The Planet Saturn

This portrait looking down on Saturn and its rings was created from images obtained by NASA's Cassini spacecraft on Oct. 10, 2013. Credit: NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic

The farthest planet from the Sun that can be observed with the naked eye, the existence of Saturn has been known for thousands of years. And much like all celestial bodies that can be observed with the aid of instruments – i.e. Mercury, Venus, Mars, Jupiter and the Moon – it has played an important role in the mythology and astrological systems of many cultures.

Saturn is one of the four gas giants in our Solar System, also known as the Jovian planets, and the sixth planet from the Sun. It’s ring system, which is it famous for, is also the most observable – consisting of nine continuous main rings and three discontinuous arcs.

Saturn’s Size, Mass and Orbit:

With a polar radius of 54364±10 km and an equatorial radius of 60268±4 km, Saturn has a mean radius of 58232±6 km, which is approximately 9.13 Earth radii. At 5.6846×1026 kg, and a surface area, at 4.27×1010 km2, it is roughly 95.15 as massive as Earth and 83.703 times it’s size. However, since it is a gas giant, it has significantly greater volume – 8.2713×1014 km3, which is equivalent to 763.59 Earths.

The sixth most distant planet, Saturn orbits the Sun at an average distance of 9 AU (1.4 billion km; 869.9 million miles). Due to its slight eccentricity, the perihelion and aphelion distances are 9.022 (1,353.6 million km; 841.3 million mi) and 10.053 AU (1,513,325,783 km; 940.13 million mi), on average respectively.

Saturn Compared to Earth. Image credit: NASA/JPL
Saturn Compared to Earth. Image credit: NASA/JPL

With an average orbital speed of 9.69 km/s, it takes Saturn 10,759 Earth days to complete a single revolution of the Sun. In other words, a single Cronian year is the equivalent of about 29.5 Earth years. However, as with Jupiter, Saturn’s visible features rotate at different rates depending on latitude, and multiple rotation periods have been assigned to various regions.

The latest estimate of Saturn’s rotation as a whole are based on a compilation of various measurements from the Cassini, Voyager and Pioneer probes. Saturn’s rotation causes it to have the shape of an oblate spheroid; flattened at the poles but bulging at the equator.

Saturn’s Composition:

As a gas giant, Saturn is predominantly composed of hydrogen and helium gas. With a mean density of 0.687 g/cm3, Saturn is the only planet in the Solar System that is less dense than water; which means that it lacks a definite surface, but is believed to have a solid core. This is due to the fact that Saturn’s temperature, pressure, and density all rise steadily toward the core.

Standard planetary models suggest that the interior of Saturn is similar to that of Jupiter, having a small rocky core surrounded by hydrogen and helium with trace amounts of various volatiles. This core is similar in composition to the Earth, but more dense due to the presence of metallic hydrogen, which as a result of the extreme pressure.

Diagram of Saturn's interior. Credit: Kelvinsong/Wikipedia Commons
Diagram of Saturn’s interior. Credit: Kelvinsong/Wikipedia Commons

Saturn has a hot interior, reaching 11,700 °C at its core, and it radiates 2.5 times more energy into space than it receives from the Sun. This is due in part to the Kelvin-Helmholtz mechanism of slow gravitational compression, but may also be attributable to droplets of helium rising from deep in Saturn’s interior out to the lower-density hydrogen. As these droplets rise, the process releases heat by friction and leaves Saturn’s outer layers depleted of helium. These descending droplets may have accumulated into a helium shell surrounding the core.

In 2004, French astronomers Didier Saumon and Tristan Guillot estimated that the core must 9-22 times the mass of Earth, which corresponds to a diameter of about 25,000 km. This is surrounded by a thicker liquid metallic hydrogen layer, followed by a liquid layer of helium-saturated molecular hydrogen that gradually transitions to a gas with increasing altitude. The outermost layer spans 1,000 km and consists of gas.

Saturn’s Atmosphere:

The outer atmosphere of Saturn contains 96.3% molecular hydrogen and 3.25% helium by volume. The gas giant is also known to contain heavier elements, though the proportions of these relative to hydrogen and helium is not known. It is assumed that they would match the primordial abundance from the formation of the Solar System.

Trace amounts of ammonia, acetylene, ethane, propane, phosphine and methane have been also detected in Saturn’s atmosphere. The upper clouds are composed of ammonia crystals, while the lower level clouds appear to consist of either ammonium hydrosulfide (NH4SH) or water. Ultraviolet radiation from the Sun causes methane photolysis in the upper atmosphere, leading to a series of hydrocarbon chemical reactions with the resulting products being carried downward by eddies and diffusion.

NASA's Cassini spacecraft captures a composite near-true-color view of the huge storm churning through the atmosphere in Saturn's northern hemisphere. Image credit: NASA/JPL-Caltech/SSI
NASA’s Cassini spacecraft captures a composite near-true-color view of the huge storm churning through the atmosphere in Saturn’s northern hemisphere. Image credit: NASA/JPL-Caltech/SSI

Saturn’s atmosphere exhibits a banded pattern similar to Jupiter’s, but Saturn’s bands are much fainter and wider near the equator. As with Jupiter’s cloud layers, they are divided into the upper and lower layers, which vary in composition based on depth and pressure. In the upper cloud layers, with temperatures in range of 100–160 K and pressures between 0.5–2 bar, the clouds consist of ammonia ice.

Water ice clouds begin at a level where the pressure is about 2.5 bar and extend down to 9.5 bar, where temperatures range from 185–270 K. Intermixed in this layer is a band of ammonium hydrosulfide ice, lying in the pressure range 3–6 bar with temperatures of 290–235 K. Finally, the lower layers, where pressures are between 10–20 bar and temperatures are 270–330 K, contains a region of water droplets with ammonia in an aqueous solution.

