more or less broadside at the "tiger stripe" fractures observed in earlier Enceladus images. It shows discrete plumes of a variety of apparent sizes above the limb (edge) of the moon. This image was acquired on Nov. 27, 2005.   Image Credit:   NASA/JPL/Space Science Institute
Cassini images of Saturn’s moon Enceladus backlit by the sun show the fountain-like sources of the fine spray of material that towers over the south polar region. This image was taken looking more or less broadside at the “tiger stripe” fractures observed in earlier Enceladus images. It shows discrete plumes of a variety of apparent sizes above the limb (edge) of the moon. This image was acquired on Nov. 27, 2005. Image Credit: NASA/JPL/Space Science Institute

After nearly a decade of speculation, this year the Cassini spacecraft returned gravity data suggesting Enceladus (another moon of Saturn) does have a large subsurface ocean near its south pole, if not a global ocean. If confirmed, that could help explain why scientists see water gushing out of fractures in that area. As this recent paper by Cassini scientists shows, Enceladus is a promising location for habitability.


A halo of light surrounds Saturn's moon Titan in this  backlit picture, showing its atmosphere. Credit: NASA/JPL/Space Science Institute
A halo of light surrounds Saturn’s moon Titan in this backlit picture, showing its atmosphere. Credit: NASA/JPL/Space Science Institute

By the way, anyone noticed that we still haven’t even left Saturn’s system? Titan is usually high on astrobiology wish lists for researchers because its hydrocarbon chemistry could be precursors to how life evolved. What’s not talked about as much, though, is at least two research findings pointing to evidence of a hidden ocean. Evidence comes from Titan’s tidal flexing from interacting with Saturn — which is 10 times more than what would be expected with a solid core — and the way that it moves on its own axis as well as around Saturn.


Rendering showing the location and size of water vapor plumes coming from Europa's south pole. Credit: NASA/ESA/L. Roth/SWRI/University of Cologne
Rendering showing the location and size of water vapor plumes coming from Europa’s south pole. Credit: NASA/ESA/L. Roth/SWRI/University of Cologne

That Minecraft-looking object floating beside Europa there is a rendering showing where water vapor erupted from the Jovian moon, spotted by the Hubble Space Telescope in 2013. We were lucky enough to have a close-up view of Europa in the 1990s and early 2000s courtesy of NASA’s Galileo spacecraft. What we know for sure is there’s thick ice on Europa. What’s underneath is not known, but there’s long been speculation that it could be a subsurface ocean that may have more water than our own planet.


Jupiter's volcanic moon Io , imaged by the Galileo spacecraft in 1997. Credit: NASA/JPL/University of Arizona
Jupiter’s volcanic moon Io , imaged by the Galileo spacecraft in 1997. Credit: NASA/JPL/University of Arizona

Still flying around Jupiter here, we now turn our attention to Io — a place that is often remarked upon because of its blotchy appearance as well as all of the volcanoes on its surface. A newer analysis of Galileo data in 2011 — looking at some of the lesser-understood magnetic field data signatures — led one research team to conclude there could be a magma ocean lurking underneath that violence.


A glimpse of Triton from the Voyager 2 spacecraft, which flew by the Neptunian moon in August 1989. Credit: NASA/JPL
A glimpse of Triton from the Voyager 2 spacecraft, which flew by the Neptunian moon in August 1989. Credit: NASA/JPL

Little is known about Triton because only one spacecraft whizzed by it — Voyager 2, which took a running pass through the Neptune system in August 1989. An Icarus paper two years ago speculated that the world could host a subsurface ocean, but more data is needed. The energy of Neptune (which captured Triton long ago) could have melted its interior through tidal heating, possibly creating water from the ice in its crust.


