Dust in the Wind

WISE image of the "Elephant Trunk" nebula. NASA/JPL-Caltech/WISE Team.

[/caption]

The stellar wind, that is! This beautiful image, taken by NASA’s Wide-Field Infrared Explorer (WISE) shows a vast ring of interstellar dust and gas being forced outwards by the wind and radiation from a massive star.

The star, HR8281, is located in the center of the image, the topmost star in a small triangular formation of blue stars to the upper left of the tip of a bright elongated structure – the end of the “elephant trunk” that gives the nebula its name. The star may not look like much, but HR8281’s powerful stellar wind is what’s sculpting the huge cloud of dust into the beautiful shapes seen in this infrared image.

Located 2,450 light-years from Earth, the Elephant’s Trunk Nebula spans 100 light-years. The “trunk” itself is about 30 light-years long. (That’s about, oh… 180 trillion miles!)

Structures like this are common in nebulae. They are formed when the stellar wind – the outpouring of ultraviolet radiation and charged particles that are constantly streaming off stars – blows away the gas and dust near a star, leaving only the densest areas. It’s basically erosion on a massive interstellar scale.

The tip of the "trunk" and the triangle of stars, the topmost of which is HR8281.

It’s not just a destructive process, though. Within those dense areas new stars can form… in fact, in the bright tip of the trunk above a small dark spot can be seen. That’s an area that’s been cleared by the creation of a new star. When a baby star “ignites” and its nuclear fusion factory turns on, its stellar wind clears away the dust and gas in the cloud it was formed from. Nebulae aren’t just pretty clouds in space… they’re stellar nurseries!

The red-colored stars in this image are other newborn stars, still wrapped in their dusty “cocoons”.

The colors used in this image represent specific wavelengths of infrared light. Blue and cyan (blue-green) represent light emitted at wavelengths of 3.4 and 4.6 microns, which is predominantly from stars. Green and red represent light from 12 and 22 microns, respectively, which is mostly emitted by dust.

Read more about this image on the WISE site here.

Image Credit: NASA/JPL-Caltech/WISE Team

Cyanoacetylene in IC 342

IC 342 - Ken and Emilie Siarkiewicz/Adam Block/NOAO/AURA/NSF
IC 342 - Ken and Emilie Siarkiewicz/Adam Block/NOAO/AURA/NSF

[/caption]

Star formation is an incredible process, but also notoriously difficult to trace. The reason is that the main constituent of stars, hydrogen, looks about the same well before a gravitational collapse begins, as it does in the dense clouds where star formation happens. Sure, the temperature changes and the hydrogen glows in a different part of the spectrum, but it’s still hydrogen. It’s everywhere!

So when astronomers want to search for denser regions of gas, they often turn to other atoms and molecules that can only form or be stimulated to emit under these relatively dense conditions. Common examples of this include carbon monoxide and hydrogen cyanide. However, a study published in 2005, led by David Meier at the University of Illinois at Urbana-Champaign, studied inner regions of the nearby face-on spiral by tracing eight molecules and determined that the full extent of the dense regions is not well mapped by these two common molecules. In particular, cyanoacetylene, an organic molecule with a chemical formula of HC3N, was demonstrated to correlate with the most active star forming regions, promising astronomers a peek into the heart of star forming regions and prompting a follow-up study.

The new study was conducted from the Very Large Array in late 2005. Specifically, it studied the emissions due to 5-4, 10-9, and 16-15 transitions which each correspond to different levels of heating and excitation. The dense regions uncovered by this study were consistent with the ones reported in 2005. One, discovered by the previous survey from another tracer molecule, was not found by this most recent study, but the new study also discovered a previously unnoticed giant molecular cloud (GMC) through the presence of HC3N.

Another technique that can be applied is examining the ratios of various levels of excitation. From this, astronomers can determine the temperature and density necessary to produce such emission. This can be performed with any type of gas, but using additional species of molecules provides independent checks on this value. For the area with the strongest emission, the team reported that the gas appeared to be a cool 40 K (-387°F) with a density of 1-10 thousand molecules per cubic centimeter. This is relatively dense for the interstellar medium, but for comparison, the air we breathe has approximately 1025 molecules per cubic centimeter. These findings are consistent with those reported from carbon monoxide.