On occasion, Saturn’s atmosphere exhibits long-lived ovals, similar to what is commonly observed on Jupiter. Whereas Jupiter has the Great Red Spot, Saturn periodically has what’s known as the Great White Spot (aka. Great White Oval). This unique but short-lived phenomenon occurs once every Saturnian year, roughly every 30 Earth years, around the time of the northern hemisphere’s summer solstice.

These spots can be several thousands of kilometers wide, and have been observed in 1876, 1903, 1933, 1960, and 1990. Since 2010, a large band of white clouds called the Northern Electrostatic Disturbance have been observed enveloping Saturn, which was spotted by the Cassini space probe. If the periodic nature of these storms is maintained, another one will occur in about 2020.

 The huge storm churning through the atmosphere in Saturn's northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/SSI
The huge storm churning through the atmosphere in Saturn’s northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/SSI

The winds on Saturn are the second fastest among the Solar System’s planets, after Neptune’s. Voyager data indicate peak easterly winds of 500 m/s (1800 km/h). Saturn’s northern and southern poles have also shown evidence of stormy weather. At the north pole, this takes the form of a hexagonal wave pattern, whereas the south shows evidence of a massive jet stream.

The persisting hexagonal wave pattern around the north pole was first noted in the Voyager images. The sides of the hexagon are each about 13,800 km (8,600 mi) long (which is longer than the diameter of the Earth) and the structure rotates with a period of 10h 39m 24s, which is assumed to be equal to the period of rotation of Saturn’s interior.

The south pole vortex, meanwhile, was first observed using the Hubble Space Telescope. These images indicated the presence of a jet stream, but not a hexagonal standing wave. These storms are estimated to be generating winds of 550 km/h, are comparable in size to Earth, and believed to have been going on for billions of years. In 2006, the Cassini space probe observed a hurricane-like storm that had a clearly defined eye. Such storms had not been observed on any planet other than Earth – even on Jupiter.

Saturn’s Moons:

Saturn has at least 150 moons and moonlets, but only 53 of these moons have been given official names. Of these moons, 34 are less than 10 km in diameter and another 14 are between 10 and 50 km in diameter. However, some of its inner and outer moons are rather large, ranging from 250 to over 5000 km.

Images of several moons of Saturn. From left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and irregularly shaped Hyperion (bottom). Some small moons are also shown. All to scale. Credit: NASA/JPL/Space Science Institute
Moons of Saturn (from left to right): Mimas, Enceladus, Tethys, Dione, Rhea, Titan in the background; Iapetus (top) and irregularly shaped Hyperion (bottom). Credit: NASA/JPL/Space Science Institute

Traditionally, most of Saturn’s moons have been named after the Titans of Greek mythology, and are grouped based on their size, orbits, and proximity to Saturn. The innermost moons and regular moons all have small orbital inclinations and eccentricities and prograde orbits. Meanwhile, the irregular moons in the outermost regions have orbital radii of millions of kilometers, orbital periods lasting several years, and move in retrograde orbits.

The Inner Large Moons, which orbit within the E Ring (see below), includes the larger satellites Mimas, Enceladus, Tethys, and Dione. These moons are all composed primarily of water ice, and are believed to be differentiated into a rocky core and an icy mantle and crust. With a diameter of 396 km and a mass of 0.4×1020 kg, Mimas is the smallest and least massive of these moons. It is ovoid in shape and orbits Saturn at a distance of 185,539 km with an orbital period of 0.9 days.

Enceladus, meanwhile, has a diameter of 504 km, a mass of 1.1×1020 km and is spherical in shape. It orbits Saturn at a distance of 237,948 km and takes 1.4 days to complete a single orbit. Though it is one of the smaller spherical moons, it is the only Cronian moon that is endogenously active – and one of the smallest known bodies in the Solar System that is geologically active. This results in features like the famous “tiger stripes” – a series of continuous, ridged, slightly curved and roughly parallel faults within the moon’s southern polar latitudes.

Large geysers have also been observed in the southern polar region that periodically release plumes of water ice, gas and dust which replenish Saturn’s E ring. These jets are one of several indications that Enceladus has liquid water beneath it’s icy crust, where geothermal processes release enough heat to maintain a warm water ocean closer to its core. With a geometrical albedo of more than 140%, Enceladus is one of the brightest known objects in the Solar System.

Artist's rendering of possible hydrothermal activity that may be taking place on and under the seafloor of Enceladus. Image Credit: NASA/JPL
Artist’s rendering of possible hydrothermal activity that may be taking place on and under the seafloor of Enceladus. Image Credit: NASA/JPL

At 1066 km in diameter, Tethys is the second-largest of Saturn’s inner moons and the 16th-largest moon in the Solar System. The majority of its surface is made up of heavily cratered and hilly terrain and a smaller and smoother plains region. Its most prominent features are the large impact crater of Odysseus, which measures 400 km in diameter, and a vast canyon system named Ithaca Chasma – which is concentric with Odysseus and measures 100 km wide, 3 to 5 km deep and 2,000 km long.

With a diameter and mass of 1,123 km and 11×1020 kg, Dione is the largest inner moon of Saturn. The majority of Dione’s surface is heavily cratered old terrain, with craters that measure up to 250 km in diameter. However, the moon is also covered with an extensive network of troughs and lineaments which indicate that in the past it had global tectonic activity.

The Large Outer Moons, which orbit outside of the Saturn’s E Ring, are similar in composition to the Inner Moons – i.e. composed primarily of water ice and rock. Of these, Rhea is the second largest – measuring 1,527 km in diameter and 23 × 1020 kg in mass – and the ninth largest moon of the Solar System. With an orbital radius of 527,108 km, it is the fifth-most distant of the larger moons, and takes 4.5 days to complete an orbit.

Like other Cronian satellites, Rhea has a rather heavily cratered surface, and a few large fractures on its trailing hemisphere. Rhea also has two very large impact basins on its anti-Saturnian hemisphere – the Tirawa crater (similar to Odysseus on Tethys) and an as-yet unnamed crater – that measure 400 and 500 km across, respectively.

