Messier 30 – The NGC 7099 Globular Cluster

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the globular cluster known as Messier 30. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is Messier 30, a globular cluster located in the southern constellation of Capricornus. Owing to its retrograde orbit through the inner galactic halo, it is believed that this cluster was acquired from a satellite galaxy in the past. Though it is invisible to the naked eye, this cluster can be viewed using little more than binoculars, and is most visible during the summer months.

Description:

Messier measures about 93 light years across and lies at a distance of about 26,000 light years from Earth, and approaching us at a speed of about 182 kilometers per second. While it looks harmless enough, its tidal influence covers an enormous 139 light years – far greater than its apparent size.

Half of its mass is so concentrated that literally thousands of stars could be compressed in an area that spans no further than the distance between our solar system and Sirius! However, inside this density only 12 variable stars have been found and very little evidence of any stellar collisions, although a dwarf nova has been recorded!

So what’s so special about this little globular? Try a collapsed core – and one that’s even been resolved by Earth-bound telescopes. According to Bruce Jones Sams III, an astrophysicists at Harvard University:

“The globular cluster NGC 7099 is a prototypical collapsed core cluster. Through a series of instrumental, observational, and theoretical observations, I have resolved its core structure using a ground based telescope. The core has a radius of 2.15 arcsec when imaged with a V band spatial resolution of 0.35 arcsec. Initial attempts at speckle imaging produced images of inadequate signal to noise and resolution. To explain these results, a new, fully general signal-to-noise model has been developed. It properly accounts for all sources of noise in a speckle observation, including aliasing of high spatial frequencies by inadequate sampling of the image plane. The model, called Full Speckle Noise (FSN), can be used to predict the outcome of any speckle imaging experiment. A new high resolution imaging technique called ACT (Atmospheric Correlation with a Template) was developed to create sharper astronomical images. ACT compensates for image motion due to atmospheric turbulence.”

Photography is an important tool for astronomers to work with – both land and space-based. By combining results, we can learn far more than just from the results of one telescope observation alone. As Justin H. Howell wrote in a 1999 study:

“It has long been known that the post-core-collapse globular cluster M30 (NGC 7099) has a bluer-inward color gradient, and recent work suggests that the central deficiency of bright red giant stars does not fully account for this gradient. This study uses Hubble Space Telescope Wide Field Planetary Camera 2 images in the F439W and F555W bands, along with ground-based CCD images with a wider field of view for normalization of the noncluster background contribution. The quoted uncertainty accounts for Poisson fluctuations in the small number of bright evolved stars that dominate the cluster light. We explore various algorithms for artificially redistributing the light of bright red giants and horizontal-branch stars uniformly across the cluster. The traditional method of redistribution in proportion to the cluster brightness profile is shown to be inaccurate. There is no significant residual color gradient in M30 after proper uniform redistribution of all bright evolved stars; thus, the color gradient in M30’s central region appears to be caused entirely by post-main-sequence stars.”

Image of Messier 30 (M 30, NGC 7099) was taken by Hubble’s Advanced Camera for Surveys (ACS). Credit: NASA/ESA

So what happens when you dig even deeper with a different type of photography? Just ask the folks from Chandra – like Phyllis M. Lugger, who wrote in her study, “Chandra X-ray Sources in the Collapsed-Core Globular Cluster M30 (NGC 7099)“:

“We report the detection of six discrete, low-luminosity X-ray sources, located within 12” of the center of the collapsed-core globular cluster M30 (NGC 7099), and a total of 13 sources within the half-mass radius, from a 50 ks Chandra ACIS-S exposure. Three sources lie within the very small upper limit of 1.9” on the core radius. The brightest of the three core sources has a blackbody-like soft X-ray spectrum, which is consistent with it being a quiescent low-mass X-ray binary (qLMXB). We have identified optical counterparts to four of the six central sources and a number of the outlying sources, using deep Hubble Space Telescope and ground-based imaging. While the two proposed counterparts that lie within the core may represent chance superpositions, the two identified central sources that lie outside of the core have X-ray and optical properties consistent with being cataclysmic variables (CVs). Two additional sources outside of the core have possible active binary counterparts.”

History of Observation:

When Charles Messier first encountered this globular cluster in 1764, he was unable to resolve individual stars, and mistakenly believed it to be a nebula. As he wrote in his notes at the time:

“In the night of August 3 to 4, 1764, I have discovered a nebula below the great tail of Capricornus, and very near the star of sixth magnitude, the 41st of that constellation, according to Flamsteed: one sees that nebula with difficulty in an ordinary [non-achromatic] refractor of 3 feet; it is round, and I have not seen any star: having examined it with a good Gregorian telescope which magnifies 104 times, it could have a diameter of 2 minutes of arc. I have compared the center with the star Zeta Capricorni, and I have determined its position in right ascension as 321d 46′ 18″, and its declination as 24d 19′ 4″ south. This nebula is marked in the chart of the famous Comet of Halley which I observed at its return in 1759.”

