1st SLS 2nd Stage Arrives at Cape for NASA’s Orion Megarocket Moon Launch in 2018

Composite view of the interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket at United Launch Alliance manufacturing facility in Decatur, Alabama in December 2016 (left) and arrival of ICPS in a canister aboard the firm’s Delta Mariner barge on March 7, 2017 (right). Credits: ULA (left) and Ken Kremer/kenkremer.com (right)

PORT CANAVERAL – Bit by bit, piece by piece, the first of NASA’s SLS megarockets designed to propel American astronauts on deep space missions back to the Moon and beyond to Mars is at last coming together on the Florida Space Coast. And the first big integrated piece of actual flight hardware – the powerful second stage named the Interim Cryogenic Propulsion Stage (ICPS) – has just arrived by way of barge today (Mar. 7) at Port Canaveral, Fl.

The ICPS will propel NASA’s new Orion crew capsule on its maiden uncrewed mission around the Moon – currently slated for blastoff on the inaugural SLS monster rocket on the Exploration Mission-1 (EM-1) mission late next year.

SLS-1/Orion EM-1 will launch from pad 39B at NASA’s Kennedy Space Center in late 2018. The SLS will be the most powerful rocket in world history.

NASA is currently evaluating whether to add a crew of 2 astronauts to the SLS-1 launch which would result in postponing the inaugural liftoff into 2019 – as I reported here.

The interim cryogenic propulsion stage (ICPS) for first flight of NASA’s Space Launch System (SLS) rocket arrived at Port Canaveral, Florida on March 7, 2017 loaded inside a shipping canister (right) aboard the ULA Delta Mariner barge that set sail from Decatur, Alabama a week ago. The ICPS shared the shipping voyage along with a ULA Delta IV first stage rocket core seen at left. Credit: Ken Kremer/kenkremer.com

The SLS upper stage – designed and built by United Launch Alliance (ULA) and Boeing – arrived safely by way of the specially-designed ship called the Delta Mariner early Tuesday morning, Mar. 7, into the channel of Port Canaveral, Florida – as witnessed by this author.

“We are proud to be working with The Boeing Company and NASA to further deep space exploration!” ULA said in a statement.

Major assembly of the ICPS was completed at ULA’s Decatur, Alabama, manufacturing facility in December 2016.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket has arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. The ICPS will be moved to United Launch Alliance’s Delta IV Operation Center at the Cape for processing for the SLS-1/Orion EM-1 launch currently slated for late 2018 launch from pad 39B at NASA’s Kennedy Space Center. Credit: ULA

The ICPS is the designated upper stage for the first maiden launch of the initial Block 1 version of the SLS.

It is based on ULA’s Delta Cryogenic Second Stage which has successfully flown numerous times on the firm’s Delta IV family of rockets.

In the event that NASA decides to add a two person crew to the EM-1 mission, Bill Hill, NASA’s deputy associate administrator for Exploration Systems Development in Washington, D.C., stated that the agency would maintain the Interim Cryogenic Propulsion stage for the first flight, and not switch to the more advanced and powerful Exploration Upper Stage (EUS) planned for first use on the EM-2 mission.

The ULA Delta Mariner barge arriving in Port Canaveral, Florida on March 7, 2017 after transporting the interim cryogenic propulsion stage (ICPS) hardware for the first flight of NASA’s Space Launch System (SLS) rocket from Decatur, Alabama. SLS-1 launch from the Kennedy Space Center is slated for late 2018. Credit: Ken Kremer/kenkremer.com

The ICPS was loaded onto the Delta Mariner and departed Decatur last week to began its sea going voyage of more than 2,100 miles (3300 km). The barge trip normally takes 8 to 10 days.

“ULA has completed production on the interim cryogenic propulsion stage (ICPS) flight hardware for NASA’s Space Launch System and it’s on the way to Cape Canaveral aboard the Mariner,” ULA noted in a statement last week.

The 312-foot-long (95-meter-long) ULA ship docked Tuesday morning at the wharf at Port Canaveral to prepare for off loading from the roll-on, roll-off vessel.

The Delta Mariner can travel on both rivers and open seas and navigate in waters as shallow as nine feet.

“ICPS, the first integrated SLS hardware to arrive at the Cape, will provide in-space propulsion for the SLS rocket on its Exploration Mission-1 (EM-1) mission,” according to ULA.

The next step for the upper stage is ground transport to United Launch Alliance’s Delta IV Operation Center on Cape Canaveral Air Force Station in Florida for further testing and processing before being moved to the Kennedy Space Center.