A composite image of Titan's atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute
A composite image of Titan’s atmosphere, created using blue, green and red spectral filters to create an enhanced-color view. Image Credit: NASA/JPL/Space Science Institute

At 5150 km in diameter, and 1,350×1020 kg in mass, Titan is Saturn’s largest moon and comprises more than 96% of the mass in orbit around the planet. Titan is also the only large moon to have its own atmosphere, which is cold, dense, and composed primarily of nitrogen with a small fraction of methane. Scientists have also noted the presence of polycyclic aromatic hydrocarbons in the upper atmosphere, as well as methane ice crystals.

The surface of Titan, which is difficult to observe due to persistent atmospheric haze, shows only a few impact craters, evidence of cryo-volcanoes, and longitudinal dune fields that were apparently shaped by tidal winds. Titan is also the only body in the Solar System beside Earth with bodies of liquid on its surface, in the form of methane–ethane lakes in Titan’s north and south polar regions.

With an orbital distance of 1,221,870 km, it is the second-farthest large moon from Saturn, and completes a single orbit every 16 days. Like Europa and Ganymede, it is believed that Titan has a subsurface ocean made of water mixed with ammonia, which can erupt to the surface of the moon and lead to cryovolcanism.

Hyperion is Titan’s immediate neighbor. At an average diameter of about 270 km, it is smaller and lighter than Mimas. It is also irregularly shaped and quite odd in composition. Essentially, the moon is an ovoid, tan-colored body with an extremely porous surface (which resembles a sponge).  The surface of Hyperion is covered with numerous impact craters, most of which are 2 to 10 km in diameter. It also has a highly unpredictable rotation, with no well-defined poles or equator.

The two sides of Iapetus. Credit: NASA/JPL
The two sides of Iapetus, which is known as “Saturn’s yin yang moon” because of the contrast in its color composition. Credit: NASA/JPL

At 1,470 km in diameter and 18×1020 kg in mass, Iapetus is the third-largest of Saturn’s large moons. And at a distance of 3,560,820 km from Saturn, it is the most distant of the large moons, and takes 79 days to complete a single orbit. Due to its unusual color and composition – its leading hemisphere is dark and black whereas its trailing hemisphere is much brighter – it is often called the “yin and yang” of Saturn’s moons.

Beyond these larger moons are Saturn’s Irregular Moons. These satellites are small, have large-radii, are inclined, have mostly retrograde orbits, and are believed to have been acquired by Saturn’s gravity. These moons are made up of three basic groups – the Inuit Group, the Gallic Group, and the Norse Group.

The Inuit Group consists of five irregular moons that are all named from Inuit mythology – Ijiraq, Kiviuq, Paaliaq, Siarnaq, and Tarqeq. All have prograde orbits that range from 11.1 to 17.9 million km, and from 7 to 40 km in diameter. They are all similar in appearance (reddish in hue) and have orbital inclinations of between 45 and 50°.

The Gallic group are a group of four prograde outer moons named for characters in Gallic mythology -Albiorix, Bebhionn, Erriapus, and Tarvos. Here too, the moons are similar in appearance and have orbits that range from 16 to 19 million km. Their inclinations are in the 35°-40° range, their eccentricities around 0.53, and they range in size from 6 to 32 km.

Saturns rings and moons Credit: NASA
Saturns rings and moons, shown to scale. Credit: NASA

Last, there is the Norse group, which consists of 29 retrograde outer moons that take their names from Norse mythology. These satellites range in size from 6 to 18 km, their distances from 12 and 24 million km, their inclinations between 136° and 175°, and their eccentricities between 0.13 and 0.77. This group is also sometimes referred to as the Phoebe group, due to the presence of a single larger moon in the group – which measures 240 km in diameter. The second largest, Ymir, measures 18 km across.

Within the Inner and Outer Large Moons, there are also those belonging to Alkyonide group. These moons – Methone, Anthe, and Pallene – are named after the Alkyonides of Greek mythology, are located between the orbits of Mimas and Enceladus, and are among the smallest moons around Saturn.

Some of the larger moons even have moons of their own, which are known as Trojan moons. For instance, Tethys has two trojans – Telesto and Calypso, while Dione has Helene and Polydeuces.

Saturn’s Ring System:

Saturn’s rings are believed to be very old, perhaps even dating back to the formation of Saturn itself. There are two main theories as to how these rings formed, each of which have variations. One theory is that the rings were once a moon of Saturn whose orbit decayed until it came close enough to be ripped apart by tidal forces.

In version of this theory, the moon was struck by a large comet or asteroid – possible during the Late Heavy Bombardment – that pushed it beneath the Roche Limit. The second theory is that the rings were never part of a moon, but are instead left over from the original nebular material from which Saturn formed billions of years ago.

The structure is subdivided into seven smaller ring sets, each of which has a division (or gap) between it and its neighbor. The A and B Rings are the densest part of the Cronian ring system and are 14,600 and 25,500 km in diameter, respectively. They extend to a distance of 92,000 – 117,580 km (B Ring) and 122,170 – 136,775 km (A Ring) from Saturn’s center, and are separated by the 4,700 km wide Cassini Division.

Saturn's rings. Credit: NASA/JPL/Space Science Institute.
Saturn’s rings. Credit: NASA/JPL/Space Science Institute.

The C Ring, which is separated from the B Ring by the 64 km Maxwell Gap, is approximately 17,500 km in width and extends 74,658 – 92,000 from Saturn’s center. Together with the A and B Rings, they comprise the main rings, which are denser and contain larger particles than the “dusty rings”.

These tenuous rings are called “dusty” due to the small particles that make them up. They include the D Ring, a 7,500 km ring that extends inward to Saturn’s cloud tops (66,900 – 74,510 km from Saturn’s center) and is separated from the C Ring by the 150 km Colombo Gap. On the other end of the system, the G and E Rings are located, which are also “dusty” in composition.

