What is the Death Ray?

Death Ray

Scientists, futurists, and science fiction writers have been talking about it for over a century, and fans of science fiction and futurists have fantasized about it for just as long. The portable directed-energy weapon that zaps your enemies, rendering them incapacitated or reducing them to a pile of ashes!

The concept has gone through many iterations over the decades, ranging from laser pistols and cannons to phasers. And yet, this staple of science fiction is largely based in science fact. Since the early 20th century, scientists have sought to develop a working directed-energy weapon, based on ideas put forward by many inventors and scientists.


A”death ray” is a theoretical particle beam or electromagnetic weapon that was originally proposed independently during the 1920s and 30s by multiple scientists. From these initial proposals, research into energy-based weapons has been ongoing. While most examples come predominantly from science fiction, several applications and proposals have been produced during the latter half of the 20th century.

The Death Star firing its superlaser. Image Credit: Wookieepedia / Lucasfilm
Directed-energy weapons, like the Death Star’s superlaser, are a common feature in science fiction. Credit: Wookieepedia / Lucasfilm


During the early 20th century, many scientists claimed that they had created a working death ray. For instance, in September of 1924, British inventor Harry Grindell-Matthews attempted to sell what he reported to be a death ray that could destroy human life and bring down planes at a distance to the British Air Ministry.

While he was never able to produce a functioning model or demonstrate it to the military, news of this prompted American inventor Edwin R. Scott to claim that he was the first to develop a death ray. According to Scott, he had done so in 1923, which was the result of the nine years he spent as a student and protege of Charles P. Steinmetz – a German-American professor at Union College, New York.

In 1934, Spanish inventor Antonion Longoria claimed to have invented a death ray machine which he had tested on pigeons at a distance of about 6.5 km (4 miles). He also claimed to have killed mice that were enclosed in a thick-walled metal chamber.

However, it was famed inventor and electrical engineer Nikola Tesla who provided the most detailed framework for such a device. In a 1934 interview with Time Magazine, Tesla explained the concept of a “teleforce” (or directed energy) weapon which would be capable of destroying entire squadrons of airplanes or an entire army at a distance of 400 km (250 miles).

 Century Magazine photographer Dickenson Alley) of Tesla sitting in his Colorado Springs laboratory with his "magnifying transmitter" generating millions of volts. The 7-metre (23 ft) long arcs were not part of the normal operation, but only produced for effect by rapidly cycling the power switch.[117]
Photograph of Tesla sitting in his Colorado Springs laboratory with his “magnifying transmitter” generating millions of volts. Credit: Wikipedia Commons/Century Magazine/Dickenson V. Alley
Tesla tried to interest the US War Department and several European countries in the device at the time, though none contracted with Tesla to build it. As Tesla described his invention in an article titled “A Machine to End War“, which appeared in Liberty Magazine in 1935:

“this invention of mine does not contemplate the use of any so-called ‘death rays’. Rays are not applicable because they cannot be produced in requisite quantities and diminish rapidly in intensity with distance. All the energy of New York City (approximately two million horsepower) transformed into rays and projected twenty miles, could not kill a human being, because, according to a well known law of physics, it would disperse to such an extent as to be ineffectual. My apparatus projects particles which may be relatively large or of microscopic dimensions, enabling us to convey to a small area at a great distance trillions of times more energy than is possible with rays of any kind. Many thousands of horsepower can thus be transmitted by a stream thinner than a hair, so that nothing can resist.”

Based on his descriptions, the device would constitute a large tower that could be mounted on top of a building, positioned either next to shores or near crucial infrastructure. This weapon, he claimed, would be defensive in nature, in that it would make any nation employing it impregnable to attack from air, land or sea, and up to a distance of 322 km (200 miles).

During World War II, multiple efforts were mounted by the Axis powers to create so-called “death rays”. For instance, Imperial Japan developed a concept they called “Ku-Go”, which sought to use microwaves created in a large magnetron as a weapon.

Dresden, 1945, view from the city hall (Rathaus) over the destroyed city Deutsche Fotothek?
Dresden, 1945, view from the city hall (Rathaus) over the destroyed city. Credit: Wikipedia Commons/ Deutsche Fotothek?