Image of the core region of Messier 30 by the Hubble Space Telescope. Credit: NASA

However, we cannot fault Messier, for his job was to hunt comets and we thank him for logging this object for further study. Perhaps the first clue to M30’s underlying potential came from Sir William Herschel, who often studied Messier’s objects, but did not report his findings formally. In his personal notes he wrote:

“A brilliant cluster, the stars of which are gradually more compressed in the middle. It is insulated, that is, none of the stars in the neighborhood are likely to be connected with it. Its diameter is from 2’40” to 3’30”. The figure is irregularly round. The stars about the centre are so much compressed as to appear to run together. Towards the north, are two rows of bright stars 4 or 5 in a line. In this accumulation of stars, we plainly see the exertion of a central clustering power, which may reside in a central mass, or, what is more probable, in the compound energy of the stars about the centre. The lines of bright stars, although by a drawing made at the time of observation, one of them seems to pass through the cluster, are probably not connected with it.”

So, as telescopes progressed and resolution improved, so did our way of thinking about what we were seeing… By Admiral Smyth’s time, things had improved even more and so had the art of understanding more:

“A fine pale white cluster, under the creature’s caudal fin, and about 20 deg west-north-west of Fomalhaut, where it precedes 41 Capricorni, a star of 5th magnitude, within a degree. This object is bright, and from the straggling streams of stars on its northern verge, has an elliptical aspect, with a central blaze; and there are but few other stars, or outliers, in the field.

“When Messier discovered this, in 1764, he remarked that it was easily seen with a 3 1/2-foot telescope, that it was a nebula, unaccompanied by any star, and that its form was circular. But in 1783 it was attacked by WH [William Herschel] with both his 20-foot Newtonians, and forthwith resolved into a brilliant cluster, with two rows pf stars, four or five in a line, which probably belong to it; and therefore he deemed it insulated. Independently of this opinion, it is situated in a blankish space, one of those chasmata which Lalande termed d’espaces vuides, wherein he could not perceive a star of the 9th magnitude in the achromatic telescope of sixty-seven millimetres aperture. By a modification of his very ingenious gauging process, Sir William considered the profundity of this cluster to be of the 344th order.

“Here are materials for thinking! What an immensity of space is indicated! Can such an arrangement be intended, as a bungling spouter of the hour insists, for a mere appendage to the speck of a world on which we dwell, to soften the darkness of its petty midnight? This is impeaching the intelligence of Infinite Wisdom and Power, in adapting such grand means to so disproportionate an end. No imagination can fill up the picture of which the visual organs afford the dim outline; and he who confidently probes the Eternal Design cannot be many removes from lunacy. It was such a consideration that made the inspired writer claim, “How unsearchable are His operations, and His ways past finding out!”

Throughout all historic observing notes, you’ll find notations like “remarkable” and even Dreyer’s famous exclamation points. Even though M30 may not be the easiest to find, nor the brightest of the Messier objects, it is still quite worthy of your time and attention!

The location of Messier 30, in the direction of the Scorpius constellation. Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 30:

Finding M30 is not an easy task, unless you’re using a GoTo telescope. In any other case, it’s a starhop process, which must begin with identifying the the big grin-shape of the constellation of Capricornus. Once you’ve separated out this constellation, you’ll begin to notice that many of its primary asterism stars are paired – which is a good thing! The northeastern most pair are Gamma and Delta, which is where binocular-users should start.

As you move slowly south and slightly west, you’ll encounter your next wide pair – Chi and Epsilon. The next southwestern set is 36 Cap and Zeta. Now, from here you have two options! You can find Messier 30 a little more than a finger width east(ish) of Zeta (about half a binocular field)… or, you can return to Epsilon and look about one binocular field south (about 3 degrees) for star 41 which will appear just east of Messier 30 in the same field of view.

For the finderscope, star 41 is a critical giveaway to the globular cluster’s position! It won’t be visible to the unaided eye, but even a little magnification will reveal its presence. Using binoculars or a very small telescope, Messier 30 will appear as only a small, faded gray ball of light with a small star beside it. However, with telescope apertures as small as 4″ you’ll begin some resolution on this overlooked globular cluster and larger apertures will resolve it nicely.

And here are the quick facts on Messier 30 to help you get started:

Object Name: Messier 30
Alternative Designations: M30, NGC 7099
Object Type: Class V Globular Cluster
Constellation: Capricornus
Right Ascension: 21 : 40.4 (h:m)
Declination: -23 : 11 (deg:m
Distance: 26.1 (kly)
Visual Brightness: 7.2 (mag)
Apparent Dimension: 12.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

What If We Do Find Aliens?