The G Ring is 9000 km in width and extends 166,000 – 175,000 km from Saturn’s center. The E Ring, meanwhile, is the largest single ring section, measuring 300,000 km in width and extending 166,000 to 480,000 km from Saturn’s center. It is here where the majority of Saturn’s moons are located (see above).

The narrow F Ring, which sits on the outer edge of the A Ring, is more difficult to categorize. While some parts of it are very dense, it also contains a great deal of dust-size particles. For this reason, estimates on its width range from 30 to 500 km, and it extends roughly 140,180 km from Saturn’s center.

History of Observing Saturn:

Because it is visible to the naked eye in the night sky, human beings have been observing Saturn for thousands of years. In ancient times, it was considered the most distant of five known the planets, and thus was accorded special meaning in various mythologies. The earliest recorded observations come from the Babylonians, where astronomers systematically observed and recorded its movements through the zodiac.

From the stone plate of the 3rd—4th centuries CE, found in Rome.
Roman astrological calendar, from the stone plate of the 3rd—4th centuries CE, Rome. Credit: Museo della civiltà romana

To the ancient Greeks, this outermost planet was named Cronus (Kronos), after the Greek god of agriculture and youngest of the Titans. The Greek scientist Ptolemy made calculations of Saturn’s orbit based on observations of the planet while it was in opposition.The Romans followed in this tradition, identifying it with their equivalent of Cronos (named Saturnus).

In ancient Hebrew, Saturn is called ‘Shabbathai’, whereas in Ottoman Turkish, Urdu and Malay, its name is ‘Zuhal’, which derived is from the original Arabic. In Hindu astrology, there are nine astrological objects known as Navagrahas. Saturn, which is one of them, is known as “Shani”, who judges everyone based on the good and bad deeds performed in life. In ancient China and Japan, the planet was designated as the “earth star” – based on the Five Elements of earth, air, wind, water and fire.

However, the planet was not directly observed until 1610, when Galileo Galilee first discerned the presence of rings. At the time, he mistook them for two moons that were located on either side. It was not until Christiaan Huygens used a telescope with greater magnification that this was corrected. Huygens also discovered Saturn’s moon Titan, and Giovanni Domenico Cassini later discovered the moons of Iapetus, Rhea, Tethys and Dione.

No further discoveries of significance were made again until the 181th and 19th centuries. The first occurred in 1789 when William Herschel discovered the two distant moons of Mimas and Enceladus, and then in 1848 when a British team discovered the irregularly-shaped moon of Hyperion.

Robert Hooke noted the shadows (a and b) cast by both the globe and the rings on each other in this drawing of Saturn in 1666. Robert Hooke - Philosophical Transactions (Royal Society publication)
Drawing of Saturn by Robert Hook, taken from Philosophical Transactions (1666). Credit: Wikipedia Commons

In 1899 William Henry Pickering discovered Phoebe, noting that it had a highly irregular orbit that did not rotate synchronously with Saturn as the larger moons do. This was the first time any satellite had been found to move about a planet in retrograde orbit. And by 1944, research conducted throughout the early 20th century confirmed that Titan has a thick atmosphere – a feature unique among the Solar System’s moons.

Exploration of Saturn:

By the late 20th century, unmanned spacecraft began to conduct flybys of Saturn, gathering information on its composition, atmosphere, ring structure, and moons. The first flyby was conducted by NASA using the Pioneer 11 robotic space probe, which passed Saturn at a distance of 20,000 km in September of 1979.

Images were taken of the planet and a few of its moons, although their resolution was too low to discern surface detail. The spacecraft also studied Saturn’s rings, revealing the thin F Ring and the fact that dark gaps in the rings are bright when facing towards the Sun, meaning that they contain fine light-scattering material. In addition, Pioneer 11 measured the temperature of Titan.

The next flyby took place in November of 1980 when the Voyager 1 space probe passed through the Saturn system.  It sent back the first high-resolution images of the planet, its rings and satellites – which included features of various moons that had never before been seen.

These six narrow-angle color images were made from the first ever 'portrait' of the solar system taken by Voyager 1, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length). Credit: NASA/JPL
These six narrow-angle color images were made from the first ever ‘portrait’ of the solar system taken by Voyager 1 in November 1980. Credit: NASA/JPL

In August 1981, Voyager 2 conducted its flyby and gathered more close-up images of Saturn’s moons, as well as evidence of changes in the atmosphere and the rings. The probes discovered and confirmed several new satellites orbiting near or within the planet’s rings, as well as the small Maxwell Gap and Keeler gap (a 42 km wide gap in the A Ring).

In June of 2004, the Cassini–Huygens space probe entered the Saturn system and conducted a close flyby of Phoebe, sending back high-resolution images and data. By July 1st, 2004, the probe entered orbit around Saturn, and by December, it had completed two flybys of Titan before releasing the Huygens probe. This lander reached the surface and began transmitting data on the atmospheric and surface by by Jan. 14th, 2005. Cassini has since conducted multiple flybys of Titan and other icy satellites.

In 2006, NASA reported that Cassini had found evidence of liquid water reservoirs that erupt in geysers on Saturn’s moon Enceladus. Over 100 geysers have since been identified, which are concentrated around the southern polar region. In May 2011, NASA scientists at an Enceladus Focus Group Conference reported that Enceladus’ interior ocean may be the most likely candidate in the search for extra-terrestrial life.

In addition, Cassini photographs have revealed a previously undiscovered planetary ring, eight new satellites, and evidence of hydrocarbon lakes and seas near Titan’s north pole. The probe was also responsible for sending back high-resolution images of the intense storm activity at Saturn’s northern and southern poles.

Cassini’s primary mission ended in 2008, but the probe’s mission has been extended twice since then – first to September 2010 and again to 2017. In the coming years, NASA hopes to use the probe to study a full period of Saturn’s seasons.