ULA will deliver the ICPS to NASA in mid-2017.

“It will be the first integrated piece of SLS hardware to arrive at the Cape and undergo final processing and testing before being moved to Ground Systems Development Operations at NASA’s Kennedy Space Center,” said NASA officials.

“The ICPS is a liquid oxygen/liquid hydrogen-based system that will provide the thrust needed to send the Orion spacecraft and 13 secondary payloads beyond the moon before Orion returns to Earth.”

The upper stage is powered by a single RL-10B-2 engine fueled by liquid hydrogen and oxygen and generates 24,750 pounds of thrust. It measures 44 ft 11 in (13.7 m ) in length and 16 ft 5 in (5 m) in width.

The interim cryogenic propulsion stage (ICPS) for the first flight of NASA’s Space Launch System (SLS) rocket as it completed major assembly at United Launch Alliance in Decatur, Alabama in December 2016. The ICPS just arrived by way of barge at Cape Canaveral Air Force Station in Florida on March 7, 2017. It will propel the Orion EM-1 crew module around the Moon. The SLS-1/Orion EM-1 launch is currently slated for late 2018 launch from NASA’s Kennedy Space Center. Credit: ULA

All major elements of the SLS will be assembled for flight inside the high bay of NASA’s iconic Vehicle Assembly Building which is undergoing a major overhaul to accommodate the SLS. The VAB high bay was extensively refurbished to convert it from Space Shuttle to SLS assembly and launch operations.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Michoud is building the huge liquid oxygen/liquid hydrogen SLS core stage fuel tank, derived from the Space Shuttle External Tank (ET) – as I detailed here.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

The ICPS sits on top of the SLS core stage.

The next Delta IV rocket launching with a Delta Cryogenic Second Stage is tentatively slated for March 14 from pad 37 at the Cape.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

File photo of the ULA Delta Mariner barge arriving in Port Canaveral, Florida after transporting rocket hardware from Decatur, Alabama

NASA Studies Whether to Add Crew to 1st SLS Megarocket Moon Launch in 2019

NASA’s Space Launch System rocket will be the most powerful rocket in the world and, with the agency’s Orion spacecraft, will launch America into a new era of exploration to destinations beyond Earth’s orbit. Their first integrated mission is planned as uncrewed, but NASA now is assessing the feasibility of adding crew. Credits: NASA/MSFC

KENNEDY SPACE CENTER, FL – At the request of the new Trump Administration, NASA has initiated a month long study to determine the feasibility of converting the first integrated unmanned launch of the agency’s new Space Launch System (SLS) megarocket and Orion capsule into a crewed mission that would propel two astronauts to the Moon and back by 2019 – 50 years after the first human lunar landing.

Top NASA officials outlined the details of the study at a hastily arranged media teleconference briefing on Friday, Feb 24. It will examine the feasibility of what it would take to add a crew of 2 astronauts to significantly modified maiden SLS/Orion mission hardware and whether a launch could be accomplished technically and safely by the end of 2019.

On Feb. 15, Acting Administrator Robert Lightfoot announced that he had asked Bill Gerstenmaier, associate administrator for NASA’s Human Exploration and Operations Mission Directorate in Washington, to start detailed studies of what it would take to host astronauts inside the Orion capsule on what the agency calls Exploration Mission-1, or EM-1.

Gerstenmaier, joined by Bill Hill, deputy associate administrator for Exploration Systems Development in Washington, at the briefing said a team was quickly assembled and the study is already underway.

They expect the study to be completed in early spring, possibly by late March and it will focus on assessing the possibilities – but not making a conclusion on whether to actually implement changes to the current uncrewed EM-1 flight profile targeted for blastoff later in 2018.

“I want to stress to you this is a feasibility study. So when we get done with this we won’t come out with a hard recommendation, one way or the other,” Gerstenmaier stated.

“We’re going to talk about essentially the advantages and disadvantages of adding crew to EM-1.”

“We were given this task a week ago, appointed a team and have held one telecon.”

“Our priority is to ensure the safe and effective execution of all our planned exploration missions with the Orion spacecraft and Space Launch System rocket,” said Gerstenmaier.

“This is an assessment and not a decision as the primary mission for EM-1 remains an uncrewed flight test.”

Artist concept of the SLS Block 1 configuration on the Mobile Launcher at KSC. Credit: NASA/MSFC

Gerstenmaier further stipulated that the study should focus on determining if a crewed EM-1 could liftoff by the end of 2019. The study team includes one astronaut.