The team also examined several of the star forming cores independently. By comparing the varying strengths of tracer molecules, the team was able to report that one GMC was well progressed in making stars while another was less evolved, likely still containing hot cores which had not yet ignited fusion. In the former, the HC3N is weaker than in the other cores explored, which the team attributes to the destruction of the molecules or dispersal of the cloud as fusion begins in the newly formed stars.

While using HC3N as a tracer is a relatively new approach (these studies of IC 342 are the first conduced in another galaxy), the results of this study have demonstrated that it can trace various features in dense clouds in similar fashions to other molecules.

Thick Stellar Disk Isolated in Andromeda

Schematic representation of a thick disc structure. The thick disc is formed of stars that are typically much older than those in the thin disc, making it an ideal probe of galactic evolution (Credit: Amanda Smith, IoA graphics officer)

[/caption]

From the Institute of Astronomy at Cambridge University press release:

A team of astronomers from the UK, the US and Europe have identified a thick stellar disc in the nearby Andromeda galaxy for the first time. The discovery and properties of the thick disc will constrain the dominant physical processes involved in the formation and evolution of large spiral galaxies like our own Milky Way.

By analyzing precise measurements of the velocities of individual bright stars within the Andromeda galaxy using the Keck telescope in Hawaii, the team have managed to separate out stars tracing out a thick disc from those comprising the thin disc, and assess how they differ in height, width and chemistry.

Optical image of The Andromeda galaxy (M31) (credit Robert Gendler)

Spiral structure dominates the morphology of large galaxies at the present time, with roughly 70% of all stars contained in a flat stellar disc. The disc structure contains the spiral arms traced by regions of active star formation, and surrounds a central bulge of old stars at the core of the galaxy. “From observations of our own Milky Way and other nearby spirals, we know that these galaxies typically possess two stellar discs, both a ‘thin’ and a ‘thick’ disc,” explains the leader of the study, Michelle Collins, a PhD student at Cambridge’s Institute of Astronomy. The thick disc consists of older stars whose orbits take them along a path that extends both above and below the more regular thin disc. “The classical thin stellar discs that we typically see in Hubble imaging result from the accretion of gas towards the end of a galaxy’s formation, whereas thick discs are produced in a much earlier phase of the galaxy’s life, making them ideal tracers of the processes involved in galactic evolution.”

Currently, the formation process of the thick disc is not well understood. Previously, the best hope for comprehending this structure was by studying the thick disc of our own Galaxy, but much of this is obscured from our view. The discovery of a similar thick disk in Andromeda presents a much cleaner view of spiral structure. Andromeda is our nearest large spiral neighbor — close enough to be visible to the unaided eye — and can be seen in its entirety from the Milky Way. Astronomers will be able to determine the properties of the disk across the full extent of the galaxy and look for signatures of the events connected to its formation. It requires a huge amount of energy to stir up a galaxy’s stars to form a thick disc component, and theoretical models proposed include accretion of smaller satellite galaxies, or more subtle and continuous heating of stars within the galaxy by spiral arms.

Ages and orientations of the stellar components of disc galaxies. The halo (or spheroid) contains the oldest populations, followed by the thick stellar disc. The thin disc typically contains the youngest generations of stars. (Credit: RAVE collaboration)

“Our initial study of this component already suggests that it is likely older than the thin disc, with a different chemical composition” commented UCLA Astronomer, Mike Rich. “Future more detailed observations should enable us to unravel the formation of the disc system in Andromeda, with the potential to apply this understanding to the formation of spiral galaxies throughout the Universe.”

“This result is one of the most exciting to emerge from the larger parent survey of the motions and chemistry of stars in the outskirts of Andromeda,” said fellow team member, Dr. Scott Chapman, also at the Institute of Astronomy. “Finding this thick disc has afforded us a unique and spectacular view of the formation of the Andromeda system, and will undoubtedly assist in our understanding of this complex process.”

This study was published in Monthly Notices of the Royal Astronomical Society by Michelle Collins, Scott Chapman and Mike Irwin from the Institute of Astronomy, together with Rodrigo Ibata from L’Observatoire de Strasbourg, Mike Rich from University of California, Los Angeles, Annette Ferguson from the Institute for Astronomy in Edinburgh, Geraint Lewis from the University of Sydney, and Nial Tanvir and Andreas Koch from the University of Leicester.