Hubble image of Pluto and some of its moons, Charon, Nix and Hydra. Image Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST Pluto Companion Search Team
Hubble image of Pluto and some of its moons, Charon, Nix and Hydra. Image Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST Pluto Companion Search Team

We don’t have any close-up pictures of this moon of Pluto yet, but just wait a year. The New Horizons spacecraft will zoom past Charon and the rest of the system in July 2015. In the meantime, however, findings based on a model came out this summer in Icarus suggesting Charon — despite being so far from the Sun — might have had a subsurface ocean in the past. Or even now. The key is its once eccentric orbit, which would have produced tidal heating while interacting with Pluto. The science team plans to look for cracks that could be indicative of “the structure of the moon’s interior and how easily it deforms, and how its orbit evolved,” stated Alyssa Rhoden of NASA’s Goddard Space Flight Center in Maryland, who led the research.

Pluto Spacecraft Planning? New Map Of Neptune’s Icy Triton Could Prepare For 2015 Encounter

Talk about recycling! Twenty-five years after Voyager 2 zinged past Neptune’s moon Triton, scientists have put together a new map of the icy moon’s surface using the old data. The information has special relevance right now because the New Horizons spacecraft is approaching Pluto fast, getting to the dwarf planet in less than a year. And it’s quite possible that Pluto and Triton will look similar.

Triton has an exciting history. Scientists believed it used to be a lone wanderer until Neptune captured it, causing tidal heating that in turn created fractures, volcanoes and other features on the surface. While Triton and Pluto aren’t twins — this certainly didn’t happen to Pluto — Pluto also has frozen volatiles on its surface such as carbon monoxide, methane and nitrogen.

What you see in the map is a slightly enhanced version of Triton’s natural colors, bearing in mind that Voyager’s sensors are a little different from the human eye. Voyager 2 only did a brief flyby, so only about half the planet has been imaged. Nonetheless, the encounter was an exciting time for Paul Schenk, a planetary scientist at the Lunar and Planetary Institute in Houston. He led the creation of the new Triton map, and wrote about the experience of Voyager 2 in a blog post.

“Triton is a near twin of Pluto,” wrote Schenk. “Triton and Pluto are both slightly smaller than Earth’s Moon, have very thin nitrogen atmospheres, frozen ices on the surface (carbon monoxide, carbon dioxide, methane and nitrogen), and similar bulk composition (a mixture of ices, including water ice, and rock.  Triton however was captured by Neptune long time ago and has been wracked by intense heating ever since.  This has remade its surface into a tortured landscape of overturned layers, volcanism, and erupting geysers.”

He also added speculation about what will be seen at Pluto. Will it be a dead planet, or will geology still be affecting its surface? How close will Triton be to Pluto, particularly regarding its volcanoes? Only a year until we know for sure.

Sources: NASA, Lunar and Planetary Institute, Paul Schenk

Why You Shouldn’t ‘Buy Real Estate’ On Neptune’s Moon Triton

Leaving aside the complications of space treaties, a new video lays out another case for why you wouldn’t want to purchase property on Triton — at least, if you were buying for the ultra-long term, over millions of years. The moon is being slowed down by Neptune and will eventually crash or break up into a ring system.

All joking aside, the video also puts forward an interesting hypothesis: that Triton was once a dwarf planet, with a companion, and that Neptune captured Triton and flung the companion away when the giant gas planet moved further out into the solar system, billions of years ago.

Checking into the theory’s credentials, it’s worth noting that the author — Kurzgesagt — represents a startup company that has posted other videos about the solar system. They’re cutely done, although the company’s website does not appear to list any names, at least yet; they describe themselves as a “team of designers, journalists and musicians.”  (That might be because they’re operating in “stealth mode”, a term describing startups that aren’t quite ready to make their idea or founders public yet.)

The theory Kurzgesagt cites is peer-reviewed, however. A 2006 Nature paper called “Neptune’s capture of its moon Triton in a binary–planet gravitational encounter” describes Triton as being part of a binary system in the past, somewhat similar to Pluto and Charon.

NASA’s web page about Triton doesn’t mention the binary system or dwarf planet hypothesis, but says “scientists think Triton is a Kuiper Belt Object captured by Neptune’s gravity millions of years ago.” (The Kuiper Belt is a collection of objects near Neptune’s orbit.)