If a change resulted in a maiden SLS/Orion launch date stretching beyond 2019 it has little value – and NASA is best to stick to the current EM-1 flight plan.

The first SLS/Orion crewed flight is slated for Exploration Mission-2 (EM-2) launching in 2021.

“I felt that if we went much beyond 2019, then we might as well fly EM-2 and actually do the plan we’re on,” Gerstenmaier said.

NASA’s current plans call for the unmanned blastoff of Orion EM-1 on the SLS-1 rocket later next year on its first test flight on a 3 week long mission to a distant lunar retrograde orbit. It is slated to occur roughly in the September to November timeframe from Launch Complex 39B at the Kennedy Space Center.

Lightfoot initially revealed the study in a speech to the Space Launch System/Orion Suppliers Conference in Washington, D.C. and an agency wide memo circulated to NASA employees on Feb. 15 – as I reported here.

The Orion EM-1 capsule is currently being manufactured at the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center by prime contractor Lockheed Martin.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

To launch astronauts, Orion EM-1 would require very significant upgrades since it will not have the life support systems, display panels, abort systems and more needed to safely support humans on board.

“We know there are certain systems that needed to be added to EM-1 to add crew,” Gerstenmaier elaborated. “So we have a good, crisp list of all the things we would physically have to change from a hardware standpoint.

In fact since EM-1 assembly is already well underway, some hardware already installed would have to be pulled out in order to allow access behind to add the life support hardware and other systems, Hill explained.

The EM-1 pressure shell arrived last February as I witnessed and reported here.

Thus adding crew at this latter date in the manufacturing cycle is no easy task and would absolutely require additional time and additional funding to the NASA budget – which as everyone knows is difficult in these tough fiscal times.

“Then we asked the team to take a look at what additional tests would be needed to add crew, what the additional risk would be, and then we also wanted the teams to talk about the benefits of having crew on the first flight,” Gerstenmaier explained.

“It’s going to take a significant amount of money, and money that will be required fairly quickly to implement what we need to do,” Hill stated. “So it’s a question of how we refine the funding levels and the phasing of the funding for the next three years and see where it comes out.”

Hill also stated that NASA would maintain the Interim Cryogenic Propulsion stage for the first flight, and not switch to the more advanced and powerful Exploration Upper Stage (EUS) planned for first use on EM-2.

Furthermore NASA would move up the AA-2 ascent abort test for Orion to take place before crewed EM-1 mission.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Michoud is building the huge fuel liquid oxygen/liquid hydrogen SLS core stage fuel tank, derived from the Space Shuttle External Tank (ET) – as I detailed here.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

Gerstenmaier noted that Michoud did suffer some damage during the recent tornado strike which will necessitate several months worth of repairs.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The 2018 launch of NASA’s Orion on the unpiloted EM-1 mission counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago.

SLS is the most powerful booster the world has even seen – even more powerful than NASA’s Saturn V moon landing rocket of the 1960s and 1970s.

For SLS-1 the mammoth booster will launch in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds.

If NASA can pull off a 2019 EM-1 human launch it will coincide with the 50th anniversary of Apollo 11 – NASA’s first lunar landing mission manned by Neil Armstrong and Buzz Aldrin, along with Michael Collins.

If crew are added to EM-1 it would essentially adopt the mission profile currently planned for Orion EM-2.

“If the agency decides to put crew on the first flight, the mission profile for Exploration Mission-2 would likely replace it, which is an approximately eight-day mission with a multi-translunar injection with a free return trajectory,” said NASA. It would be similar to Apollo 8 and Apollo 13.

This artist concept depicts the Space Launch System rocket rolling out of the Vehicle Assembly Building at NASA’s Kennedy Space Center. SLS will be the most powerful rocket ever built and will launch the agency’s Orion spacecraft into a new era of exploration to destinations beyond low-Earth orbit. Credits: NASA/Marshall Space Flight Center

Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet.

NASA is developing SLS and Orion for sending humans on a ‘Journey to Mars’ in the 2030s.

They are but the first hardware elements required to carry out such an ambitious initiative.

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

An artist’s interpretation of NASA’s Space Launch System Block 1 configuration with an Orion vehicle. Image: NASA

NASA To Study Launching Astronauts on 1st SLS/Orion Flight

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

KENNEDY SPACE CENTER, FL – In a potentially major change in direction for NASA’s human spaceflight architecture, the agency is officially studying the possibility of adding a crew of astronauts to the first flight of the Orion deep space crew capsule and the heavy lift Space Launch System (SLS) rocket currently in development, announced Acting NASA Administrator Robert Lightfoot.