Meanwhile, the Nazis mounted two projects, one which was led by the researcher known as Schiebold that involved a particle accelerator and beryllium rods. The second, led by Dr. Rolf Wideroe, was developed at the Dresden Plasma Physics Laboratory until it was bombed in Feb. 1945. In April of that year, as the war was coming to close, the device was taken into custody by the US Army.

On January 7th, 1943, engineer and inventor Nikola Tesla died in his room at the Hotel New Yorker in Manhattan. A story quickly developed that within his room, Tesla had scientific paper in his possession that provided the most detailed description yet for a death ray. These documents, it was claimed, had been seized by the US military, who wanted them for the sake of the war effort.

Examples in Science Fiction:

Ray guns, and other examples of directed-energy weapons have been a common feature in science fiction for over a century. One of the first known examples comes from H.G. Wells seminal book, War of the Worlds, which featured Martian war machines that used “heat rays”. However, the first use of the term was in The Messiah of the Cylinder (1917), by Victor Rousseau Emanuel.

Ray guns were also a regular feature in comic books like Buck Rogers (first published in 1928) and Flash Gordon, published in 1934. In Alfred Noyes’ 1940 novel The Last Man (released as No Other Man in the US), a death ray developed by a German scientist named Mardok is unleashed in a global war and almost wipes out the human race.

War of the Worlds
H.G. Wells’ 1898 novel about a Martian invasion, War of the Worlds, featured alien machines using heat rays to spread havoc. Credit: Henrique Alvim Correa (1906)

The concept of the blaster was introduced by Isaac Asimov’s The Foundation Series, which were described as nuclear-powered handheld weapons that fired energetic particles. In Frank Herbert’s Dune series, energy weapons take the form of continuous-wave laser projectors (lasguns), which are rendered obsolete by the invention of “Holtzman shields”.

According to Herbert, the interaction of a lasgun blast and this force field results in a nuclear explosion which typically kills both the gunner and the target. Further examples of death rays can be found in just about any science fiction franchise, ranging from phasers (Star Trek) and laser blasters (Star Wars) to spaceship-mounted beam cannons.

Modern Development:

In terms of real-world applications, many attempts have been made to create directed-energy weapons for offensive and defensive purposes. For instance, the development of radar before World War II was the result of attempts to find applications for directed electromagnetic energy (in this case, radio waves).

In the 1980s, U.S. President Ronald Reagan proposed the Strategic Defense Initiative (SDI) program (nicknamed “Star Wars”). It suggested that lasers, perhaps space-based X-ray lasers, could destroy ICBMs in flight. During the Iraq War, electromagnetic weapons, including high power microwaves were used by the U.S. military to disrupt and destroy the Iraqi electronic systems.

An artist's concept of a Space Laser Satellite Defense System. Credit: USAF
An artist’s concept of a Space Laser Satellite Defense System. Credit: USAF

On March 18th, 2009 Northrop Grumman announced that its engineers in Redondo Beach had successfully built and tested an electric laser capable of producing a 100-kilowatt ray of light, powerful enough to destroy cruise missiles, artillery, rockets and mortar rounds. And on July 19th, 2010, an anti-aircraft laser was unveiled at the Farnborough Airshow, described as the “Laser Close-In Weapon System”.

In 2014, the US Navy made headlines when they unveiled their AN/SEQ-3 Laser Weapon System (or XN-1 LaWS), a directed-energy weapon designed for use on military vessels. Ostensibly, the purpose of the weapon is defensive, designed to either blind enemy sensors (when set to low-intensity) or shoot down unmanned aerial vehicles (UAVs) when set to high-intensity.

Then is what is known as “Active Denial Systems”, which use a microwave source to heat up the water in the target’s skin, thus causing physical pain. Currently, this concept is being developed by the US Air Force Research Laboratory and Raytheon – a US defense contractor – as a means of riot-control.

A Dazzler is another type of directed-energy weapon, one which uses infrared or visible light to temporarily blind an enemy. Targets can include human beings, or their sensors (particularly in the infrared band). The emitters are usually lasers (hence the term “laser dazzler”) and can be portable or mounted on the outside of vehicles (as with the Russian T-80 and T-90 tank).