Some of the reasons include its strange orbital motion that is opposite to Neptune’ s rotation, and the fact that Triton is overwhelmingly the largest moon in the system — suggesting it ejected other ones when it was captured.

Makes you want to send another spacecraft to Neptune, doesn’t it? The first and only visitor there, Voyager 2, flew past there in 1989.

Is Triton Hiding an Underground Ocean?

Voyager 2 mosaic of Neptune’s largest moon, Triton (NASA)

At 1,680 miles (2,700 km) across, the frigid and wrinkled Triton is Neptune’s largest moon and the seventh largest in the Solar System. It orbits the planet backwards – that is, in the opposite direction that Neptune rotates – and is the only large moon to do so, leading astronomers to believe that Triton is actually a captured Kuiper Belt Object that fell into orbit around Neptune at some point in our solar system’s nearly 4.7-billion-year history.

Briefly visited by Voyager 2 in late August 1989, Triton was found to have a curiously mottled and rather reflective surface nearly half-covered with a bumpy “cantaloupe terrain” and a crust made up of mostly water ice, wrapped around a dense core of metallic rock. But researchers from the University of Maryland are suggesting that between the ice and rock may lie a hidden ocean of water, kept liquid despite estimated temperatures of  -97°C (-143°F), making Triton yet another moon that could have a subsurface sea.

How could such a chilly world maintain an ocean of liquid water for any length of time? For one thing, the presence of ammonia inside Triton would help to significantly lower the freezing point of water, making for a very cold — not to mention nasty-tasting — subsurface ocean that refrains from freezing solid.

In addition to this, Triton may have a source of internal heat — if not several. When Triton was first captured by Neptune’s gravity its orbit would have initially been highly elliptical, subjecting the new moon to intense tidal flexing that would have generated quite a bit of heat due to friction (not unlike what happens on Jupiter’s volcanic moon Io.) Although over time Triton’s orbit has become very nearly circular around Neptune due to the energy loss caused by such tidal forces, the heat could have been enough to melt a considerable amount of water ice trapped beneath Triton’s crust.

Related: Titan’s Tides Suggest a Subsurface Sea

Another possible source of heat is the decay of radioactive isotopes, an ongoing process which can heat a planet internally for billions of years. Although not alone enough to defrost an entire ocean, combine this radiogenic heating with tidal heating and Triton could very well have enough warmth to harbor a thin, ammonia-rich ocean beneath an insulating “blanket” of frozen crust for a very long time — although eventually it too will cool and freeze solid like the rest of the moon. Whether this has already happened or still has yet to happen remains to be seen, as several unknowns are still part of the equation.

“I think it is extremely likely that a subsurface ammonia-rich ocean exists in Triton,” said Saswata Hier-Majumder at the University of Maryland’s Department of Geology, whose team’s paper was recently published in the August edition of the journal Icarus. “[Yet] there are a number of uncertainties in our knowledge of Triton’s interior and past which makes it difficult to predict with absolute certainty.”

Still, any promise of liquid water existing elsewhere in large amounts should make us take notice, as it’s within such environments that scientists believe lie our best chances of locating any extraterrestrial life. Even in the farthest reaches of the Solar System, from the planets to their moons, into the Kuiper Belt and even beyond, if there’s heat, liquid water and the right elements — all of which seem to be popping up in the most surprising of places — the stage can be set for life to take hold.

Read more about this here on Astrobiology.net.

Inset image: Voyager 2 portrait of Neptune and Triton taken on August 28, 1989. (NASA)

“Pluto-Killer” Sets Sights on Neptune


The confessed (and remorseless) “Pluto Killer” Mike Brown has turned his gaze – and the 10-meter telescope at the Keck Observatory in Hawaii – on Neptune, our solar system’s furthest “official” planet. But no worries for Neptune – Mike isn’t after its planetary status… he’s taken some beautiful infrared images instead!