Lightfoot made the announcement in a speech to the Space Launch System/Orion Suppliers Conference in Washington, D.C. as well as an agency wide memo circulated to NASA employees on Wednesday, Feb. 15.

The move, if implemented, for the first joint SLS/Orion flight on Exploration Mission-1 (EM-1) would advance the date for sending American astronauts back to the Moon by several years – from the next decade into this decade.

Lightfoot has directed Bill Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate, to start detailed studies of what it would take to host astronauts inside the Orion EM-1 crew capsule.

“I have asked Bill Gerstenmaier to initiate a study to assess the feasibility of adding a crew to Exploration Mission-1, the first integrated flight of SLS and Orion,” Lightfoot said.

NASA’s current plans call for the unmanned blastoff of Orion EM-1 on the SLS-1 rocket later next year on the first test flight – roughly in the September to November timeframe from Launch Complex 39B at the Kennedy Space Center.

“The study will examine the opportunities it could present to accelerate the effort of the first crewed flight and what it would take to accomplish that first step of pushing humans farther into space,” NASA officials added in a statement.

But because of all the extra work required to upgrade a host of systems for both Orion and SLS for humans ahead of schedule, liftoff of that inaugural mission would have to slip by at least a year or more.

“I know the challenges associated with such a proposition, like reviewing the technical feasibility, additional resources needed, and clearly the extra work would require a different launch date” Lighfoot elaborated.

“That said, I also want to hear about the opportunities it could present to accelerate the effort of the first crewed flight and what it would take to accomplish that first step of pushing humans farther into space.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

The Orion EM-1 capsule is currently being manufactured at the Kennedy Space Center.

Components of the SLS-1 rocket are being manufactured at NASA’s Michoud Assembly Facility and elsewhere around the country by numerous suppliers.

Welding is nearly complete on the liquid hydrogen tank will provide the fuel for the first flight of NASA’s new rocket, the Space Launch System, with the Orion spacecraft in 2018. The tank has now completed welding on the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The 2018 launch of NASA’s Orion on the unpiloted EM-1 mission counts as the first joint flight of SLS and Orion, and the first flight of a human rated spacecraft to deep space since the Apollo Moon landing era ended more than 4 decades ago.

Now it might actually include humans.

Details to follow.

An artist’s interpretation of NASA’s Space Launch System Block 1 configuration with an Orion vehicle. Image: NASA

Orion is designed to send astronauts deeper into space than ever before, including missions to the Moon, asteroids and the Red Planet.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

This artist concept depicts the Space Launch System rocket rolling out of the Vehicle Assembly Building at NASA’s Kennedy Space Center. SLS will be the most powerful rocket ever built and will launch the agency’s Orion spacecraft into a new era of exploration to destinations beyond low-Earth orbit. Credits: NASA/Marshall Space Flight Center

NASA Stands Ready For Trump Transition Team

For almost a week now, NASA has been preparing for the transition between the Obama administration and that o Donald Trump, the president-elect. Unfortunately, little seems clear at this point, as the Trump campaign has yet to send representatives to speak to them, or give any indication of what the future budget environment might look like.

In lieu of clear statements, speculation has been the norm, and has been based almost entirely on statements made during the election. And with many important missions approaching, NASA has been understandably antsy. Luckily, with the appointment of a Agency Research Team (ART), it appears that the much-needed meeting may be on the way.

This news is certainly a welcome relief in a post-election atmosphere characterized for the most part by uncertainty and ambiguity. And it certainly is good news for NASA administrators, who have been getting increasingly anxious about what the new administration’s policies will mean for their future.

Artist's conception of NASA's Space Launch System with Orion crewed deep space capsule. Credit: NASA
Artist’s conception of NASA’s Space Launch System (SLS) with the Orion crewed deep space capsule. Credit: NASA

As Greg Williams – the Deputy Associate Administrator for Policy and Plans at NASA’s Human Exploration and Operations Mission Directorate – was quoted as saying this past Monday (Nov. 14th):

“The new administration has not yet named its transition team members that interface with NASA, so we don’t yet know who we’ll be talking to. We are prepared to talk with them when they arrive… We hope to be building on the consensus we’ve achieved on the phases of exploration, the progression of human exploration from the ISS all the way to the surface of Mars.”

Once the election wrapped up after Nov. 8th, it was rumored that Mark Albrecht – the former executive secretary of the National Space Council during George H.W. Bush’s presidency – would be leading the NASA transition efforts. However, these rumors were not followed by any formal announcement, and no other individuals were named to the team.