Time to talk about my favorite topic: aliens.

We’ve covered the Fermi Paradox many times over several articles on Universe Today. This is the idea that the Universe is huge, and old, and the ingredients of life are everywhere. Life could and should have have appeared many times across the galaxy, but it’s really strange that we haven’t found any evidence for them yet.

We’ve also talked about how we as a species have gone looking for aliens. How we’re searching the sky for signals from their alien communications. How the next generation of space and ground-based telescopes will let us directly image the atmospheres of extrasolar planets. If we see large quantities of oxygen, or other chemicals that shouldn’t be around, it’s a good indication there’s life on their planet.

We’ve even talked about how aliens could use that technique on us. We’ve been sending our radio and television signals out into space for the last few decades. Who knows what crazy things they think about our “historical documents”? But Earth life itself has been broadcasting our existence for hundreds of millions of years, since the first plankton started filling our atmosphere with oxygen. A distant civilization could be analyzing our atmosphere and know exactly when we entered the industrial age.

But what we haven’t talked about, the space elephant in the room, if you will, is what we’ll do if we actually make contact. What are we going to say to each other? And what will happen if the aliens show up?

War of the Worlds
I’m hoping that first contact doesn’t start out like this. Credit: Henrique Alvim Correa, 1906, for the novel “The War of the Worlds”

Although there’s no official protocol on talking to aliens, scientists and research institutions have been puzzling out the best way we might communicate for quite a while.

Perhaps the best example is the SETI Institute, the US-based research group who have dedicated radio telescopes scanning the skies for messages from space.

Let’s imagine you’re a SETI researcher, and you’re browsing last night’s logs and you see what looks like a message. Maybe it’s instructions to build some kind of dimensional portal, or a recipe book.

Whatever you do, don’t try out the recipes. Instead, you need to make absolutely sure you’re not dealing with some kind of natural phenomenon. Then you need to reach out to other researchers and get them to confirm the signal.

The Green Bank Telescope is the world’s largest, fully-steerable telescope. The GBT’s dish is 100-meters by 110-meters in size, covering 2.3 acres of space. The telescope is currently being used in a new SETI (Search for Extraterrestrial Intelligence) attempt to look for possible alien radio signals from Tabby's Star. Credit: NRAO/AUI/NSF
The Green Bank Telescope is the world’s largest, fully-steerable telescope. The GBT’s dish is 100-meters by 110-meters in size, covering 2.3 acres of space. The telescope is currently being used in a new SETI (Search for Extraterrestrial Intelligence) attempt to look for possible alien radio signals from Tabby’s Star. Credit: NRAO/AUI/NSF

If they agree it’s aliens, then you need to inform the International Astronomical Union and other international groups, like the United Nations, Committee on Space Research, etc.

Unless they’ve got some good reason to stop you, it’s time to announce the discovery to the worldwide media. You made the discovery, you get to break the news to the world.

At this point, of course, the entire world is going to freak right out. Whatever you do, however, you have to resist the urge to send back a message or build that dimensional portal, no matter how much you think you understand the science. Instead, let an international committee mull it over while you stockpile supplies in a secret alien proof bunker in the desert.

What kind of message should we actually craft to our new alien penpals? Will we become fast friends, jump starting our own technological progress, or will we insult them by accident?

In 2000, and international group of SETI researchers including the famous Jill Tarter devised The Rio Scale. It really easy to use, and there’s even a fun online calculator.

Step 1, figure out the class of phenomenon. Is it a message sent directly to Earth, expecting a reply? Or did we merely find some alien artifact or old timey Dyson sphere orbiting a nearby star?

Step 2, how verifiable is the discovery? Are we talking ongoing signals received by SETI researchers, or a hint in some old data that’s impossible to confirm?

Step 3, how far are we talking here? Hovering over Paris? Within our Solar System, or outside the galaxy?

Step 4, how sure are you? 100% certain, and everyone agrees because they can all see that enormous mothership floating above London? Or nobody believes you, and they’ve locked you up because of your insane ramblings and misappropriation of government equipment?

Punch in your numbers and you’ll get a rank on The Rio Scale between 0 and 10. Level 0 is “no importance” or “you’re a crank”, while level 10 is “extraordinary importance”, or “now would be a good time to panic”.

Movie poster from 'Independence Day.' Credit: 20th Century Fox
Not the best outcome. Credit: 20th Century Fox

SETI researcher Seth Shostak, calculated the Rio Scale for various sci-fi movies and shows. The first message from aliens in Independence Day would count as a 4. While the obliteration of the White House by a massive floating alien city that everybody could see would count as a 10.

the messages received in Contact, and independently confirmed by researchers around the world would qualify in the 4-8 range, while the monolith discovered on the Moon in 2001 would be a solid 6.