Cassini-Huygens Mission
Artist Illustration of the Cassini space probe to Saturn and Titan, a joint NASA, ESA mission. Credit: NASA/JPL

From being a very important part of the astrological systems of many cultures to becoming the subject of ongoing scientific fascination, Saturn continues to occupy a special place in our hearts and minds. Whether it’s Saturn’s fantastically large and beautiful ring system, its many many moons, its tempestuous weather, or its curious composition, this gas giant continues to fascinate and inspire.

In the coming years and decades, additional robotic explorer missions will likely to be sent to investigate Saturn, its rings and its system of moons in greater detail. What we find may constitute some of the most groundbreaking discoveries of all time, and will likely teach us more about the history of our Solar System.

Universe Today has articles on the density of Saturn, the Orbit of Saturn, and Interesting Facts about Saturn.

If you want to learn more about Saturn’s rings and moons, check out Where Did Saturn’s Rings Come From? and How Many Moons Does Saturn Have?

For more information, check out Saturn and all about Saturn, and NASA’s Solar System Exploration page on Saturn.

Astronomy Cast has an episode on the subject – Episode 59: Saturn.

Weekly Space Hangout – June 26, 2015: Paul Sutter, CCAPP Visiting Fellow

Host: Fraser Cain (@fcain)

Special Guest: This week we welcome Paul Sutter, the CCAPP Visiting Fellow who works on the cosmic microwave background and large-scale structure.

Guests:
Jolene Creighton (@jolene723 / fromquarkstoquasars.com)
Brian Koberlein (@briankoberlein / briankoberlein.com)
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – June 26, 2015: Paul Sutter, CCAPP Visiting Fellow”

What is Lunar Regolith?

A boot print on the lunar regolith. Credit: NASA.

When you’re walking around on soft ground, do you notice how your feet leave impressions? Perhaps you’ve tracked some of the looser earth in your yard into the house on occasion? If you were to pick up some of these traces – what we refer to as dirt or soil – and examine them beneath a microscope, what would you see?

Essentially, you would be seeing the components of what is known as regolith, which is a collection of particles of dust, soil, broken rock, and other materials found here on Earth. But interestingly enough, this same basic material can be found in other terrestrial environments as well – including the Moon, Mars, other planets, and even asteroids.

Definition:

The term regolith refers to any layer of material covering solid rock, which can come in the form of dust, soil or broken rock. The word is derived from the combination of two Greek words – rhegos (which means “blanket”) and lithos (which means “rock).

Earth:

On Earth, regolith takes the form of dirt, soil, sand, and other components that are formed as a result of natural weathering and biological processes. Due to a combination of erosion, alluvial deposits (i.e. moving water deposing sand), volcanic eruptions, or tectonic activity, the material is slowly ground down and laid out over solid bedrock.

central Yilgarn Craton, Western Australia.
Picture of Mt Magnet in the Central Yilgarn Craton in Western Australia, which dates to the Precambrian Era. Credit: geomorphologie.revues.org

It can be made up of clays, silicates, various minerals, groundwater, and organic molecules. Regolith on Earth can vary from being essentially absent to being hundreds of meters thick. Its can also be very young (in the form of ash, alluvium, or lava rock that was just deposited) to hundreds of millions of years old (regolith dating to the Precambrian age occurs in parts of Australia).

On Earth, the presence of regolith is one of the important factors for most life, since few plants can grow on or within solid rock and animals would be unable to burrow or build shelter without loose material. Regolith is also important for human beings since it has been used since the dawn of civilization (in the form of mud bricks, concrete and ceramics) to build houses, roads, and other civil works.

The difference in terminology between “soil” (aka. dirt, mud, etc.) and “sand” is the presence of organic materials. In the former, it exists in abundance, and is what separates regolith on Earth from most other terrestrial environments in our Solar System.

The Moon:

The surface of the Moon is covered with a fine powdery material that scientists refer to it as “lunar regolith”. Nearly the entire lunar surface is covered with regolith, and bedrock is only visible on the walls of very steep craters.

Earth viewed from the Moon by the Apollo 11 spacecraft. Credit: NASA
Earth viewed from the Moon by the Apollo 11 spacecraft, across a sea of lunar soil. Credit: NASA

The Moon regolith was formed over billions of years by constant meteorite impacts on the surface of the Moon. Scientists estimate that the lunar regolith extends down 4-5 meters in some places, and even as deep as 15 meters in the older highland areas.

When the plans were put together for the Apollo missions, some scientists were concerned that the lunar regolith would be too light and powdery to support the weight of the lunar lander. Instead of landing on the surface, they were worried that the lander would just sink down into it like a snowbank.

However, landings performed by robotic Surveyor spacecraft showed that the lunar soil was firm enough to support a spacecraft, and astronauts later explained that the surface of the Moon felt very firm beneath their feet. During the Apollo landings, the astronauts often found it necessary to use a hammer to drive a core sampling tool into it.

Once astronauts reached the surface, they reported that the fine moon dust stuck to their spacesuits and then dusted the inside of the lunar lander. The astronauts also claimed that it got into their eyes, making them red; and worse, even got into their lungs, giving them coughs. Lunar dust is very abrasive, and has been noted for its ability to wear down spacesuits and electronics.

Alan Bean Takes Lunar Soil Sample
Alan Bean takes a sample of lunar regolith during the Apollo 12 mission. Credit: NASA

The reason for this is because lunar regolith is sharp and jagged. This is due to the fact that the Moon has no atmosphere or flowing water on it, and hence no natural weathering process. When the micro-meteoroids slammed into the surface and created all the particles, there was no process for wearing down its sharp edges.

The term lunar soil is often used interchangeably with “lunar regolith”, but some have argued that the term “soil” is not correct because it is defined as having organic content. However, standard usage among lunar scientists tends to ignore that distinction. “Lunar dust” is also used, but mainly to refer to even finer materials than lunar soil.

As NASA is working on plans to send humans back to the Moon in the coming years, researchers are working to learn the best ways to work with the lunar regolith. Future colonists could mine minerals, water, and even oxygen out of the lunar soil, and use it to manufacture bases with as well.