This was certainly disconcerting, since NASA and other large agencies are used to meeting with transitional teams within days of an election. This is seen as essential for ensuring that there is continuity, or that they are apprised of changes long before they take effect. Given the nature of their work, NASA planners need to know in advance what kind of budgets they will have to work with, since it will determine what missions they can do.

NASA's Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL
NASA’s Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

As Williams indicated, NASA is particularly concerned about their “Journey to Mars“, a long-term goal which requires a consistent commitment in terms of financial resources. And while transitional funding was made available for fiscal year 2017 – thanks to the NASA Transition Authorization Act of 2016 – NASA is looking far beyond the coming year.

In the coming years, NASA will need a solid commitment from the Trump presidency to ensure the completion and testing of the Space Launch System (SLS) – the successor to the Space Shuttle Program. They also require a multi-billion dollar commitment to continue testing the Orion Multipurpose Crew Vehicle, not to mention the several crewed missions they hope to conduct using both.

Another thing that is central to mounting a crewed mission to Mars in the 2030s are the ongoing studies aboard the ISS. In particular, NASA hopes to use long-duration stays aboard the station to determine the risks to astronaut health. A crewed mission to Mars will spend several months in space, during which time they will be living in zero-gravity conditions and exposed to a great deal of radiation.

In addition, NASA hopes to mount a crewed mission to an asteroid in the coming decade. The plan entails sending a robotic spacecraft to capture and tow a Near-Earth Object (NEO) into lunar orbit – known as the Asteroid Robotic Redirect Missions (ARRM). This is to be followed by a crewed Orion spacecraft being sent to explore the asteroid, which will develop key systems and expertise for the coming mission to Mars.

NASA's new budget could mean the end of their Asteroid Redirect Mission. Image: NASA (Artist's illustration)
NASA’s new budget could mean the end of their Asteroid Redirect Mission. Image: NASA (Artist’s illustration)

Unfortunately, the Transition Authorization Act contained some strongly-worded language about the robotic asteroid mission. Essentially, it was deemed as not falling within the original budget constraints of $1.25 billion (it is now estimated at $1.4 billion). NASA planners were therefore encouraged to find “a more cost effective and scientifically beneficial means to demonstrate the technologies needed for a human mission to Mars.”

As such, NASA is very interested to know if the new administration will make the necessary commitment to fund the ARRM, or if they need to scrub it at this point and go back to the drawing board. One way or another, NASA needs to know what it will be capable of doing in the coming years so that they can develop a plan for what they intend to do.

The current state of uncertainty has been largely attributed to the fact that the Trump campaign engaged in little planning before the election. While various statements were made about the important role NASA plays, nothing concrete was laid out. And Trump even went so far as to say that long-term exploration goals would depend upon the economic climate.

One can only hope that the new Agency Research Team will have an agenda prepared when they meet with NASA administrators. We can also hope that it won’t impede NASA’s more ambitious efforts for the coming years. The agency has made it clear that its plans to explore Mars are in keeping with the goal of remaining the leader in the field of space exploration and research. If they can’t get there in the time period desired, someone else just might!

Further Reading: Space News

NASA’s First SLS Mars Rocket Fuel Tank Completes Welding

Welding is complete on the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The core stage liquid hydrogen tank has completed welding on the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans.  Credit: NASA/MAF/Steven Seipel
Welding is complete on the largest piece of the core stage that will provide the fuel for the first flight of NASA’s new rocket, the Space Launch System, with the Orion spacecraft in 2018. The core stage liquid hydrogen tank has completed welding on the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans. Credit: NASA/MAF/Steven Seipel

The first of the massive fuel tanks that will fly on the maiden launch of NASA’s SLS mega rocket in late 2018 has completed welding at the agency’s rocket manufacturing facility in New Orleans – marking a giant step forward for NASA’s goal of sending astronauts on a ‘Journey to Mars’ in the 2030s.

Technicians have just finished welding together the liquid hydrogen (LH2) fuel tank in the Vertical Assembly Center (VAC) welder at NASA’s Michoud Assembly Facility (MAF) in New Orleans. The VAC is the world’s largest welder.

Welding is nearly complete on the liquid hydrogen tank will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018.  The tank has now has now  completed welding on the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
Welding is nearly complete on the liquid hydrogen tank will provide the fuel for the first flight of NASA’s new rocket, the Space Launch System, with the Orion spacecraft in 2018. The tank has now has now completed welding on the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

This flight version of the hydrogen tank is the largest of the two fuel tanks making up the SLS core stage – the other being the liquid oxygen tank (LOX).