Now you know how important the discovery is, what do you say back to those chatty aliens?

This falls under the term CETI, which means Communications with Extraterrestrial Aliens, which shouldn’t be confused with SETI, or the Search for Extraterrestrial Aliens. And it turns out, that horse has already left the stable.

When the Pioneer and Voyager spacecraft were constructed, they were equipped with handy maps to find Earth’s precise location in the Milky Way.

The famous "Golden Record" carried aboard both Voyager 1 and 2 contains images, sounds and greetings from Earth. (NASA)
The famous “Golden Record” carried aboard both Voyager 1 and 2 contains images, sounds and greetings from Earth. (NASA)

In 1974, Carl Sagan and Frank Drake who composed a message in alienese and broadcast it into space from the Arecibo Observatory.

In 1999 and 2003 a series of signals were transmitted towards various interesting stars. The messages contained images of Earth, as well as various mathematical principles that could be used by aliens as a common language.

We’ll know if that was a good idea in a few decades.

In 2015, scientists like David Grinspoon, Seth Shostak and David Brin collected together to discuss if it’s a wise idea to send messages off into space, to broadcast our existence to potentially hostile alien civilizations.

According to Seth Shostak, the best message we can send is the entire internet. Just send it all, they’ll work out what we’re all about.

The science fiction author David Brin thinks that’s a terrible idea, and we should keep our mouths shut.

Personally, I think the aliens already know we’re here. If they wanted to invade and destroy our planet, they would have done it millions of years ago when early life made it obvious this planet was inhabited. The jig is up.

It’s a mind bending concept to imagine what life might be like if we knew with absolutely certainty that there’s an alien civilization right over there, on that world. I’m sure people will freak out for a while, but then we’ll probably just go back to life as normal. Human beings can get bored by the most surprising and amazing things.

If you learned there was definitely an alien civilization out there, how do you think humanity would respond? Let me know your thoughts in the comments.

New Lenses To Help In The Hunt For Dark Energy

Since the 1990s, scientists have been aware that for the past several billion years, the Universe has been expanding at an accelerated rate. They have further hypothesized that some form of invisible energy must be responsible for this, one which makes up 68.3% of the mass-energy of the observable Universe. While there is no direct evidence that this “Dark Energy” exists, plenty of indirect evidence has been obtained by observing the large-scale mass density of the Universe and the rate at which is expanding.

But in the coming years, scientists hope to develop technologies and methods that will allow them to see exactly how Dark Energy has influenced the development of the Universe. One such effort comes from the U.S. Department of Energy’s Lawrence Berkeley National Lab, where scientists are working to develop an instrument that will create a comprehensive 3D map of a third of the Universe so that its growth history can be tracked.

Continue reading “New Lenses To Help In The Hunt For Dark Energy”

Weekly Space Hangout – June 5, 2015: Stephen Fowler, Creative Director at InfoAge

Host: Fraser Cain (@fcain)
Special Guest: This week we welcome Stephen Fowler, who is the Creative Director at InfoAge, the organization behind refurbishing the TIROS 1 dish and the Science History Learning Center and Museum at Camp Evans, Wall, NJ.

Guests:
Jolene Creighton (@jolene723 / fromquarkstoquasars.com)
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )

Continue reading “Weekly Space Hangout – June 5, 2015: Stephen Fowler, Creative Director at InfoAge”

Are Aliens Watching Old TV Shows?

You’ve probably heard the trope about how aliens have been watching old episodes of “I Love Lucy” and might think these are our “historical documents”. How far have our signals reached?

Television transmissions expand outward from the Earth at the speed of light, and there’s a trope in science fiction that aliens have learned everything about humans by watching our television shows. If you’re 4 light-years away, you’re see the light from the Earth as it looked 4 years ago, and some of that light includes television transmissions, as radio waves are just another form of electromagnetism – it’s all just light.

Humans began serious television service in the 1930s, and by the modern era, there were thousands of powerful transmitters pumping out electromagnetic radiation for all to see. So are aliens watching “I Love Lucy” or footage from World War II and believing it all to be part of our “Historical Documents”?

The first radio broadcasts started in the early 1900s. At the time I’m recording this video, it’s late 2014, so those transmissions have escaped into space 114 years ago. This means our transmissions have reached a sphere of stars with a radius of 114 light-years.

Are there other stars in that volume of space? Absolutely. It’s estimated that there are more than 14,000 stars within 100 light years of Earth. Most of those are tiny red dwarf stars, but there would be hundreds of sunlike stars.

As we’re discovering, almost all of those stars will have planets, many of which will be Earthlike. It’s almost certain some of those stars will have planets in the habitable zone, and could have evolved life forms, technology and television sets and were able to learn of the Stealth Haze and the Mak’Tar chant of strength.