Mars:

Landers and rovers that have been sent to Mars by NASA, the Russians and the ESA have returned many interesting photographs, showing a landscape that is covered with vast expanses of sand and dust, as well as rocks and boulders.

A successful scoop of Martian regolith (NASA/JPL-Caltech/University of Arizona/Max Planck Institute)
A successful scoop of Martian regolith performed by NASA’s Phoenix lander. Credit: NASA/JPL-Caltech/University of Arizona/Max Planck Institute

Compared to lunar regolith, Mars dust is very fine and enough remains suspended in the atmosphere to give the sky a reddish hue. The dust is occasionally picked up in vast planet-wide dust storms, which are quite slow due to the very low density of the atmosphere.

The reason why Martian regolith is so much finer than that found on the Moon is attributed to the flowing water and river valleys that once covered its surface. Mars researchers are currently studying whether or not martian regolith is still being shaped in the present epoch as well.

It is believed that large quantities of water and carbon dioxide ices remain frozen within the regolith, which would be of use if and when manned missions (and even colonization efforts) take place in the coming decades.

Mars moon of Deimos is also covered by a layer of regolith that is estimated to be 50 meters (160 feet) thick. Images provided by the Viking 2 orbiter confirmed its presence from a height of 30 km (19 miles) above the moon’s surface.

Asteroids and Outer Solar System:

The only other planet in our Solar System that is known to have regolith is Titan, Saturn’s largest moon. The surface is known for its extensive fields of dunes, though the precise origin of them are not known. Some scientists have suggested that they may be small fragments of water ice eroded by Titan’s liquid methane, or possibly particulate organic matter that formed in Titan’s atmosphere and rained down on the surface.

Another possibility is that a series of powerful wind reversals, which occur twice during a single Saturn year (30 Earth years), are responsible for forming these dunes, which measure several hundred meters high and stretch across hundreds of kilometers.  Currently, Earth scientists are still not certain what Titan’s regolith is composed of.

Data returned by the Huygens Probe’s penetrometer indicated that the surface may be clay-like, but long-term analysis of the data has suggested that it may be composed of sand-like ice grains.  The images taken by the probe upon landing on the moon’s surface show a flat plain covered in rounded pebbles, which may be made of water ice, and suggest the action of moving fluids on them.

Asteroids have been observed to have regolith on their surfaces as well. These are the result of meteoriod impacts that have taken place over the course of millions of years, pulverizing their surfaces and creating dust and tiny particles that are carried within the craters.

False color picture of Eros' 5.3-kilometer (3.3-mile) surface crater, showing regolith inside. Credit: NASA/JPL/JHUAPL
False color picture taken by NASA’s NEAR Shoemaker camera of Eros’ 5.3-kilometer (3.3-mile) surface crater, showing the presence of regolith inside. Credit: NASA/JPL/JHUAPL

NASA’s NEAR Shoemaker spacecraft produced evidence of regolith on the surface of the asteroid 433 Eros, which remains the best images of asteroid regolith to date. Additional evidence has been provided by JAXA’s Hayabusa mission, which returned clear images of regolith on an asteroid that was thought to be too small to hold onto it.

Images provided by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras on board the Rosetta Spacecraft confirmed that the asteroid 21 Lutetia has a layer of regolith near its north pole, which was seen to flow in major landslides associated with variations in the asteriod’s albedo.

To break it down succinctly, wherever there is rock, there is likely to be regolith. Whether it is the product of wind or flowing water, or the presence of meteors impacting the surface, good old fashioned “dirt” can be found just about anywhere in our Solar System; and most likely, in the universe beyond…

We’ve done several articles about the Moon’s regolith here on Universe Today. Here’s a way astronauts might be able to extract water from lunar regolith with simple kitchen appliances, and an article about NASA’s search for a lunar digger.

Want to buy some lunar regolith simulant? Here’s a site that lets you buy it. Do you want to be a Moon miner? There’s lots of good metal in that lunar regolith.

You can listen to a very interesting podcast about the formation of the Moon from Astronomy Cast, Episode 17: Where Did the Moon Come From?

Reference:
NASA

Why Don’t We Search for Different Life?

Why Don’t We Search for Different Life?

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don’t we look for the stuff that’s really different?

In the immortal words of Arthur C. Clarke, “Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”

I’m seeking venture capital for a Universal buffet chain, and I wondering if I need to include whatever the tentacle equivalent of forks is on my operating budget. If there isn’t any life, I’m going to need to stop watching so much science fiction and get on with helping humanity colonize space.

Currently, astrobiologists are hard at work searching for life, trying to answer this question. The SETI Institute is scanning radio signals from space, hoping to catch a message. Since humans use radio waves, maybe aliens will too. NASA is using the Curiosity Rover to search for evidence that liquid water existed on the surface of Mars long enough for life to get going. The general rule is if we find liquid water on Earth, we find life. Astronomers are preparing to study the atmospheres of extrasolar planets, looking for gasses that match what we have here on Earth.

Isn’t this just intellectually lazy? Do our scientists lack imagination? Aren’t they all supposed to watch Star Trek How do we know that life is going to look anything like the life we have on Earth? Oh, the hubris!

Who’s to say aliens will bother to communicate with radio waves, and will transcend this quaint transmission system and use beams of neutrinos instead. Or physics we haven’t even discovered yet? Perhaps they talk using microwaves and you can tell what the aliens are saying by how your face gets warmed up. And how do we know that life needs to depend on water and carbon? Why not silicon-based lifeforms, or beings which are pure energy? What about aliens that breathe pure molten boron and excrete seahorse dreams? Why don’t these scientists expand their search to include life as we don’t know it? Why are they so closed-minded?