In fact the 130 foot tall hydrogen tank is the biggest cryogenic tank ever built for flight.

“Standing more than 130 feet tall, the liquid hydrogen tank is the largest cryogenic fuel tank for a rocket in the world,” according to NASA.

And it is truly huge – measuring also 27.6 feet (8.4 m) in diameter.

The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com
The liquid hydrogen tank qualification test article for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally after final welding was completed at NASA’s Michoud Assembly Facility in New Orleans in July 2016. Credit: Ken Kremer/kenkremer.com

I recently visited MAF to see this giant tank when it was nearly finished welding in the VAC. I also saw the very first completed test tank version of the hydrogen tank, called the qualification tank which is virtually identical.

The precursor qualification tank was constructed to prove out all the manufacturing techniques and welding tools being utilized at Michoud.

The first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

NASA’s agency wide goal is to send humans to Mars by the 2030s with SLS and Orion.

The LH2 and LOX tanks sit on top of one another inside the SLS outer skin. Together the hold over 733,000 gallons of propellant.

The SLS core stage – or first stage – is mostly comprised of the liquid hydrogen and liquid oxygen cryogenic fuel storage tanks which store the rocket propellants at super chilled temperatures. Boeing is the prime contractor for the SLS core stage.

The SLS core stage stands some 212 feet tall.

The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank (LOX), the intertank, the liquid hydrogen tank (LH2) and the engine section.

The LH2 and LOX tanks feed the cryogenic propellants into the first stage engine propulsion section which is powered by a quartet of RS-25 engines – modified space shuttle main engines (SSMEs) – and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars.  Credit: Ken Kremer/kenkremer.com
NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

The vehicle’s four RS-25 engines will produce a total of 2 million pounds of thrust.

The tanks are assembled by joining previously manufactured dome, ring and barrel components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.

The LH2 tank is the largest major part of the SLS core stage. It holds 537,000 gallons of super chilled liquid hydrogen. It is comprised of 5 barrels, 2 domes, and 2 rings.

The LOX tank holds 196,000 pounds of liquid oxygen. It is assembled from 2 barrels, 2 domes, and 2 rings and measures over 50 feet long.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

Apollo 11 Moonwalker Buzz Aldrin Talks to Universe Today about ‘Destination Mars’

Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Sending humans on a ‘Journey to Mars’ and developing strategies and hardware to accomplish the daunting task of getting ‘Humans to Mars’ is NASA’s agency wide goal and the goal of many space enthusiasts – including Apollo 11 moonwalker Buzz Aldrin.

NASA is going full speed ahead developing the SLS Heavy lift rocket and Orion crew module with a maiden uncrewed launch from the Kennedy Space Center set for late 2018 to the Moon. Crewed Mars missions would follow by the 2030s.

In the marketplace of ideas, there are other competing and corollary proposals as well from government, companies and private citizens on pathways to the Red Planet. For example SpaceX CEO Elon Musk wants to establish a colony on Mars using an Interplanetary Transport System of SpaceX developed rockets and spaceships.

Last week I had the opportunity to ask Apollo 11 Moonwalker Buzz Aldrin for his thoughts about ‘Humans to Mars’ and the role of commercial space – following the Grand Opening ceremony for the new “Destination Mars’ holographic exhibit at the Kennedy Space Center visitor complex in Florida.

Moonwalker Aldrin strongly advocated for more commercial activity in space and that “exposure to microgravity” for “many commercial products” is good, he told Universe Today.

More commercial activities in space would aid space commerce and getting humans to Mars.

“We need to do that,” Aldrin told me.

Apollo 11 moonwalker Buzz Aldrin describes newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin describes newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

Buzz Aldrin is the second man to set foot on the Moon. He stepped onto the lunar soil a few minutes after Apollo 11 Commander Neil Armstrong, on July 20, 1969 in the Sea of Tranquility.

Aldrin also strongly supports some type of American space station capability “beyond the ISS” to foster the Mars capability.

And we need to be thinking about that follow on “US capability” right now!

“I think we need to have a US capability beyond the ISS to prepare for future activities right from the beginning,” Aldrin elaborated.

Currently the ISS partnership of the US, Russia, ESA, Japan and Canada has approved extending the operations of the International Space Station (ISS) until 2024. What comes after that is truly not known.

NASA is not planning for a follow-on space station in low Earth orbit at this time. The agency seems to prefer development of a commercial space station, perhaps with core modules from Bigelow Aerospace and/or other companies.

So that commercial space station will have to be designed, developed and launched by private companies. NASA and others would then lease space for research and other commercial activities and assorted endeavors on the commercial space station.