Normally only visible as a featureless blue speck in telescopes, Brown’s image of Neptune — along with its largest moon Triton —  shows the icy gas giant in infrared light, glowing bright red and orange.

Neptune and Triton in infrared. Credit: Mike Brown/CalTech.

Brown’s initial intention was not just to get some pretty pictures of planets. The target of the imaging mission was Triton and to learn more about the placement of its methane, nitrogen and seasonal frosts, and this sort of research required infrared imaging. Of course, Neptune turned out to be quite photogenic itself.

“The big difference is doing the imaging in the infrared where methane absorbs most of the photons,” said Brown. “So the bright places are high clouds where the sunlight reflects off of them before it had a chance to pass through much of the atmosphere. Dark is clear atmosphere full of methane absorption.

“I just thought it was so spectacular that I should post it.”

No argument here, Mike!

Neptune, now officially the outermost planet in our solar system, is the fourth largest planet and boasts the highest wind speeds yet discovered — 1,250 mph winds scream around its frigid skies! Like the other gas giants Neptune has a system of rings, although nowhere near as extravagant as Saturn’s. It has 13 known moons, of which Triton is the largest.

With its retrograde orbit, Triton is believed to be a captured Kuiper Belt Object now in orbit around Neptune. Kuiper Belt Objects are Mike Brown’s specialty, as he is the astronomer most well-known for beginning the whole process that got Pluto demoted from the official planet list back in 2006.

Read more on Skymania.com here.


Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor or on Facebook for the most up-to-date astronomy awesomeness!

Guest Post: Drifting on Alien Winds: Exploring the Skies and Weather of Other Worlds


Editor’s note: We all want to explore other worlds in our solar system, but perhaps you haven’t considered the bizarre weather you’d encounter — from the blistering hurricane-force winds of Venus to the gentle methane rain showers of Saturn’s giant moon Titan. Science journalist Michael Carroll has written a guest post for Universe Today which provides peek at the subject matter for his new book, “Drifting on Alien Winds: Exploring the Skies and Weather of Other Worlds.

It’s been a dramatic year for weather on Earth. Blizzards have blanketed the east coast, crippling traffic and power grids. Cyclone Tasha drenched Queensland, Australia as rainfall swelled the mighty Mississippi, flooding the southern US. Eastern Europe and Asia broke high temperature records. But despite these meteorological theatrics, the Earth’s conditions are a calm echo of the weather on other worlds in our solar system.

Take our nearest planetary neighbor, Venus. Nearly a twin of Earth in size, Venus displays truly alien weather. The hurricane-force Venusian winds are ruled not by water (as on Earth), but by battery acid. Sunlight tears carbon dioxide molecules (CO2) apart in a process called photodissociation. Leftover bits of molecules frantically try to combine with sulfur and water to become chemically stable, resulting acid hazes. Temperatures soar to 900ºF at the surface, where air is as dense as the Earthly oceans at a depth of X feet.

Venus is the poster child of comparative planetology, the study of other planets to help us understand our own. Earth’s simmering sibling has taught us about greenhouse gases, and gave us an even more immediate cautionary tale in 1978. The Pioneer Venus orbiter discovered that Venus naturally generates chlorofluorocarbons (CFCs) in its atmosphere. These CFCs were tearing holes in the planet’s ozone. At the same time, a wide variety of industries were preparing to use CFCs in insecticides, spray paints, and other aerosol products. Venus presented us with a warning that may have averted a planet-wide crisis.

In the same way, Mars has provided insights into long-term climate change. Its weather is a simplified version of our own. Locked within its rocks and polar caps lie records of changing climate over eons.

Jupiter’s Great Red Spot is a cyclone larger than two Earths. (photomontage ©Michael Carroll)

But fans of really extreme weather must venture further out, to the outer planets. Jupiter and Saturn are giant balls of gas with no solid surface, and are known as the “gas giants.” They are truly gigantic: over a thousand Earths could fit within Jupiter itself.