The personnel halting and stimulation response rifle (PHASR) is a prototype non-lethal laser dazzler developed by the Air Force Research Laboratory's Directed Energy Directorate, U.S. Department of Defense. Credit: USAF
The personnel halting and stimulation response rifle (PHASR) is a prototype non-lethal laser dazzler developed by the Air Force Research Laboratory’s Directed Energy Directorate, U.S. Department of Defense. Credit: USAF

An example of the former is the Personnel Halting And Stimulation Response rifle (PHASR), a prototype non-lethal laser dazzler being developed by the US Air Force Research Laboratory’s Directed Energy Directorate. Its purpose is give infantry or other military personnel the ability to temporarily disorient and blind a target without causing permanent damage.

Blinding laser weapons were banned by treated under the UN Protocol on Blinding Laser Weapons, which was passed in 1995. However, the terms of this protocol do not apply to directed-energy weapons that inflict only temporary blindness.

We’ve come a long way since the term “raygun” became a household name. At this rate, who knows what the future will hold? Will Tesla’s dream of a Death Ray ever come true? Will we see directed-energy satellites put in orbit, or handheld lasers becoming the mainstay of armed forces and space explorers? Hard to say. All we can be sure of is that the truth will likely be stranger than the fiction!

We have written many articles about the directed-energy and lasers for Universe Today. Here’s Telescope’s Laser Pointer Clarifies Blurry Skies, The Challenges of Lasers in Space, Don’t Want Aliens Dropping By? Engage Laser-Cloaking Device, Could a “Death Star” Really Destroy a Planet?, and Finding Aliens May be even Easier than Previously Thought.

If you’d like more info on the Death Ray, check out this article from Rense.com.

We’ve also recorded an entire episode of Astronomy Cast all about the Death Ray. Listen here, Episode 36: Gamma Ray Bursts.


Moisture Vaporators, Death Star Construction and Other Real Star Wars Tech

Remember that time an X-Wing fighter flew past the International Space Station? Or when R2D2 saved the ISS crew?

OK, yeah, those things didn’t really happen, but since the first Star Wars movie came out in 1977, there has been a lot of technology developed that mimics the science and tech from the sci-fi blockbuster films. Of course, we now have real robots in space (Robonaut), drones are now everyday items, there are actual holograms (Voxiebox and Fairy Lights) and DARPA has been developing prosthetic limbs that Luke Skywalker would totally use, called the Reliable Neural-Interface Technology (RE-NET). Plus, Boeing is building blaster guns that will use “pew-pew” sound effects from Star Wars. Seriously. The lasers are silent, and so they need to add sound to know for sure they’ve been fired.

Since we all certainly have Star Wars on the brain today (The Force Awakens opens tonight), let’s take a look at a few recent space-related developments that hint of inspiration from the movies:
Continue reading “Moisture Vaporators, Death Star Construction and Other Real Star Wars Tech”

Could the Death Star Destroy a Planet?

In the movie Star Wars, the Darth Vader’s Death Star destroyed a planet. Could this really happen?

You’ve watched Star Wars right? Is that still a thing? With the Starring and the Warring? Anyway, there’s this classic scene where the “Death Star” sidles up to Alderaan, and it is all like “Hey Planetoid, you lookin’ fine tonight” and then it fires up the superlaser and destroys the entire orb in a single blast. “BOOM”. Shortly followed by some collective group screaming on the interstellar forceway radio.

This is generally described as “science fiction”. And when you’re making up stories, anything you like can happen in them. George Lucas’ hunger for your childhood toy money wasn’t hampered by the pesky constraints of physics in any meaningful way.

Here at the Guide to Space, we get to take our own flights of fancy and pointlessly speculate for your amusement. That’s our job. Well, that and snark. Let’s consider what it would actually take to destroy a planet with a ‘pew pew’ style laser beam, and what kinds of energy would need to be harnessed in a fully armed and operational battle station.

Let’s go back and carefully review our “evidence”. The Death Star drifts in, charges up all its lasers into a superlaser blast focused on Alderaan. The planet then detonates and chunks fly off in every direction just like the pie eating contest in “Stand By Me”.

What we saw was every part of Alderaan given enough of a kick so that it was traveling at escape velocity from every other part of the planet. If the Death Star hadn’t delivered enough explosive energy, the planet might have fluffed up for a moment, but then the collective gravity would suck it all back in together, and then the slightly re-arranged, and likely now uninhabited planet would continue orbiting its star.