Will the signals be powerful enough to stretch across the vast distances of space and reach another world so that many generations of aliens can hang their hopes that James Tiberius Kirk never visits their planet with his loose morals, questionably applied prime directive, irresistible charms and pants aflame with who knows what kinds of interstellar STIs?

Here’s the problem. Broadcast towers transmit their signals outward in a sphere, which falls under the inverse square law. The strength of the signal decreases massively over distance. By the time you’ve gone a few light years, the signal is almost non-existent.

 The Square Kilometer Array
The Square Kilometer Array

Aliens could build a huge receiver, like the square kilometer array being built right now, but the signals they could receive from Earth would be a billion billion billion times weaker. Very hard to pick out from the background radiation. And by Grabthar’s hammer, I assure you it’s only by focusing our transmissions and beaming them straight at another star do we stand a chance of alerting aliens of our presence. Which, like it or not, is something we’ve done. So there’s that.

We’ve really been broadcasting our existence for hundreds of millions of years. The very presence of oxygen in the atmosphere of the Earth would tell any alien with a good enough telescope that there’s life here. Aliens could tell when we invented fire, when we developed steam technology, and what kinds of cars we like to drive, just by looking at our atmosphere. So don’t worry about our transmissions, the jig is up.

What do you think? Is it a good idea to alert aliens to our presence? Should we get rid of all that oxygen in our atmosphere and keep a low profile?

How Do We Know How Old Everything Is?

We hear that rocks are a certain age, and stars are another age. And the Universe itself is 13.7 billion years old. But how do astronomers figure this out?

I know it’s impolite to ask, but, how old are you? And how do you know? And doesn’t comparing your drivers license to your beautiful and informative “Year In Space” calendar feel somewhat arbitrary? How do we know old how everything is when what we observe was around long before calendars, or the Earth, or even the stars?

Scientists have pondered about the age of things since the beginning of science. When did that rock formation appear? When did that dinosaur die? How long has the Earth been around? When did the Moon form? What about the Universe? How long has that party been going on? Can I drink this beer yet, or will I go blind? How long can Spam remain edible past its expiration date?

As with distance, scientists have developed a range of tools to measure the age of stuff in the Universe. From rocks, to stars, to the Universe itself. Just like distance, it works like a ladder, where certain tools work for the youngest objects, and other tools take over for middle aged stuff, and other tools help to date the most ancient.

Let’s start with the things you can actually get your hands on, like plants, rocks, dinosaur bones and meteorites. Scientists use a technique known as radiometric dating. The nuclear age taught us how to blow up stuff real good, but it also helped understand how elements transform from one element to another through radioactive decay.

For example, there’s a version of carbon, called carbon-14. If you started with a kilo of it, after about 5,730 years, half of it would have turned into carbon-12. And then by 5,730 more years, you’d have about ¼ carbon-14 and ¾ carbon-12.

A list of the elements with their corresponding visible light emission spectra. Image Credit: MIT Wavelength Tables, NIST Atomic Spectrum Database, umop.net
A list of the elements with their corresponding visible light emission spectra. Image Credit: MIT Wavelength Tables, NIST Atomic Spectrum Database, umop.net

This is known as an element’s half-life. And so, if you measure the ratio of carbon-12 to carbon-14 in a dead tree, for example, you can calculate how long ago it lived. Different elements work for different ages. Carbon-14 works for the last 50,000 years or so, while Uranium-238 has a half-life of 4.5 billion years, and will let you date the most ancient of rocks. But what about the stuff we can’t touch, like stars?

When you use a telescope to view a star, you can break up its light into different colors, like a rainbow. This is known as a star’s spectra, and if you look carefully, you can see black lines, or gaps, which correspond to certain elements. Since they can measure the ratios of different elements, astronomers can just look at a star to see how old it is. They can measure the ratio of uranium-238 to lead-206, and know how long that star has been around. How astronomers know the age of the Universe itself is one of my favorites, and we did a whole episode on this.

Artist's conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration - D. Ducros
Artist’s conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration – D. Ducros

The short answer is, they measure the wavelength of the Cosmic Microwave Background Radiation. Since they know this used to be visible light, and has been stretched out by the expansion of the Universe, they can extrapolate back from its current wavelength to what it was at the beginning of the Universe. This tells them the age is about 13.8 billion years. Radiometric dating was a revolution for science. It finally gave us a dependable method to calculate the age of anything and everything, and finally figure out how long everything has been around.

So, fan of our videos. How old are you? Tell us in the comments below.
Thanks for watching! Never miss an episode by clicking subscribe.Our Patreon community is the reason these shows happen. We’d like to thank Ryan Finley and the rest of the members who support us in our quest to make great space and astronomy content every week. Our community members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.