The skies of Jupiter and Saturn are dominated by hydrogen and helium, the ancient building blocks of the solar system. Ammonia mixes in to produce a rich brew of complex chemistry, painting the clouds of Jupiter and Saturn in tans and grays. Lightning bolts sizzle through the clouds, powerful enough to electrify a small city for weeks. Ammonia forms rain and snow in the frigid skies. Jupiter’s Great Red Spot is a centuries-old cyclone large enough to swallow three Earths. Saturn has its own bizarre storms: a vast hexagon-shaped trough of clouds races across the northern hemisphere. Over the south pole, a vast whirlpool gazes from concentric clouds like a Cyclops.

Clouds tower into a twilight sky on Saturn. The planet’s glowing rings seem to bend at the horizon because of the dense air. (painting ©Michael Carroll)

Beyond Jupiter and Saturn lie the “ice giants”, Uranus and Neptune. These behemoths host atmospheres of poisonous brews chilled to cryogenic temperatures. Methane tints Uranus and Neptune blue. Neptune’s clear air reveals a teal cloud deck. Hydrocarbon hazes tinge Uranus to a paler shade of blue-green. Neptune’s clear air is somewhat of a mystery to scientists. This may be because cloud-forming particles can’t stay airborne long enough to become visible clouds. Some scientists propose that Neptune’s abundant methane rains may condense so rapidly that within a few seconds tiny methane raindrops swell to something the size of a beachball. There are no clouds adrift, because methane rains out of the atmosphere too quickly.

One of the strangest cases of bizarre weather comes to us from Neptune’s moon Triton. Triton’s meager nitrogen air is tied to the freezing and thawing of polar ices, also composed of nitrogen. Triton’s entire atmosphere collapses twice a year, when it’s winter on one of the poles. At that time of year, all of Triton’s air migrates to the winter pole, where it freezes to the ground. The moon only has “weather” during the spring and fall; its atmosphere exists only during those seasons.

So, the next time you contemplate complaining about the heat, think of Venus. And if it’s blizzards you worry about, find comfort in Triton: at least our atmosphere doesn’t disappear in winter!

For more on the subject, see Michael Carroll’s newest book, Drifting on Alien Winds: Exploring the Skies and Weather of Other Worlds from Springer.

New Horizons Mission Practices Telescopic Imager on Pluto’s Twin


This summer, the New Horizons spacecraft was awoken for its annual systems checkout, and took the opportunity to exercise the long range camera by snapping pictures of Neptune, which at the time, was 3.5 billion km (2.15 billion miles) away. The Long Range Reconnaissance Imager (LORRI) snapped several photos of the gas giant, but Neptune was not alone! The moon Triton made a cameo appearance. And the New Horizons team said that since Triton is often called Pluto’s “twin” it was perfect target practice for imaging its ultimate target, Pluto.

This image gets us excited for 2015 when New Horizons will approach and make the closest flyby ever of Pluto.

“That we were able to see Triton so close to Neptune, which is approximately 100 times brighter, shows us that the camera is working exactly as designed,” said New Horizons Project Scientist Hal Weaver, of the Johns Hopkins Applied Physics Laboratory. “This was a good test for LORRI.”

Weaver pointed out that the solar phase angle (the spacecraft-planet-Sun angle) was 34 degrees and the solar elongation angle (planet-spacecraft-Sun angle) was 95 degrees. Only New Horizons can observe Neptune at such large solar phase angles, which he says is key to studying the light-scattering properties of Neptune’s and Triton’s atmospheres.

“As New Horizons has traveled outward across the solar system, we’ve been using our imagers to make just such special-purpose studies of the giant planets and their moons because this is a small but completely unique contribution that New Horizons can make — because of our position out among the giant planets,” said New Horizons Principal Investigator Alan Stern.