You can imagine doing this the slow way. Take each continent on Alderaan, load it up into a rocket and blast that rocket off into space as though it was on escape trajectory from the planet. Sure, you’d would need an incomprehensible number of rocket launches to get that material off the planet. But hey, midichlorians, blue finger lightning and ESP.

Fortunately, as you carted away more and more of the busted up rock, it would have less mutual gravity, and so the rocket launches would require less and less energy to get the job done. Eventually, you’d just be left with one last chunk of rock that you could just force ninja kick into the neighboring star.

Death Star beam. Credit: Lucasfilm
Death Star beam. Credit: Lucasfilm

So how much energy is that going to take? Well, there’s an “easy” calculation you can make. The energy you’d need is equal to 3 times the gravitational constant (6.673 x 10^-11) times the mass of the planet squared divided by 5 times the planet’s radius. Do this math for an Earth-sized/mass world, and let’s see that’s, two and one, carry the 5… and you get 2 x 10^36 joules. That’s a two followed by 36 zeros in joules. Is that a lot? That sounds like a lot.

Well, our own Sun puts out 3 x 10^26 joules per second. So, if you poured all the energy from the Sun into the task of tearing apart the Earth, it wouldn’t have enough energy to do it. In fact, you’d need to focus the light of the Sun for a full week to get that level of planet destruction done.

According to ancient Star Warsian dork scholars, the Death Star (SOLUS MORTIS) is powered by a hyperreactor with the output of multiple main sequence stars. So there you go, problem solved. It’s the size of a small moon, but it’s more powerful than many stars. Of course it can destroy a planet.

Exploding planet. Credit: ESO
Exploding planet. Credit: ESO

The Death Star clearly destroyed Alderaan. We watched it explode. I saw it, you saw it. We heard the screams of millions of souls cry out. It happened. But what if it wasn’t a beam thingy?

Our math is good, but clearly we’re not enlightened enough to comprehend the true wisdom hidden within the Lucasian scriptures. Perhaps the Death Star’s superlaser was just a targeting laser. Directing the placement of gigantic antimatter bomb. According to Ethan Siegel, from “Starts With a Bang,” you’d only need 1.24 trillion tonnes of antimatter.

Imagine you made a bomb out of that much antimatter iron – if that’s even a thing – you’d only need a sphere about 3 km across. If the Death Star is 150 km across or so, they could carry a bunch of these. Very carefully. Like super carefully. Okay, maybe it’d be a good idea if everyone took off their boots, and make sure they only talked with their inside voices.

Obviously, Star Wars is a story, so anything, ANYTHING can happen. The future is unknown, and we might discover all kinds of weirdo physics and harness them into all kinds of powerful weapons. I’m only suggesting, that a space station capable of deploying a week’s worth of solar energy in a single second might be a stretch. And maybe, George, if you just done a little back of the napkin math, we wouldn’t be talking about this right now. Also, maybe no Ewoks. I’m just saying.

Where do you stand on the feasibility of imaginary space station weaponry? How big a planet can your imagination destroy?

New ‘Star Wars’ Trailer A Force Among Fans — And An Inspiration For Lego Parody

Just how fast can X-wings hope of Star Wars fans go? In the first day since the new Star Wars: Episode VII — The Force Awakens trailer was released, the YouTube channel racked up more than 19 million views, inspiring discussion about how good the new films could be. You can watch the trailer above.

Below (with minor spoilers) is a roundup of the coverage and a cute Lego-inspired parody from a fan.

Entertainment Weekly published seven things that Star Wars fans have learned from the trailer, including the fact that no outer space is featured (!), none of the old-time stars are present yet (why?) and how the new lightsaber actually has a Game of Thrones look.

Ars Technica declared the trailer “definitely looks like Star Wars” because it includes the familiar elements we have been accustomed to since 1977, ranging from stormtroopers to the Millennium Falcon. “One of the challenges … in reviving the Star Wars movie franchise is winning over hardcore fans and washing away the bad taste of the critically reviled prequel films, and there’s no better way to start doing that than by appealing to nostalgia,” the mini-review read.