This study is published in Monthly Notices of the Royal Astronomical Society:
* http://arxiv.org/abs/1010.5276
* http://www.ast.cam.ac.uk/~mlmc2/M31thickdisc.html

A Peek Inside NGC 7538

The active star forming region NGC 7538. Image by Fred Calvert/Adam Block/NOAO/AURA/NSF
The active star forming region NGC 7538. Image by Fred Calvert/Adam Block/NOAO/AURA/NSF

[/caption]

Often overshadowed by the more famous Bubble Nebula which lies nearby, NGC 7538 is an exciting emission and reflection nebula located in Cepheus. While it is often overlooked by amateur astronomers, professionals looking to study stellar formation find it an exciting target as it is the host to ongoing star formation, including the largest known protostar.

Because of the dusty nature of this region, studies targeting the nebula are frequently conducted in longer wavelengths, ranging from the infrared to the radio. Previous studies have put the age of the forming stars at around ~1-4 million years and at a distance of ~2.8 kiloparsecs. Within it, several individual sub groups of star formation seem to have occurred. Among some of the more interesting individual forming stars are NGC 7538S and MM 1.

Observations from earlier this year targeted NGC 7538S. This protostar is embedded in a collapsing core of approximately 85 – 115 solar masses and hosts a rotating accretion disc as well as large outflows of material. Although the star has not finished forming, the conditions are right for it to form into a high mass B star and is undergoing accretion at an unusually high rate of 1/1000th of a solar mass per year.

More recently another paper explores several other forming stars in the region including the massive MM 1. This star is already estimated to have accumulated 20-30 solar masses and be well on the way to forming an O class star. But it’s not done yet. Radial velocity measurements of molecules in the protostar’s vicinity indicate it’s still undergoing large amounts of accretion, mostly from its equatorial plane. Numerous studies have shown that this massive star is creating powerful jets.

In addition, this new study identifies an additional eight cores forming into young stars near MM 1. These cores are interesting because they exist in regions where the density and temperature were not expected to be sufficiently high to induce star formation. This suggests that their formation was not uniquely due to a self induced collapse, but rather, triggered by shock waves or magnetic fields. Although no studies have searched for the signs of magnetic fields in the region, there are indications that numerous shock waves exist. Additionally, four of these cores have mass available to them similar to that of MM 1 which may allow them to form into a grouping of high mass stars similar to the famous Trapezium in Orion. These stars all exist in a narrowly confined region of about 1 light year, which is also similar to the separation of the Trapezium. Many of the newly discovered cores have large outflows and maser emission as well.

Further studies on this region will certainly uncover new protostars and assist astronomers in understanding how clusters of stars form. Already, astronomers have used it to help probe the Initial Mass Function which describes the number of stars forming for various masses. Additionally, with small clusters of stars like the Trapezium being common, catching one in the act of forming may help astronomers determine just how they form.

Big or Small, All Stars Form the Same Way

IRAS 13481-6124 (upper left is about twenty times the mass of our sun and five times its radius. It is surrounded by its pre-natal cocoon. Image credit: NASA/JPL-Caltech/ESO/Univ. of Michigan

[/caption]
How do massive stars form? This has been one of the more hotly debated questions in astronomy. Do big stars form by accretion like low-mass stars or do they form through the merging of low mass protostars? Since massive stars tend to be quite far away and usually are surrounded by a shroud of dust, they are difficult to observe, said Stefan Kraus from the University of Michigan. But Kraus and his team have obtained the first image of a dusty disc closely encircling a massive baby star, providing direct evidence that, big or small, all stars form the same way.

“Our observations show a disc surrounding an embryonic young, massive star, which is now fully formed,” said Kraus. “It’s the first time something like this has been observed, and the disk very much resembles what we see around young stars that are much smaller, except everything is scaled up and more massive.”

Not only that, but Kraus and his team found hints at a potential planet-forming region around the nascent star.

Using ESO’s Very Large Telescope Interferometer Kraus and his team focused on IRAS 13481-6124, a star located about 10,000 light-years away in the constellation Centaurus, and about 20 times more massive than our sun. “We were able to get a very sharp view into the innermost regions around this star by combining the light of separate telescopes,” Kraus said, “basically mimicking the resolving power of a telescope with an incredible 85-meter (280-foot) mirror.”

Kraus added that the resulting resolution is about 2.4 milliarcseconds, which is equivalent to picking out the head of a screw on the International Space Station from Earth, or more than ten times the resolution possible with current visible-light telescopes in space.