For example, Bigelow wants to dock their privately developed B330 habitable module at the ISS by 2020, following launch on a ULA Atlas V. And then spin it off as an independent space station when the ISS program ends – see my story.

Only China has firm plans for a national space station in the 2020’s. And the Chinese government has invited other nations to submit proposals. Russia’s ever changing space exploration plans may include a space station – but that remains to be actually funded and seen.

Regarding Mars, Aldrin has lectured widely and written books about his concept for “cycling pathways to occupy Mars,” he explained.

Watch this video of Apollo 11 moonwalker Buzz Aldrin speaking to Universe Today:

Video Caption: Buzz Aldrin at ‘Destination Mars’ Grand Opening at KSCVC. Apollo 11 moonwalker Buzz Aldrin talks to Universe Today/Ken Kremer during Q&A at ‘Destination Mars’ Holographic Exhibit Grand Opening ceremony at Kennedy Space Center Visitor Complex (KSCVC) in Florida on 9/18/16. Credit: Ken Kremer/kenkremer.com

Here is a transcript:

Universe Today/Ken Kremer: Can you talk about the role of commercial space [in getting humans to Mars]. Elon Musk wants to try and send people to Mars, maybe even before NASA. What do you think?

Buzz Aldrin: “Well, being a transportation guy in space for humans – well commercial, what that brings to mind is tourism plus space travel.

And there are many many more things commercial that are done with products that can be fine tuned by exposure to microgravity. And we need to do that.”

“I think we need to have a US capability beyond the ISS to prepare for future activities right from the beginning.”

“And that’s why what has sort of fallen into place is the name for my plan for the future – which is ‘cycling pathways to occupy Mars.’”

“A cycler in low Earth orbit, one in lunar orbit, and one to take people to Mars.”

“And they are utilized in evolutionary fashion.”

Apollo 11 moonwalker Buzz Aldrin during media preview of newly opened ‘Destination Mars’ holographic experience at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit Julian Leek
Apollo 11 moonwalker Buzz Aldrin during media preview of newly opened ‘Destination Mars’ holographic experience at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit Julian Leek

Meanwhile, be sure to visit the absolutely spectacular “Destination Mars” holographic exhibit before it closes on New Year’s Day 2017 – because it is only showing at KSCVC.

A scene from ‘Destination Mars’ of Buzz Aldrin and  NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft
A scene from ‘Destination Mars’ of Buzz Aldrin and NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft

You can get more information or book a visit to Kennedy Space Center Visitor Complex, by clicking on the website link:

https://www.kennedyspacecenter.com/things-to-do/destination-mars.aspx

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

NASA Successfully Test Fires Mars Mega Rocket Engine with Modernized ‘Brain’ Controller

NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars.  Credit: Ken Kremer/kenkremer.com
NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

NASA STENNIS SPACE CENTER, MISS – NASA engineers successfully carried out a key developmental test firing of an RS-25 rocket engine along with its modernized ‘brain’ controller at the Stennis Space Center on Thursday, Aug. 18, as part of the ongoing huge development effort coordinating the agency’s SLS Mars mega rocket slated for its maiden blastoff by late 2018.

“Today’s test was very successful,” Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, told Universe Today in an exclusive interview at the conclusion of the exciting RS-25 engine test gushing a huge miles long plume of steam at NASA Stennis on Aug. 18 under sweltering Gulf Coast heat.

“It was absolutely great!”

Thursday’s full thrust RS-25 engine hot fire test, using engine No. 0528, ran for its planned full duration of 7.5 minutes and met a host of critical test objectives required to confirm and scope out the capabilities and operating margins of the upgraded engines ,which are recycled from the shuttle era.

“We ran a full program duration of 420 seconds . And we had no failure identifications pop up.”

“It looks like we achieved all of our data objectives,” Wofford elaborated to Universe Today, after we witnessed the test from a viewing area just a few hundred meters away, with our ears protected by ear plugs.

A cluster of four RS-25 engines will power the Space Launch System (SLS) at the base of the first stage, also known as the core stage.

Huge plume of steam gushes as NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss., in this panoramic view.  The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars.  Credit: Ken Kremer/kenkremer.com
Huge plume of steam gushes as NASA engineers successfully conducted a development test of the RS-25 rocket engine Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss., in this panoramic view. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

NASA’s goal is to send humans to Mars by the 2030s with SLS and Orion.