The Verge cleverly finds a Lego-themed parody of the Star Wars trailer and appears to like the bricked lightsaber more than the one showed in the trailer. And yes, the famous bricks are important to the franchise due to the immensely popular Lego video game series based on Star Wars.

IGN covers what it considers “the major talking points” of the trailer, including the fact that we’re on Tatooine, John Boyega “looks a little anxious” for a stormtrooper, and questions about some of the junk lurking in the background of one of the shots.

Business Insider finds the ultimate Easter egg for Star Wars fans. No, we’re not going to spoil the surprise — you’re going to have to click through to see it.

The Telegraph collects a bunch of fake trailers for those who haven’t had enough of the real thing. You can see one of them below.

Star Wars Fanpedia fulfills our destiny for even MORE fan-made trailers. Expect to see more as the release date comes up in about a year.

Mashable has some amusing asides based on what we see in the trailer. Our favorite: “There’s one piece of writing in the trailer, on the X-wing pilot’s uniform, written in the language of the Star Wars universe, known as Aurebesh. And what does it say? Star Wars nerds had that answer almost immediately: ‘Pull to inflate.’ ”

Carscoops watches the trailer with perhaps the best unique angle ever: what if the characters had to drive cars? What would they look like?

Darth Vader, Renaissance Man? How ‘Star Wars’ Could Have Looked Centuries Ago

You underestimate the power of Dark Side fashion. Imagine for a moment that Darth Vader was around during the same time as say, the ostentatious Louis XIV (the “Sun King” who had a fancy court at Versailles palace in France). If Vader was a high-society gentleman, or at least masking (ha!) as one, what could he have looked like?

Photographer Sacha Goldberger recently put several ‘Star Wars’ characters in this historic time period as part of an exhibition at the Grand Palais in Paris. As this Facebook gallery shows, the results are amusing and potentially frightening (most prevalently with Chewbacca.)

Goldberger doesn’t stop with these characters, either. You’ll see others from the Batman franchise, Alice in Wonderland and even that famous caped hero, Superman. The credits just above the images hint that even more characters were on display in the gallery than what are available on the website.

It’s too bad this cosplay came just after Hallowe’en, as this presents some potentially awesome ideas for future costumes. For those who couldn’t make the fair where Goldberger exhibited, you can take a virtual tour here and also learn more about it on the official website.

Learn more about Goldberger at his website and his Facebook page.

(h/t Kotaku)

‘Star Wars’ In Alphabetical Order Is Such A Jedi Mind Trick

We all remember the lightsaber fight from Star Wars: A New Hope, yes? So you might be surprised to learn the iconic word was only uttered once in the first film of the franchise.

This revelation comes after an intrepid soul (Tom Murphy) assembled all the English dialog of the movie in the video above, which he calls ARST ARSW. “This is the Special Edition to troll Han-shot-first purists. Everyone knows the orig is the most legit,” he wrote on YouTube.

If you can make it through all 43 minutes, the Force is indeed strong with you.

Some other fun facts, from a quick browse of the contents:

  • “Doomed” appears twice (guess C-3PO was feeling optimistic)
  • “Force” appears 22 times
  • “Father” appears 12 times
  • “Hyperspace” appears four times
  • “Leader” appears 13 times (especially in the X-wing scenes)
  • “Jabba” appears 9 times
  • “Luke” appears 57 times
  • “Obi-Wan” appears 20 times and “Ben” 11 times
  • “Princess” appears 12 times and “Leia” three times
  • “Reward” appears six times (remember, that’s what Han Solo wants) and “rich” three times
  • “Ship” appears 31 times

(h/t Eric Berger)

Astrophoto: Sunset Echo

Sunset on Tatooine? Nah, just an unusual combination of a dazzling orange sunset, clouds and a sun pillar that creates an “echo” effect of the setting Sun. As seen by astrophotographer Dave Walker in the UK on May 31, 2014.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Evil Empire Beware: Gas Giant Planets are Hard to Destroy

Last year, physicists worked out the plausibility of a fully functional (if not fictional) Death Star being able to destroy planets, and found that the Galactic Empire’s technological terror could indeed destroy Earth-like rocky planets, but a Jupiter-sized gas planet would be a tough challenge.