Viking Lander
In 1976, two Viking spacecraft landed on Mars. The image is of a model of the Viking lander, along with astronomer and pioneering astrobiologist Carl Sagan. Each lander was equipped with life detection experiments designed to detect life based on its metabolic activities.
Credits: NASA/Jet Propulsion Laboratory, Caltech

The reality is they’re just being careful. A question this important requires good evidence. Consider the search for life on Mars. Back in the 1970s, the Viking Lander carried an experiment that would expose Martian soil to water and nutrients, and then try to detect out-gassing from microbes. The result of the experiment was inconclusive, and scientists still argue over the results today. If you’re going to answer a question like this, you want to be conclusive. Also, getting to Mars is pretty challenging to begin with. You probably don’t want to “half-axe” your science.

The current search for life is incremental and exhaustive. NASA’s Spirit and Opportunity searched for evidence that liquid water once existed on the surface of Mars. They found evidence of ancient water many times, in different locations. The fact that water once existed on the surface of Mars is established. Curiosity has extended this line of research, looking for evidence that water existed on the surface of Mars for long periods of time. Long enough that life could have thrived. Once again, the rover has turned up the evidence that scientists were hoping to see. Mars was once hospitable for life, for long periods of time. The next batch of missions will actually search for life, both on the surface of Mars and bringing back samples to Earth so we can study them here.

The search for life is slow and laborious because that’s how science works. You start with the assumption that since water is necessary for life on Earth, it makes sense to just check other water in the Solar System. It’s the low hanging fruit, then once you’ve exhausted all the easy options, you get really creative.

An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.
An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.

Scientists have gotten really creative about how and where they could search for life. Astrobiologists have considered other liquids that could be conducive for life. Instead of water, it’s possible that alternative forms of life could use liquid methane or ammonia as a solvent for its biological processes. In fact, this environment exists on the surface of Titan. But even if we did send a rover to Titan, how would we even know what to look for?

We understand how life works here, so we know what kinds of evidence to pursue. But kind of what evidence would be required to convince you there’s life as you don’t understand it? Really compelling evidence.
Go ahead and propose some alternative forms of life and how you think we’d go searching for it in the comments.

Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Kuri the Vegan Traveller and Craig Hayes, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.

What Other Worlds Have We Landed On?

As of November 2014, these are all of the planetary, lunar and small body surfaces where humanity has either lived, visited, or sent probes to. Composition by Mike Malaska, updated by Michiel Straathof. Image credits: Comet 67P/C-G [Rosetta/Philae]: ESA / Rosetta / Philae / CIVA / Michiel Straathof. Asteroid Itokawa [Hayabusa]: ISAS / JAXA / Gordan Ugarkovic. Moon [Apollo 17]: NASA. Venus [Venera 14]: IKI / Don Mitchell / Ted Stryk / Mike Malaska. Mars [Mars Exploration Rover Spirit]: NASA / JPL / Cornell / Mike Malaska. Titan [Cassini-Huygens]: ESA / NASA / JPL / University of Arizona. Earth: Mike Malaska

Think of all the different horizons humans have viewed on other worlds. The dust-filled skies of Mars. The Moon’s inky darkness. Titan’s orange haze. These are just a small subset of the worlds that humans or our robots landed on since the Space Age began.

It’s a mighty tribute to human imagination and engineering that we’ve managed to get to all these places, from moons to planets to comets and asteroids. By the way, for the most part we are going to focus on “soft landings” rather than impacts — so, for example, we wouldn’t count Galileo’s death plunge into Jupiter in 2003, or the series of planned landers on Mars that ended up crashing instead.

The Moon

Al Shepard raises the American flag during Apollo 14 in February 1971. Below is the shadow of his crewmate, Ed Mitchell. Credit: NASA
Al Shepard raises the American flag during Apollo 14 in February 1971. Below is the shadow of his crewmate, Ed Mitchell. Credit: NASA

Our instant first association with landings on other worlds is the human landings on the Moon. While it looms large in NASA folklore, the Apollo landings only took place in a brief span of space history. Neil Armstrong and Buzz Aldrin were the first crew (on Apollo 11) to make a sortie in 1969, and Apollo 17’s Gene Cernan and Jack Schmitt made the final set of moonwalks in 1972. (Read more: How Many People Have Walked on the Moon?)

But don’t forget all the robotic surveyors that came before and after. In 1959, the Soviet Union’s Luna 2 made the first impact on the lunar surface; the first soft landing came in 1966, with Luna 9. The United States set a series of Ranger and Surveyor probes to reach the moon in the 1960s and 1970s. The Soviet Union also deployed a rover on the moon, Lunakhod 1, in 1970 — the first remote-controlled robot controlled on another world’s surface.

In 2013, China made the first lunar soft landing in a generation. The country’s Chang’e-3 not only made it safely, but deployed the Yutu rover shortly afterwards.

Mars

Sojourner - NASA’s 1st Mars Rover. Rover takes an Alpha Proton X-ray Spectrometer (APXS) measurement of Yogi rock after Red Planet landing on July 4, 1997 landing.  Credit: NASA
Sojourner – NASA’s 1st Mars Rover. Rover takes an Alpha Proton X-ray Spectrometer (APXS) measurement of Yogi rock after Red Planet landing on July 4, 1997 landing. Credit: NASA

Mars is a popular destination for spacecraft, but only a fraction of those machines that tried to get there actually safely made it to the surface. The first successful soft landing came on Dec. 2, 1971 when the Soviet Union’s Mars 3 made it to the surface. The spacecraft, however, only transmitted for 20 seconds — perhaps due to dust storms on the planet’s surface.

Less than five years later, on July 20, 1976, NASA’s Viking 1 touched down on Chryse Planitia. This was quickly followed by its twin Viking 2 in September. NASA has actually made all the other soft landings to date, and expanded its exploration by using rovers to move around on the surface. The first one was Sojourner, a rover that rolled off the Pathfinder lander in 1997.

NASA also sent a pair of Mars Exploration Rovers in 2004. Spirit transmitted information back to Earth until 2010, while Opportunity is still roaming the surface. The more massive Curiosity lander followed them in 2012. Another stationary spacecraft, Phoenix, successfully landed close to the planet’s north pole in 2008.