Making Cubesats do Astronomy

One doesn’t take two cubesats and rub them together to make static electricity. Rather, you send them on a brief space voyage to low-earth orbit (LEO) and space them apart some distance and voilà, you have a telescope. That is the plan of NASA’s Goddard Space Flight Center engineers and also what has been imagined by several others.

Cubesats are one of the big crazes in the new space industry. But nearly all that have flown to-date are simple rudderless cubes taking photos when they are oriented correctly. The GSFC engineers are planning to give two cubes substantial control of their positions relative to each other and to the Universe surrounding them. With one holding a telescope and the other a disk to blot out the bright sun, their cubesat telescope will do what not even the Hubble Space Telescope is capable of and for far less money.

Semper (left), Calhoun, and Shah are advancing the technologies needed to create a virtual telescope that they plan to demonstrate on two CubeSats. (Image/Caption Credit: NASA/W. Hrybyk)
Semper (left), Calhoun, and Shah are advancing the technologies needed to create a virtual telescope that they plan to demonstrate on two CubeSats. (Image/Caption Credit: NASA/W. Hrybyk)

The 1U, the 3U, the 9U – these are all cubesats of different sizes. They all have in common the unit size of 1. A 1U cubesat is 10 x 10 x 10 centimeters cubed. A cube of this size will hold one liter of water (about one quart) which is one kilogram by weight. Or replace that water with hydrazine and you have very close to 1 kilogram of mono-propellent rocket fuel which can take a cubestat places.

GSFC aerospace engineers, led by Neerav Shah, don’t want to go far, they just want to look at things far away using two cubesats. Their design will use one as a telescope – some optics and a good detector –and the other cubesat will stand off about 20 meters, as they plan, and function as a coronagraph. The coronagraph cubesat will function as a sun mask, an occulting disk to block out the bright rays from the surface of the Sun so that the cubesat telescope can look with high resolution at the corona and the edge of the Sun. To these engineers, the challenge is keeping the two cubesats accurately aligned and pointing at their target.

Only dedicated Sun observing space telescopes such as SDO, STEREO and SOHO are capable of blocking out the Sun, but their coronagraphs are limited. Separating the coronagraph farther from the optics markedly improves how closely one can look at the edge of a bright object. With the corongraph mask closer to the optics, more bright light will still reach the optics and detectors and flood out what you really want to see. The technology Shah and his colleagues develop can be a pathfinder for future space telescopes that will search for distant planets around other stars – also using a coronagraph to reveal the otherwise hidden planets.

The engineers have received a $8.6-million investment from the Defense Advanced Research Project Agency (DARPA) and are working in collaboration with the Maryland-based Emergent Space Technologies.

An example of a 3U cubesat - 3 1U cubes stacked. This cubesat size  could function as the telescope of a two cubesat telescope system. It could be a simple 10 cm diameter optic system or use fancier folding optics to improve its resolving power. (Credit: LLNL)
An example of a 3U cubesat – 3 1U cubes stacked. This cubesat size could function as the telescope of a two cubesat telescope system. It could be a simple 10 cm diameter optic system or use fancier folding optics to improve its resolving power. (Credit: LLNL)

The challenge of GSFC engineers is giving two small cubesats guidance, navigation, and control (GN&C) as good as any standard spacecraft that has flown. They plan on using off-the-shelf technology and there are many small and even large companies developing and selling cubesat parts.

This is a sorting out period for the cubesat sector, if you will, of the new space industry. Sorting through the off-the-shelf components, the GSFC engineers led by Shah will pick the best in class. The parts they need are things like tiny sun sensors and star sensors, laser beams and tiny detectors of those beams, accelerometers, tiny gyroscopes or momentum wheels and also small propulsion systems. The cubesat industry is pretty close to having all these ready as standard issue. The question then is what do you do with tiny satellites in low-Earth orbit (LEO). Telescopes for earth-observing are already making headway and scopes for astronomy are next. There are also plans to venture out to interplanetary space with tiny and capable cubesat space probes.

Whether one can sustain a profit for a company built on cubesats remains a big question. Right now those building cubesats to customer specs are making a profit and those making the tiny picks and shovels for cubesats are making profits. The little industry may be overbuilt which in economic parlance might be only natural. Many small startups will fail. However, for researchers at universities and research organizations like NASA, cubesats have staying power because they reduce cost by their low mass and size, and the low cost of the components to make them function. The GSFC effort will determine how quickly cubesats begin to do real work in the field of astronomy. Controlling attitude and adding propulsion is the next big thing in cubesat development.