Now, real but theoretical modeling confirms that gas giants like Jupiter would be really hard to destroy by any means, including by stars that undergo periodic outbursts. Actual stars, that is, not Death Stars.

Alan Boss is a noted astrophysicist at the Carnegie Institution of Washington, Department of Terrestrial Magnetism, who likes to create three dimensional models of planetary systems. In his recent work, he created 3-D models to help understand the possible origins of Jupiter and Saturn, two gas giants in our Solar System.

He created different models of new stars, which are surrounded by rotating gas disks where planets are thought to form. His models were based on different theories of planetary formation, such as that planets could form from slowly growing ice and rock cores, followed by rapid accretion of gas from the surrounding disk, or that planets form from clumps of dense gas, which increase in mass and density, forming a gas giant planet in a single step.

What he found was, that regardless of how gas giant planets form, they should be able to survive periodic outbursts of mass transfer from the gas disk onto the young star. One model similar to our own Solar System was stable for more than 1,000 years, while another model containing planets similar to our Jupiter and Saturn was stable for more than 3,800 years. The models showed that these planets were able to avoid being forced to migrate inward to be swallowed by the growing proto-sun, or being tossed completely out of the planetary system by close encounters with each other.

“Gas giant planets, once formed, can be hard to destroy,” said Boss, “even during the energetic outbursts that young stars experience.”

Some Sun-like stars undergo these periodic outbursts which can last about 100 years. The Death Star, on the other hand — which according to Star Wars lore, is a moon-sized battle station designed to spread fear throughout the galaxy – uses short bursts of its hypermatter reactor superlaser. However, the Death Star’s main power reactor is said to have the energy output equal to several main-sequence stars. But to destroy a planet like Jupiter, all power from essential systems and life support would be required, which is not necessarily possible.

So, in all cases – real, theoretical and fictional — gas giants appear to be safe!

You can read the about the Death Star paper here (from physicists who apparently had some time on their hands) here, and read about Boss’s theoretical modeling of here.

Boss is the author of The Crowded Universe, a book on the likelihood of finding life and habitable planets outside of our Solar System, and Looking For Earths, about the race to find new solar systems.

The Death Star in Star Wars. Credit: Lucasfilm.
The Death Star in Star Wars. Credit: Lucasfilm.

Could a ‘Death Star’ Really Destroy a Planet?

[/caption]Countless Sci-Fi fans vividly remember the famous scene in Star Wars in which the Death Star obliterates the planet Alderaan.

Mirroring many late night caffeine-fueled arguments among Sci-Fi fans, a University of Leicester researcher asks the question:

Could a small moon-sized battle station generate enough energy to destroy an Earth-sized planet?

A paper by David Boulderston (University of Leicester) sets out to answer that very question. First, for the uninitiated, just what the heck is a Death Star?

According to Star Wars lore, the DS-1 Orbital Battle Station, or Death Star, is a moon-sized battle station designed to spread fear throughout the galaxy. The image above shows the Death Star as it appeared in Star Wars Episode IV: A New Hope (1977). The Death Star’s main weapon is depicted as a superlaser capable of destroying planets with a single blast.

Boulderston claims that it is possible to estimate how much energy the Death Star would need in order to destroy a planet with its superlaser. There are a number of assumptions made, however, in order to come up with the energy requirement.

For starters, Boulderston assumed that Alderaan did not have any sort of planetary “deflector” shield. A second assumption is that the planet is a solid body of uniform density – essentially ignoring the complex interior of planets, due to lack of information on Alderaan itself. Using the idealized sphere model based on Earth’s mass and diameter, it was possible to determine the gravitational binding energy of Alderaan, using a simple equation of:

U= 3GMp2

Where G is the Gravitational Constant (6.673×10-11), Mp is planet mass, and Rp is the planet’s radius. Using Earth’s mass and radius, the required energy comes out to 2.25 x 1032 Joules. Using Jupiter’s data, the energy required goes up to 2 x 1036 Joules.

Boulderston asserts that (according to Star Wars lore) the Death Star is powered by a ‘hypermatter’ reactor, possessing the energy output of several main-sequence stars. Given that the power output of our Sun is about 3 x 1026 Joules per second, it’s a reasonable assumption the Death Star’s reactor could power the superlaser.

