Machine Learning Algorithm Scoops up 50 New Exoplanets

Advances in technology are having a profound impact on astronomy and astrophysics. At one end, we have advanced hardware like adaptive optics, coronographs, and spectrometers that allow for more light to be gathered from the cosmos. At the other end, we have improved software and machine learning algorithms that are allowing for the data to be analyzed and mined for valuable nuggets of information.

One area of research where this is proving to be invaluable is in the hunt for exoplanets and the search for life. At the University of Warwick, technicians recently developed an algorithm that was able to confirm the existence of 50 new exoplanets. When used to sort through archival data, this algorithm was able to sort through a sample of candidates and determine which were actual planets and which were false positives.

Continue reading “Machine Learning Algorithm Scoops up 50 New Exoplanets”

Astronomers Thought They’d Found a Red Dwarf That Wasn’t Hostile to its Habitable Zone Planets. They Were Wrong

In the past decade, the study of exoplanets has grown by leaps and bounds. At present, a total of 4,201 planets have been confirmed beyond the Solar System and another 5,481 candidates await confirmation. In the midst of all this, M-type red dwarf stars have become a focus of exoplanet research because they appear to be the most likely place where rocky (aka. Earth-like) planets can be found orbiting within the star’s habitable zone (HZ).

However, that does not mean that red dwarf stars are good candidates for hosting habitable planets. Take GJ 887, for example, one of the brightest M stars in the sky that has a system of two (possibly three) planets. In the past, this star was believed to be calm and stable, but new research by astronomers from Arizona State University has shown that GJ 887 might not be so calm as previously thought.

Continue reading “Astronomers Thought They’d Found a Red Dwarf That Wasn’t Hostile to its Habitable Zone Planets. They Were Wrong”

There’s No Chemical Difference Between Stars With or Without Planets

Strange New Worlds

Imagine if a star could tell you it had planets. That would be really helpful because finding planets orbiting distant stars – exoplanets – is hard. We found Neptune, the most distant planet in our own solar system, in 1846. But we didn’t have direct evidence of a planet around ANOTHER star until….1995.…149 years later. Think about that. Any science fiction you watched or read that was written before 1995 which depicted travel to exoplanets assumed that other planets even existed. Star Trek: The Next Generation aired its last season in 1994. We didn’t even know if Vulcan was out there. (Now we do!…sortof)

Jupiter (right bright point) and Saturn (left bright point) seen here against the Milky Way were the most distant planets we could see before inventing telescopes – C. Matthew Cimone
Continue reading “There’s No Chemical Difference Between Stars With or Without Planets”

Astronomers are Starting to Find Planets in Much Longer Orbits. Cooler, More Habitable Planets

We’re getting better and better at detecting exoplanets. Using the transit method of detection, the Kepler Space Telescope examined over 530,000 stars and discovered over 2,600 explanets in nine years. TESS, the successor to Kepler, is still active, and has so far identified over 1800 candidate exoplanets, with 46 confirmed.

But what if, hidden in all that data, there were even more planets? Astronomers at Warwick University said they’ve found one of these “lost” planets, and that they think they’ll find even more.

Continue reading “Astronomers are Starting to Find Planets in Much Longer Orbits. Cooler, More Habitable Planets”

Do Hot Jupiters Form Close in, or Do They Migrate? A Newly-Discovered Planet Might Help Answer This

The discovery of over 4000 planets (4,171 confirmed and counting!) beyond our Solar System has revolutionized the field of astronomy. Unfortunately, one of the downsides of all these discoveries is how it has shaken up theories about how our Solar System formed. In the past, astronomers thought that the eight planets (or nine, or over one hundred, depending on your point of view) formed where they are currently located.

However, the discovery of gas giants that orbit close to their stars (aka. “Hot Jupiters”) has confounded this thinking. But according to a recent NASA-supported study, the recent discovery of a young gas giant could offer clues as to how Jupiter-like planets form and whether or not they migrate. This discovery was made possible thanks to the Spitzer Space Telescope, which continues to reveal things about our Universe even in retirement.

Continue reading “Do Hot Jupiters Form Close in, or Do They Migrate? A Newly-Discovered Planet Might Help Answer This”

A Star Has Been Found That Pulsates, But Only on One Side

In the 17th century, astronomers witnessed many stellar events that proved that the starry sky was not “fixed and eternal.” This included stars whose brightness varied over time – aka. “variable stars.” By the 20th century, many variable stars had been cataloged and astronomers have discerned subclasses of them as well – notably, stars that swell and shrink, known as pulsating variables.

In all cases, these variable stars were found to have rhythmic pulsations that were visible from all sides. But a recent discovery by an international team has confirmed that there are variable stars that can pulse from only one side. This pulsating star, part of a system known as HD 74423, is located about 1,500 light-years from Earth and is the first of its kind to be found.

Read more