References:

NASA Press Release

Nearby Galaxy Holds First Ultraluminous X-Ray Source that is a Pulsar

A research team led by Caltech astronomers of Pasadena California have discovered an ultraluminous X-ray (ULX) source that is pulsating. Their analysis concluded that the source in a nearby galaxy – M82 – is from a rotating neutron star, a pulsar. This is the first ULX source attributed to a pulsar.

Matteo Bachetti of the Université de Toulouse in France first identified the pulsating source and is the lead author of the paper, “An ultraluminous X-ray source powered by an accreting neutron star” in the journal Nature. Caltech astronomer Dr. Fiona Harrison, the team leader, stated “This compact little stellar remnant is a real powerhouse. We’ve never seen anything quite like it. We all thought an object with that much energy had to be a black hole.”

What is most extraordinary is that this discovery places even more strain on theories already hard pressed to explain the existence of ultraluminous X-Ray sources. The burden falls on the shoulder of the theorists.

The NuStar Space Telescope launched into Earth orbit by a Orbital Science Corp. Pegasus rocket, 2012. The Wolter telescope design images throughout a spectral range from 5 to 80 KeV. (Credit: NASA/Caltech-JPL)
The NuStar Space Telescope launched into Earth orbit by a Orbital Science Corp. Pegasus rocket, 2012. The Wolter telescope design images throughout a spectral range from 5 to 80 KeV. (Credit: NASA/Caltech-JPL)

The source of the observations is the NuSTAR space telescope, a SMEX class NASA mission. It is a Wolter telescope that uses grazing incidence optics, not glass (refraction) or mirrors (reflection) as in visible light telescopes. The incidence angle of the X-rays must be very shallow and consequently the optics are extended out on a 10 meter (33 feet) truss. NuSTAR records its observations with a time stamp such as taking a video of the sky. The video recording in high speed is not in visible everyday light but what is called hard x-rays. Only gamma rays are more energetic. X-rays emanate from the most powerful sources and events in the Universe. NuStar observes in the energy range of X-Rays from 5 to 80 KeV (electron volt)while the famous Chandra space telescope observes in the .1 to 10 KeV range. Chandra is one NASA’s great space telescope, was launched by the Space Shuttle Columbia (STS-93) in 1999. Chandra has altered our view of the Universe as dramatically as the first telescope constructed by Galileo. NuSTAR carries on the study of X-rays to higher energies and with greater acuity.

ULX sources are rare in the Universe but this is the first pulsating ULX. After analysis, they concluded that this is not a black hole but rather its little brother, a spinning neutron star as the source. More specifically, this is an accreting binary pulsar; matter from a companion star is being  gravitationally attracted by and accreting onto the pulsar.

The Crab Nebula Pulsar, M1. Both are sequences of observations that show the expansion of shock waves emanating from the Pulsar interacting with the surrounding nebula. The Crab Pulsar actually pulsates 30 times per second a result of its rotation rate and the relative offset of the magnetic pole. Charndra X-Rays (left), Hubble Visible light (right). (Credit: NASA, JPL-Caltech)
The prime example of a pulsar – the Crab Nebula Pulsar, M1. These actual observations show the expansion of shock waves emanating from the Pulsar interacting with the surrounding nebula. The Crab Pulsar actually pulsates 30 times per second, not seen here, a result of its rotation rate and the relative offset of the magnetic pole. Charndra X-Rays (left), Hubble Visible light (right). (Credit: NASA, JPL-Caltech)

Take a neutron star and spin it up to anywhere from 700 rotations per second to a mere one  rotation every 10 seconds. Now you have a neutron star called a pulsar. Spinning or not, these are the remnants of supernovae, stellar explosions that can outshine a galaxy of 300 billion stars. Just one teaspoon of neutron star material weighs 10 million tons (9,071,847,400 kg). That is the same weight as 900 Great Pyramids of Giza all condensed to one teaspoon. As incredible a material and star that a neutron star is, they were not thought to be the source of any ultraluminous X-Ray sources. This view has changed with the analysis of observations by this research team utilizing NuSTAR. The telescope name – NuSTAR – stands for Nuclear Spectroscopic Telescope Array.

There is nothing run of the mill about black holes. Dr. Stephen Hawking only conceded after 25 years, in 2004 (the Thorne-Hawking Bet)  that Black Holes exist. And still today it is not absolutely certain. Recall the Universe Today weekly – Space Hangout on September 26 – “Do Black Holes exist?” and the article by Jason Major, “There are no such things as Black Holes.

Pulsars stars are nearly as exotic as black holes, and all astronomers accept the existence of these spinning neutron stars. There are three final states of a dying star. Stars like our Sun at the end of their life become very dense White Dwarf stars, about the size of the Earth. Neutron stars are the next “degenerate” state of a dying exhausted star. All the electrons have merged with the protons in the material of the star to become neutrons. A neutron star is a degenerate form of matter effectively made up of all neutron particles. Very dense, these stars are really small, the size of cities, about 16 miles in diameter. The third type of star in its final state is the Black Hole.