Despite using a simplified model of a planet, Boulderstone states the simplified model is reasonable to use since the Death Star’s main power reactor has the energy output equal to several main-sequence stars. Even if Earth’s exact composition were used in the equation above, the required energy to destroy a planet would only be affected by a few orders of magnitude – well within the Death Star’s power budget.

Boulderstone reiterated that the energy required to destroy a Jupiter-sized planet would put considerable strain on the Death Star. To destroy a planet like Jupiter, all power from essential systems and life support (no re-routing from the auxiliary EPS conduits – that’s a Star Trek hack!) would be required, which is not necessarily possible.

Boulderstone’s conclusion is that the Death Star could indeed destroy Earth-like planets, given its main power source. While the Death Star could destroy an Earth-sized planet, a Jupiter-sized planet would be a tough challenge, and the Galactic Empire would need to resort to using a Suncrusher to destroy stars.

If you’d like to read Boulderstone’s paper, you can access it at: https://physics.le.ac.uk/journals/index.php/pst/article/view/328/195

Kepler Mission Discovers “Tatooine-like” Planet


In a news conference today, Kepler mission scientists announced the first confirmed circumbinary planet ( a planet that orbits a binary star system). The planet in question, designated Kepler-16b has been compared to the planet Tatooine from the Star Wars saga.

Would it be possible for someone like Luke Skywalker to stand on the surface of Kepler-16b and see the famous “binary sunset” as depicted in Star Wars?

Despite the initial comparison between Kepler-16b and Tatooine, the planets really only have their orbit around a binary star system in common. Kepler-16b is estimated to weigh about a third the mass of Jupiter, with a radius of around three-quarters that of Jupiter.

Given the mass and radius estimates, this makes Kepler-16b closer to Saturn than the rocky, desert-like world of Tatooine. Kepler-16b’s orbit around its two parent stars takes about 229 days, which is similar to Venus’ 225-day orbit. At a distance of about 65 million miles from its parent stars, which are both cooler than our sun, temperatures on Kepler-16b are estimated in the range of around -100 C.

The team did mention that Kepler-16b is just outside of the habitable zone of the Kepler-16 system. Despite being just outside the habitable zone, the team did mention that it could be possible for Kepler-16b to have a habitable moon, if said moon had a thick, greenhouse gas atmosphere.

Binary Sunset as seen on Tatooine
Tatooine appears to have twin stars like our sun, versus the orange (type K) and red (type M) stars of Kepler-16
During the press conference John Knoll, visual effects supervisor at ILM, mentioned: “When I was a kid, I didn’t think it was going to be possible to make discoveries like this.” Knoll also added, “The science is stranger and cooler than fiction!”

The Kepler mission detects exoplanet candidates by using the transit method which detects the dimming of the light emitted from a star as a planet crosses in front of it. In the case of Kepler-16b, the detection was complicated by the two stars in the system eclipsing each other.

The system’s brightness showed variations even when the stars were not eclipsing each other, which hinted at a third body. What further complicated matters was that the variations in brightness appeared at irregular time intervals. The irregular time intervals hinted that the stars were in different positions in their orbit each time the third body passed. After studying the data, the team came to the conclusion that the third body was orbiting, not just one, but both stars.

“Much of what we know about the sizes of stars comes from such eclipsing binary systems, and most of what we know about the size of planets comes from transits,” added Kepler scientist Laurance Doyle of the SETI Institute. “Kepler-16 combines the best of both worlds, with stellar eclipses and planetary transits in one system.” Doyle’s findings will be published in the Sept. 15th issue of the journal Science.

The Kepler mission is NASA’s first mission capable of finding Earth-size planets in or near the habitable zone – the region around a star where liquid water can exist on the surface of an orbiting planet. A considerable number of planets and planet candidates have been detected by the mission so far. If you’d like to learn more about the Kepler mission, visit: http://kepler.nasa.gov/

You can also read more about the Kepler-16b discovery at: http://kepler.nasa.gov/Mission/discoveries/kepler16b/

Source: NASA news conference / NASA TV

Ray Sanders is a Sci-Fi geek, astronomer and space/science blogger. Visit his website Dear Astronomer and follow on Twitter (@DearAstronomer) or Google+ for more space musings.