They also made complementary observations with the 3.58-meter New Technology Telescope at La Silla. The team chose this region by looking at archived images from the Spitzer Space Telescope as well as from observations done with the APEX 12-meter submillimeter telescope, where they discovered the presence of a jet.

“Such jets are commonly observed around young low-mass stars and generally indicate the presence of a disc,” says Kraus.

Astronomers have obtained the first clear look at a dusty disk closely encircling a massive baby star, providing direct evidence that massive stars do form in the same way as their smaller brethren -- and closing an enduring debate. This artist's concept shows what such a massive disk might look like. Image credit: ESO/L. Calçada

From their observations, the team believes the system is about 60,000 years old, and that the star has reached its final mass. Because of the intense light of the star — 30,000 times more luminous than our Sun — the disc will soon start to evaporate. The disc extends to about 130 times the Earth–Sun distance — or 130 astronomical units (AU) — and has a mass similar to that of the star, roughly twenty times the Sun. In addition, the inner parts of the disc are shown to be devoid of dust, which could mean that planets are forming around the star.

“In the future, we might be able to see gaps in this and other dust disks created by orbiting planets, although it is unlikely that such bodies could survive for long,” Kraus said. “A planet around such a massive star would be destroyed by the strong stellar winds and intense radiation as soon as the protective disk material is gone, which leaves little chance for the development of solar systems like our own.”

Kraus looks forward to observations with the Atacama Large Millimeter/submillimeter Array (ALMA), currently under construction in Chile, which may be able to resolve the disks to an even sharper resolution.

Previously, Spitzer detected dusty disks of planetary debris around more mature massive stars, which supports the idea that planets may form even in these extreme environments. (Read about that research here.) .

Sources: ESO, JPL

Astronomy Without A Telescope – Stellar Archaeology

Artist's impression of Population 3 stars born over 13 billion years ago - the earliest, oldest and presumably now extinct star types. Credit: NASA.

[/caption]

Although, as we look further and deeper into the sky, we are always looking into the past – there are other ways of gaining information about the universe’s ancient history. Low mass, low metal stars may be remnants of the early universe and carry valuable information about the environment of that early universe.

The logic of stellar archaeology involves tracking generations of stars back to the very first stars seen in our universe. Stars born in recent eras, say within the last five or six billion years, we call Population I stars – which includes our Sun. These stars were born from an interstellar medium (i.e. gas clouds etc) that had been seeded by the death throes of a previous generation of stars we call Population II stars.

Population II stars were born from an interstellar medium that existed maybe 12 or 13 billion years ago – and which had been seeded by the death throes of Population III stars, the first stars ever seen in our universe.

And when I say death throes seeding the interstellar medium this includes average sized stars blowing off a planetary nebula at the end of their red giant phase – or bigger stars exploding as supernovae.

So for example, the low metal spectral signature of HE 0107-5240 matches that predicted for a very early low mass Population II star built from the end-products of a Population III supernova.

This is about as close as we can get gathering any information about Population III stars. Telescopes that can look deeper into space (and hence look further back in time) may eventually spot one – but it’s unlikely that any still exist. Theory has it that Population III stars formed from a homogenous interstellar medium of hydrogen and helium. The homogeneity of this medium meant that any stars that formed were all massive – in the order of hundreds of solar masses.

Stars of this scale, not only have short life spans but explode with such a force that the star literally blows itself to bits as a ‘pair-instability’ supernova – leaving no remnant neutron star or black hole behind. Supernova SN2006gy was probably a pair-instability supernova – mimicking the last gasps of Population III stars that lived more than 13 billion years ago.

Recipe for a pair instability supernova. In very massive stars, gamma rays radiating from the core become so energetic that they can undergo pair production after interaction with a nucleus. Essentially, the gamma ray creates a paired particle and antiparticle (commonly an electron and a positron). The loss of radiation pressure as gamma rays convert to particles results in gravitational collapse of the star's core - and kaboom! Credit: chandra.harvard.edu

It was only after Population III stars had seeded the interstellar medium with heavier elements that fine structure cooling resulted in disruption of thermal equilibrium and fragmentation of gas clouds – enabling smaller, and hence longer lived, Population II stars to be born.

Around the Milky Way, we can find very old Population II stars in orbiting dwarf galaxies. These stars are also common in the galactic halo and in globular clusters. However, in ‘the guts’ of the galaxy we find lots of young Population I stars.