Triton is slightly larger than Pluto, 2,700 kilometers (1,700 miles) in diameter compared to Pluto’s 2,400 kilometers (1,500 miles). Both objects have atmospheres composed mostly of nitrogen gas with a surface pressure only 1/70,000th of Earth’s, and comparably cold surface temperatures approaching minus-400 degrees Fahrenheit. Triton is widely believed to have been a member of the Kuiper Belt (as Pluto still is) that was captured into orbit around Neptune, probably during a collision early in the solar system’s history.

Source: New Horizons

40 Years of Summer on Triton


If you’re planning a trip to Neptune’s moon Triton, you’ll want to head to the southern hemisphere where it’s now just past mid-summer. Yes, distant Triton actually does have seasons, astronomers at ESO’s Very Large Telescope recently determined. “We have found real evidence that the Sun still makes its presence felt on Triton, even from so far away,” said astronomer Emmanuel Lellouch in an ESO press release. “This icy moon actually has seasons just as we do on Earth, but they change far more slowly.” According to the first ever infrared analysis of Triton’s atmosphere, the seasons last about 40 Earth years. But while summer is in full swing in Triton’s southern hemisphere, there’s no need to pack your bikini. The average surface temperature is about minus 235 degrees Celsius.

Oh, and you’ll also want to bring along a little breathable air. The ESO team also – unexpectedly – discovered carbon monoxide in Triton’s thin atmosphere, mixed in with methane and nitrogen.

The astronomer’s observations revealed that Triton’s thin atmosphere varies seasonally, thickening when warmed. When the distant sun’s rays hits Triton at their best summer angle, a thin layer of frozen nitrogen, methane, and carbon monoxide on Triton’s surface sublimates into gas, thickening the icy atmosphere as the season progresses during Neptune’s 165-year orbit around the Sun. Triton passed the southern summer solstice in 2000.

Voyager 2's view of Triton. Credit: NASA

So, while this action increases the thickness of the atmosphere, thus increasing the atmospheric pressure, you’ll still need a pressure suit as well for your visit. Based on the amount of gas measured, Lellouch and his colleagues estimate that Triton’s atmospheric pressure may have risen by a factor of four compared to the measurements made by Voyager 2 in 1989, when it was still spring on the giant moon. The Voyager data indicated the atmosphere of nitrogen and methane had a pressure of 14 microbars, 70,000 times less dense than the atmosphere on Earth. The data from ESO shows the atmospheric pressure is now between 40 and 65 microbars — 20,000 times less than on Earth.

Carbon monoxide was known to be present as ice on the surface, but Lellouch and his team discovered that Triton’s upper surface layer is enriched with carbon monoxide ice by about a factor of ten compared to the deeper layers, and that it is this upper “film” that feeds the atmosphere. While the majority of Triton’s atmosphere is nitrogen (much like on Earth), the methane in the atmosphere, first detected by Voyager 2, and only now confirmed in this study from Earth, plays an important role as well.

“Climate and atmospheric models of Triton have to be revisited now, now that we have found carbon monoxide and re-measured the methane,” said co-author Catherine de Bergh. The team’s results are published in Astronomy & Astrophysics

If we could actually visit Triton, it would likely be a very interesting destination as we know it has geologic activity and a changing surface – plus its unique retrograde motion would offer a unique view of the solar system.

While Triton is the seventh largest moon in our solar system, its distance and position from Earth makes it difficult to observe, and ground-based observations since Voyager 2 have been limited. Observations of stellar occultations (a phenomenon that occurs when a Solar System body passes in front of a star and blocks its light) indicated that Triton’s surface pressure was increasing in the 1990’s. But a new instrument on the VLT, the Cryogenic High-Resolution Infrared Echelle Spectrograph (CRIRES) has provided the chance to perform a more detailed study of Triton’s atmosphere. “We needed the sensitivity and capability of CRIRES to take very detailed spectra to look at the very tenuous atmosphere,” said co-author Ulli Käufl.

These observations are just the beginning for the CRIRES instrument, which will be extremely helpful in studying other distant bodies in our solar system, such as Pluto and other Kuiper Belt Objects. Pluto is often considered a cousin of Triton with similar conditions, and in the light of the carbon monoxide discovery on Triton, astronomers are racing to find this chemical on the even more distant Pluto.