The Crab Nebula was first  observed in the 1700s and is catalogued Messier object, M1. The remant explosion of a SuperNova, Chinese astronomers observed in 1054 A.D and holds the second Pular discovered (1968).
The Crab Nebula was first observed in the 1700s and is catalogued Messier object, M1. The remant explosion of a SuperNova that Chinese astronomers observed in 1054 A.D, it holds the second Pulsar discovered (1968).

A spinning neutron star creates a magnetic field, the most powerful of such fields in the Universe. They are like a dipole of a bar magnet and because of how magnetic fields confine the hot gases – plasma – of the neutron star, constant streams of material flow down and light streams out from the magnetic poles.

Recently, the Earth has had incredible northern lights, aurora. These lights are also from hot gases — a plasma — at the top of our atmosphere. Likewise, hot energetic particles from the Sun are funneled down into the magnetic poles of the Earth’s field that creates the northern lights. For spinning neutron stars – pulsars – the extreme light from the magnetic poles are like beacons. Just like our Earth, the magnetic poles and the spin axis poles do not coincide. So the intense beacon of light will rotate around and periodically point at the Earth. The video of the first illustration describes this action.

Messier object - M82, the Cigar Nebula, nicknamed for the shape seen through telescopes of the 1800s. This is the location of the newly discovered Pulsar.
Messier object – M82, the Cigar Nebula, nicknamed for the shape seen through telescopes of the 1800s. This is the location of the newly discovered Pulsar.

The light beacons from pulsars are very bright but theory, until now, has been supported by observations. No ultraluminous X-ray sources should be pulsars. The newly discovered pulsar is outputting 100 times more energy than any other. Discoveries like the one by these astronomers utilizing NuSTAR is proof that there remains more to discover and understand and new telescopes will be conceived to help resolve questions raised by NuSTAR or Chandra.

Further reading: JPL

How Far Can You See in the Universe?

When you look into the night sky, you’re seeing tremendous distances away, even with your bare eyeball. But what’s the most distant object you can see with the unaided eye? And what if you get help with a pair of binoculars, a telescope, or even with the Hubble Space Telescope.

Standing at sea level, your head is at an altitude of 2 meters, and the horizon appears to be about 3 miles, or 5 km away. We’re able to see more distant objects if they’re taller, like buildings or mountains, or when we’re higher up in the air. If you get to an altitude of 20 meters, the horizon stretches out to about 11 km. But we can see objects in space which are even more distant with the naked eye. The Moon is 385,000 km away and the Sun is a whopping 150 million km. Visible all the way down here on Earth, the most distant object in the solar system we can see, without a telescope, is Saturn at 1.5 billion km away.

In the very darkest conditions, the human eye can see stars at magnitude 6.5 or greater. Which works about to about 9,000 individual stars. Sirius, the brightest star in the sky, is 8.6 light years. The most distant bright star, Deneb, is about 1500 light years away from Earth. If someone was looking back at us, right now, they could be seeing the election of the 52nd pope, St. Hormidas, in the 6th Century.
There are even a couple of really bright stars in the 8000 light year range, that we might just barely be able to see without a telescope. If a star detonates, we can see it much further away. The famous 1006 supernova was the brightest in history, recorded in China, Japan and the Middle East.

It was a total of 7,200 light years away and was visible in the daytime. There’s even large structures we can see. Outside the galaxy, the Large Magellanic Cloud is 160,000 light years and the Small Magellanic Cloud is almost 200,000 light years away. Unfortunately for us up North, these are only visible from Southern Hemisphere.The most distant thing we can see with our bare eyeballs is Andromeda at 2.6 million light years, which in dark skies looks like a fuzzy blob.

If we cheat and get a little help, say with binoculars – you can see magnitude 10 – fainter stars and galaxies at more than 10 million light-years away. With a telescope you can see much, much further. A regular 8-inch telescope would let you see the brightest quasars, more than 2 billion light years away. Using gravitational lensing the amazing Hubble space telescope can see galaxies, incredibly far out, where the light had left them just hundreds of millions of years after the Big Bang.

If you could see in other wavelengths, you could see different distances. Fortunately for our precious radiation sensitive organs, Gamma and X rays are blocked by our atmosphere. But if you could see in that spectrum, you could see objects exploding billions of light years away. And if you could see in the radio spectrum, you’d be able to see the cosmic microwave background radiation, surrounding us in all directions and marking the edge of the observable universe.

Wouldn’t that be cool? Well, maybe we can… just a little. Turn on your television, some of the static on the screen is this very background radiation, the afterglow of the Big Bang.

What do you think? If you could see far out in the Universe what would you like a close up view of? Tell us in the comments below.