This all leads to the view that the Milky Way is a gravitational hub nearly as old as the universe itself – which has been steadily growing in size and keeping itself looking young by maintaining a steady diet of ancient dwarf galaxies – which, deprived of such a diet, have remained largely unchanged since their formation in the early universe.

Further reading:

A. Frebel. Stellar Archaeology – Exploring the Universe with Metal-Poor Stars http://arxiv4.library.cornell.edu/abs/1006.2419

Stunning Science Using Nature’s Telescope

3Star-birth in SMM J2135-0102 (Credit: M. Swinbank et al./Nature, ESO, APEX; NASA, ESA, SMA)

[/caption]
Einstein started it all, back in 1915.

Eddington picked up the ball and ran with it, in 1919.

And in the last decade or so astronomers have used a MACHO to OLGE CASTLES … yes, I’m talking about gravitational lensing.

Now LABOCA and SABOCA are getting into the act, using Einstein’s theory of general relativity to cast a beady eye upon star birth most fecund, in a galaxy far, far away (and long, long ago).

APEX at Chajnantor (Andreas Lundgren)

How galaxies evolved is one of the most perplexing, challenging, and fascinating topics in astrophysics today. And among the central questions – as yet unanswered – are how quickly stars formed in galaxies far, far away (and so long, long ago), and how such star formation differed from that which we can study, up close and personal, in our own galaxy (and our neighbors). There are lots of clues to suggest that star formation happened very much faster long ago, but because far-away galaxies are both dim and small, and because Nature drapes veils of opaque dust over star birth, there’s not much hard data to put the numerous hypotheses to the test.

Until last year that is.

“One of the brightest sub-mm galaxies discovered so far,” say a multi-national, multi-institution team of astronomers, was “first identified with the LABOCA instrument on APEX in May 2009” (you’d think they’d give it a name like, I don’t know, “LABOCA’s Stunner” or “APEX 1”, but no, dubbed “the Cosmic Eyelash”; formally it’s called SMMJ2135-0102). “This galaxy lies at [a redshift of] 2.32 and its brightness of 106 mJy at 870 μm is due to the gravitational magnification caused by a massive intervening galaxy cluster,” and “high resolution follow-up with the sub-mm array resolves the star-forming regions on scales of just 100 parsecs. These results allow study of galaxy formation and evolution at a level of detail never before possible and provide a glimpse of the exciting possibilities for future studies of galaxies at these early times, particularly with ALMA.” Nature’s telescope giving astronomers ALMA-like abilities, for free.

OK, so what did Mark Swinbank and his colleagues find? “The star-forming regions within SMMJ2135-0102 are ~100 parsecs across, which is 100 times larger than dense giant molecular cloud (GMC) cores, but their luminosities are approximately 100 times higher than expected for typical star-forming regions. Indeed, the luminosity densities of the star-forming regions within SMMJ2135-0102 are comparable to dense GMC cores, but with luminosities ten million times larger. Thus, it is likely that each of the star-forming regions in SMMJ2135-0102 comprises ~ten million dense GMC cores.” That’s pretty mind-blowing; imagine the Orion Nebula (M42, approximately 400 parsecs distant) as one of these star-forming regions!

James Dunlop of the University of Edinburgh suggests that such galaxies as SMMJ2135-0102 formed stars so abundantly because the galaxies still had plenty of gas – the raw material for making stars – and the gravity of the galaxies had had enough time to pull the gas together into cold, compact regions. Before about 10 billion years ago, gravity hadn’t yet drawn enough clumps of gas together, while at later times most galaxies had already run out of gas, he suggests.

But I’m saving the best for last: “the energetics of the star-forming regions within SMMJ2135-0102 are unlike anything found in the present day Universe,” Swinbank et al. write (now there’s an understatement if ever I’ve heard one!), “yet the relations between size and luminosity are similar to local, dense GMC cores, suggesting that the underlying physics of the star-forming processes is similar. Overall, these results suggest that the recipes developed to understand star-forming processes in the Milky Way and local galaxies can be used to model the star formation processes in these high-redshift galaxies.” It’s always good to get confirmation that our understanding of the physics at work so long ago is consistent and sound.

Einstein would have been delighted, and Eddington too.

Sources: “Intense star formation within resolved compact regions in a galaxy at z = 2.3” (Nature), “The Properties of Star-forming Regions within a Galaxy at Redshift 2” (ESO Messenger No. 139), Science News, SciTech, ESO. My thanks to debreuck (ESO’s Carlos De Breuck?) for setting the record straight re the name.