Read the team’s paper.

Source: ESO

What Is A Moon?

Full Moon

Before the invention of the telescope in the early 1600’s, man just knew of the Moon — a round, mysterious astronomical object that people would gaze up to in the night sky. As time progressed however, astronomers discovered that the moon isn’t exactly unique to earthlings, and other planets had their own moons. So exactly what is a moon?

A moon is defined to be a celestial body that makes an orbit around a planet, including the eight major planets, dwarf planets, and minor planets. A moon may also be referred to as a natural satellite, although to differentiate it from other astronomical bodies orbiting another body, e.g. a planet orbiting a star, the term moon is used exclusively to make a reference to a planet’s natural satellite.

The first moons to be discovered outside of the Earth’s moon were the Galilean moons of Jupiter, named after astronomer and discoverer Galileo Galilei. The moons Io, Europa, Ganymede, and Callisto are Jupiter’s largest and only the first four to be revealed, as to date, the planet has 63 moons.

Other than the four Galilean moons, Saturn’s Titan and Neptune’s Triton are two other moons which are comparable in size to the Earth’s Moon. In fact, these seven moons are the largest natural satellites in the solar system, measuring more than 3,000 kilometers in diameter. Only the inner planets Mercury and Venus have no moons.

An interesting fact about some of the solar system’s largest moons that most people may not be aware of is that a few of them are geologically active. While we may not see the Moon spewing lava or displaying any evidence of tectonic activity, Jupiter’s Io and Europa, Saturn’s Titan and Enceladus, and Neptune’s Triton have been found to be volcanically active bodies.

If the moon count had a grand total of just one in the olden times, that number has ballooned to 336 as of July 2009, with 168 moons orbiting the six planets, while the rest are moons of dwarf planets, asteroids moons, and natural satellites of Trans-Neptunian objects.

As more and more discoveries are made however, astronomers may find it more difficult to put a really defining line on what can or what can’t be classified as a moon. For instance, can you consider a 10-inch rock that’s orbiting Jupiter a moon? If yes, then there could be thousands or even millions of moons out there. If not, then where do you draw the line? Obviously, even the size of an “official” moon is still up for debate, so other than the simple definition of it being a natural satellite of a planet, there really is no clear cut answer to the question, “What is a moon?”.

Here in Universe Today, we have a nice collection of articles that explain why the Moon landings could not have been faked. Here are some of them:

Moon Rocks – Discusses how the Moon rocks are one of the most tangible objects that prove the landings took place.

Moon Landing Hoax – An explanation that counters some of the points raised by skeptics

Apollo 11 Hoax – another point for point discussion by Jerry Coffey

TV – Alert: Mythbusters and the Moon Hoax Myth – a teaser for the Mythbusters episode featuring the so-called hoax. You’ll find the comments below that article equally interesting, by the way.

Here’s an article from NASA that debunks the hoax theory using the Moon rock arguments. Another article about Moon rocks from the same site.

Episodes about the moon from Astronomy Cast. Lend us your ears!

Shooting Lasers at the Moon and Losing Contact with Rovers
The Moon Part I

NASA Solar System Exploration: Moons of Jupiter
NASA Solar System Exploration: Moons

Ten Interesting Facts About Uranus

The gas (and ice) giant known as Uranus is a fascinating place. The seventh planet from out Sun, Uranus is the third-largest in terms of size, the fourth-largest in terms of mass, and one of the least dense objects in our Solar System. And interestingly enough, it is the only planet in the Solar System that takes it name from Greek (rather than Roman) mythology.

But these basic facts really only begin to scratch the surface. When you get right down to it, Uranus is chock full of interesting and surprising details – from its many moons, to its ring system, and the composition of its aqua atmosphere. Here are just ten things about this gas/ice giant, and we guarantee that at least one of them will surprise you.

Continue reading “Ten Interesting Facts About Uranus”