Venus

Surface of Venus by Venera.
Surface of Venus by Venera.

Venera 7 — one of a series of Soviet probes sent in the 1960s and 1970s — was the first to make it to the surface of Venus and send data back, on Dec. 15, 1970. It lasted 23 minutes on the surface, transmitting weakly towards Earth. This may have been because it came to rest on its side after bouncing through a landing.

The first pictures of the surface came courtesy of Venera 9, which made it to Venus on Oct. 22, 1975 and sent data back for 53 minutes. Venera 10 also successfully landed three days later and sent back data from Venus as planned. Several other Venera probes followed, most notably including Venera 13 — which sent back the first color images and remained active for 127 minutes.

Titan

Artist depiction of Huygens landing on Titan. Credit: ESA
Artist depiction of Huygens landing on Titan. Credit: ESA

Humanity’s first and only landing on Titan so far came on Jan. 14, 2005. The European Space Agency’s Huygens probe likely didn’t come to rest right away when it arrived on the surface, bouncing and skidding for about 10 seconds after landing, an analysis showed almost a decade later.

A fish-eye view of Titan's surface from the European Space Agency's Huygens lander in January 2005. Credit: ESA/NASA/JPL/University of Arizona
A fish-eye view of Titan’s surface from the European Space Agency’s Huygens lander in January 2005. Credit: ESA/NASA/JPL/University of Arizona

The probe managed to send back information all the way through its 2.5-hour descent, and continued transmitting data for an hour and 12 minutes after landing. Besides the pictures, it also sent back information about the moon’s wind and surface.

The orangey moon of Saturn has come under scrutiny because it is believed to have elements in its atmosphere and on its surface that are precursors to life. It also has lakes of ethane and methane on its surface, showing that it has a liquid cycle similar to our own planet.

Comets and asteroids

Images from the Rosetta spacecraft show Philae drifting across the surface of its target comet during landing Nov. 12, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Images from the Rosetta spacecraft show Philae drifting across the surface of its target comet during landing Nov. 12, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Robots have also touched the ground on smaller, airless bodies in our Solar System — specifically, a comet and two asteroids. NASA’s NEAR Shoemaker made the first landing on asteroid Eros on Feb. 12, 2001, even though the spacecraft wasn’t even designed to do so. While no images were sent back from the surface, it did transmit data successfully for more than two weeks.

Japan made its first landing on an extraterrestrial surface on Nov. 19, 2005, when the Hayabusa spacecraft successfully touched down on asteroid Itokawa. (This followed a failed attempt to send a small hopper/lander, called Minerva, from Hayabusa on Nov. 12.) Incredibly, Hayabusa not only made it to the surface, but took off again to return the samples to Earth — a feat it accomplished successfully in 2010.

The first comet landing came on Nov. 12, 2014 when the European Space Agency’s Philae lander successfully separated from the Rosetta orbiter and touched the surface of Comet 67P/Churyumov–Gerasimenko. Philae’s harpoons failed to deploy as planned and the lander drifted for more than two hours from its planned landing site until it stopped in a relatively shady spot on the comet’s surface. Its batteries drained after a few days and the probe fell silent. As of early 2015, controllers are hoping that as more sunlight reaches 67P by mid-year, Philae will wake up again.

Titan’s Atmosphere Still Baffles Us A Decade After Huygens Landing

Artist depiction of Huygens landing on Titan. Credit: ESA

It’s almost exactly 10 years ago that humanity parachuted a spacecraft into Titan, that moon of Saturn that could hold chemistry similar to what sat on Earth before life arose. Called Huygens, the probe survived for just about an hour on the surface on Jan. 14, 2005, transmitting information back about conditions there and on the way down.

Huygens is long dead, but its carrier craft is doing just fine. On Dec. 10, Cassini will make the 107th close pass by Titan to learn more about the moon’s atmosphere. Although Huygens made it to the surface fine, showing at least a basic understanding of how a parachute behaves on Titan, there’s still so much more we need to learn.

Specifically, Cassini’s different instruments have been coming up with different answers for Titan’s atmospheric density, so this flyby is hoping to resolve some of that. In part, they hope to get more accurate measurements by measuring how much drag the spacecraft experiences when it flies past the moon.

Titan's landscape as seen by the Huygens probe descent through Saturn's largest moons atmosphere (credit: ESA, NASA, JPL, UA, Rene Pascal)
Titan’s landscape as seen by the Huygens probe descent through Saturn’s largest moons atmosphere (credit: ESA, NASA, JPL, UA, Rene Pascal)

When Huygens probed the atmosphere on its way down, scientists figured that its measurements agreed in many ways with those taken by the flying-by Voyager 2 spacecraft previously. That said, the probe also discovered “a significant correspondence of wind shear and buoyant stability structures” in the stratosphere and lower tropopause of Titan, according to a 2006 presentation on Huygens results.

And Cassini made several atmospheric discoveries of its own, such as the haze of Titan acting as an ozone layer, that glints of light off of Saturn can change air currents in the atmosphere, and that the atmosphere itself might be older than Saturn.

And in a spectacular recent reminder that we can make Titan discoveries from Earth, the powerful ALMA radio telescope array found an unusual organics distribution in Titan’s atmosphere.

This Short Film is a Stunning Preview of Human Space Exploration

One day – and it really is only matter of time – humans will set foot on the surfaces of other far-flung worlds in our Solar System, leaving the Earth and Moon far behind to wander the valleys of Mars, trek across the ice of Europa, and perhaps even soar through the skies of Titan like winged creatures from ancient legends. But until then we must rely on the exploration of our robotic emissaries and our own boundless imagination and curiosity to picture what such voyages would be like. Here in “Wanderers,” video artist Erik Wernquist has used both resources in abundance to visualize fascinating off-world adventures yet to be undertaken by generations to come.
Continue reading “This Short Film is a Stunning Preview of Human Space Exploration”