Massive Repeated Explosions Halted Star Formation in Early Universe

An artist's representation showing outflow from a supermassive black hole inside the middle of a galaxy. Credit: NASA/CXC/M.Weiss

[/caption]

Scientists have found evidence of a catastrophic event they believe was responsible for halting the birth of stars in a galaxy in the early Universe. According to their findings, just 3 billion years after the Big Bang, a massive galaxy exploded in a series of blasts trillions of times more powerful than any caused by an atomic bomb. The blasts happened every second for millions of years. “We are looking into the past and seeing a catastrophic event that essentially switched off star formation and halted the growth of a typical massive galaxy in the local Universe,” said lead author Dr. Dave Alexander from Durham University.

Using the Gemini Observatory’s Near-Infrared Integral Field Spectrometer (NIFS), scientists looked at SMM J1237+6203 and noticed properties seen in other massive galaxies near to our own Milky Way, which suggest that a major event rapidly turned off star formation in early galaxies and halted their expansion.

This is an observation showing gas in the galaxy SMM J1237+6203 seen using the Gemini Observatory’s Near-Infrared Integral Field Spectrometer (NIFS). The contours show how the blast of energy is traveling through the galaxy. Credit: Dave Alexander/Mark Swinbank, Durham University, and Gemini Observatory

This catastrophic event occurred when the Universe was a quarter of its present age. The explosions scattered the gas needed to form new stars by helping it escape the gravitational pull of the galaxy called, effectively regulating its growth, the scientists added.

They believe the huge surge of energy was caused by either the outflow of debris from the galaxy’s black hole or from powerful winds generated by dying stars called supernovae.

Theorists, including scientists at Durham University, have argued that this could be due to outflows of energy blowing galaxies apart and preventing further new stars from forming, but evidence of this has been lacking until now. The team hopes the new findings can increase our understanding about the formation and development of galaxies.

“Effectively the galaxy is regulating its growth by preventing new stars from being born,” said Alexander. “Theorists had predicted that huge outflows of energy were behind this activity, but it’s only now that we have seen it in action. We believe that similar huge outflows are likely to have stopped the growth of other galaxies in the early Universe by blowing away the materials needed for star formation.”

The Durham-led team now plans to study other massive star-forming galaxies in the early Universe to see if they display similar characteristics.

The research is published in the Monthly Notices of the Royal Astronomical Society.

Source: Royal Astronomical Society

Youngsters Caught Gorging – on Gas

Typical massive galaxy at z=1.1 (left: V, I (Hubble); right: CO 3-2 mm emission (IRAM); copyright MPE/IRAM)

[/caption]
Galaxies long, long ago were very fecund; they gave birth to stars at a rate at least ten times what we see today.

Why? Was there more stuff around then, to make stars? Or were galaxies back then more efficient at star-making? Or something else??

Dr. Linda Tacconi, from Germany’s Max-Planck-Institut für extraterrestrische Physik, led an international team of astronomers to find out why … and the answer seems to be that young galaxies were stuffed to the gills with gas.

“We have been able, for the first time, to detect and image the cold molecular gas in normal star forming galaxies, which are representative of the typical massive galaxy populations shortly after the Big Bang,” said Dr Tacconi.

The challenging observations yield the first glimpse how galaxies, or more precisely the cold gas in these galaxies, looked a mere 3 to 5 billion years after the Big Bang (equivalent to a cosmological redshift z~2 to z~1). At this age, galaxies seem to have formed stars more or less continuously with at least ten times the rate seen in similar mass systems in the local Universe.

It is now reasonably well-established that galaxies formed from proto-galaxies, which themselves formed in local over-densities, dominated by cold dark matter – dark matter halos – where the newly neutral hydrogen and helium collected and cooled. Through collisions and mergers, and some on-going gas accretion, the proto-galaxies formed young galaxies, a few billion years after the Big Bang – in short, hierarchical formation.

The Plateau de Bure millimetre interferometer in the southern French Alps. Copyright: IRAM

Detailed observations of the cold gas and its distribution and dynamics hold a key role in disentangling the complex mechanisms responsible for turning the first proto-galaxies into modern galaxies, such as the Milky-Way. A major study of distant, luminous star forming galaxies at the Plateau de Bure millimeter interferometer has now resulted in a breakthrough by having a direct look at the star formation “food”. The study took advantage of major recent advances in the sensitivity of the radiometers at the observatory to make the first systematic survey of cold gas properties (traced by a rotational line of the carbon monoxide molecule) of normal massive galaxies when the Universe was 40% (z=1.2) and 24% (z=2.3) of its current age. Previous observations were largely restricted to rare, very luminous objects, including galaxy mergers and quasars. The new study instead traces massive star forming galaxies representative of the ‘normal’, average galaxy population in this mass and redshift range.

“When we started the programme about a year ago”, says Dr. Tacconi, “we could not be sure that we would even detect anything. But the observations were successful beyond our most optimistic hopes. We have been able to demonstrate that massive normal galaxies at z~1.2 and z~2.3 had five to ten times more gas than what we see in the local Universe. Given that these galaxies were forming gas at a high rate over long periods of time, this means that gas must have been continuously replenished by accretion from the dark matter halos, in excellent agreement with recent theoretical work.”

Another important result of these observations is the first spatially resolved images of the cold gas distribution and motions in several of the galaxies. “This survey has opened the door for an entirely new avenue of studying the evolution of galaxies,” says Pierre Cox, the director of IRAM. “This is really exciting and there is much more to come.”

“These fascinating findings provide us with important clues and constraints for next-generation theoretical models that we will use to study the early phases of galaxy development in more detail,” says Andreas Burkert, specialist for star formation and the evolution of galaxies at Germany’s Excellence Cluster Universe. “Eventually these results will help to understand the origin and the development of our Milky Way.”

About the EGS 1305123 image: Spatially resolved optical and millimeter images of a typical massive galaxy at redshift z=1.1 (5.5 billion years after the Big Bang). The left image was taken with the Hubble Space Telescope in the V- and I-optical bands, as part of the AEGIS survey of distant galaxies. The right image is an overlay of the CO 3-2 emission observed with the PdBI (red/yellow colors) superposed on the I-image (grey). For the first time these observations clearly show that the molecular line emission and the optical light from massive stars trace a massive, rotating disk of diameter ~60,000 light years. This disk is similar in size and structure as seen in z~0 disk galaxies, such as the Milky Way. However, the mass of cold gas is in this disk is about an order of magnitude larger than in typical z~0 disk galaxies. This explains why high-z galaxies can form continuously at about ten times the rate of typical z~0 galaxies.

Sources: Max Planck Institute for Extraterrestrial Physics, Tacconi et al. (2010), Nature 463, 781 (preprint: arXiv:1002.2149)

Twin Tails Tell a Crazy Tale of Star Formation

Twin tails of gas are forming stars outside a galaxy. Credit: Chandra X-Ray Observatory

[/caption]

Stars forming outside a galaxy? That’s what a new observation with the Chandra X-ray Observatory appears to show. “This system is really crazy because where we’re seeing the star formation is well away from any galaxy,” said Megan from Michgan State University. “Star formation happens primarily in the disks of galaxies. What we’re seeing here is very unexpected.”

The image shows two distinct long tails of gas that are more than 200,000 light years in length and extends well outside any galaxy. The gas tails are located in the southern hemisphere near a constellation called Triangulum Australe, in a giant cluster of galaxies called Abell 3627. It is associated with a galaxy known as ESO 137-001 which is about 219 million light years from our own Milky Way Galaxy.

While a similar type of gas tail are places where stars form, usually this happens within the confines of a galaxy.

“The double tail is very cool – that is, interesting – and ridiculously hard to explain,” said Donahue. “It could be two different sources of gas or something to do with magnetic fields. We just don’t know.”

This gas tail was originally spotted by astronomers three years ago using a multitude of telescopes, including NASA’s Chandra X-ray Observatory and the Southern Astrophysical Research telescope in Chile. The new observations show a second tail, and a fellow galaxy, ESO 137-002, that also has a tail of hot X-ray-emitting gas.

How these newly formed stars came to be in this particular place remains a mystery as well. Astronomers theorize this gas tail might have “pulled” star-making material from nearby gases, creating what some have called “orphan stars.”

“This system continues to surprise us as we get better observations of it,” Donahue said.

Donahue was part of an international team of astronomers who published a paper on the twin tails in Astrophysical Journal.

Paper: Spectacular X-Ray Tails and Intracluster Star Formation

source: MSU