Ignition of the RS-25 engine creates a huge plume of steam gushing out the test stand during successful  hot fire development test on Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss., in this panoramic view.  The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars.  Credit: Ken Kremer/kenkremer.com
Ignition of the RS-25 engine creates a huge plume of steam gushing out the test stand during successful hot fire development test on Thursday, Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss., in this panoramic view. The RS-25 will help power the core stage of the agency’s new Space Launch System (SLS) rocket for the journey to Mars. Credit: Ken Kremer/kenkremer.com

The primary goal of the development tests is to validate the capabilities of a new controller – or, “brain” – for the engine and to verify the different operating conditions needed for the SLS vehicle.

The test was part of a long continuing and new series aimed at certifying the engines for flight.

“We continue this test series in the fall. Which is a continuing part of our certification series to fly these engines on NASA’s SLS vehicle,” Wofford told me.

What was the primary objective of today’s test?

“Today’s test was mostly about wringing out the new control system. We have a new engine controller on this engine. And we have to certify that new controller for flight.”

“So to certify it we run it through its paces in ground tests. And we put it through a more stringent set of test conditions than it will ever see in flight.”

“The objectives we tested today required 420 seconds of testing to complete.”

Watch this NASA video of the full test:

Video Caption: RS-25 Rocket Engine Test Firing on 18 Aug. 2016: The 7.5-minute test conducted at NASA’s Stennis Space Center is part of a series of tests designed to put the upgraded former space shuttle engines through the rigorous temperature and pressure conditions they will experience during a launch of NASA’s Space Launch System mega rocket. Credit: NASA

What are the additional objectives from today’s test?

“Well you can’t do all of your objectives in one test. So the certification series are all about technical objectives and total accumulated time. So one thing we did was we accumulated time toward the time we need to certify this control system for the SLS engine,” Wofford explained.

“The other thing we did was you pick some technical objectives you want to put the controller through its paces for. And again you can’t do all of those in one test. So you spread them over a series. And we did some of those on this test.”

Aerojet Rocketdyne is the prime contractor for the RS-25 engine work and originally built them during the shuttle era.

The remaining cache of 16 heritage RS-25 engines are being recycled from their previous use as reusable space shuttle main engines (SSMEs). They are now being refurbished, upgraded and tested by NASA and Aerojet Rocketdyne to power the core stage of the Space Launch System rocket now under full development.

During launch they will fire at 109 percent thrust level for some eight and a half minutes while generating a combined two million pounds of thrust.

The SLS core stage is augmented with a pair of five segment solid rocket boosters (SRBs) generating about 3.3 million pounds of thrust each. NASA and Orbital just completed the QM-2 SRB qualification test on June 28.

Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX).

The first liquid hydrogen (LH2) qualification fuel tank for the core stage was just welded together at NASA’s Michoud Assembly Facility in New Orleans – as I witnessed exclusively and reported here.

The first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The RS-25 engines measure 14 feet tall and 8 feet in diameter.

For SLS they will be operating at 109% of power – a higher power level compared to a routine usage of 104.5% during the shuttle era.

They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.

Why was about five seconds of Thursday’s test run at the 111% power level? Will that continue in future tests?

“We did that because we plan to fly this engine on SLS at 109% of power level. So it’s to demonstrate the feasibility of doing that. On shuttle we were certified to fly these engines at 109%,” Wofford confirmed to Universe Today.

“So to demonstrate the feasibility of doing 109% power level on SLS we ‘overtest’ . So we ran [today’s test] at 2 % above where we are going to fly in flight.”

“We will do more in the future.”

The fully assembled core stage intergrated with all 4 RS-25 flight engines will be tested at the B-2 test stand in Stennis during the first quarter of 2018 – some 6 months or more before the launch in late 2018.

How many more engines tests will be conducted prior to the core stage test?

“After today we will run 7 more tests before the core stage test and the first flight.”

“I’m thrilled. I’ve see a lot of these and it never gets old!” Wofford gushed.

The hardware for SLS and Orion is really coming together now and its becoming more and more real every day.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

These are exciting times for NASA’s human deep space exploration strategy.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, interviewed by Ken Kremer, Universe Today about the RS-25 hot fire engine test on Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss.  The RS-25 will help power NASA’s Space Launch System (SLS) rocket.  Credit: Ken Kremer/kenkremer.com
Steve Wofford, manager of the SLS Liquid Engines Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, interviewed by Ken Kremer, Universe Today about the RS-25 hot fire engine test on Aug. 18 at NASA’s Stennis Space Center near Bay St. Louis, Miss. The RS-25 will help power NASA’s Space Launch System (SLS) rocket. Credit: Ken Kremer/kenkremer.com

Major Overhaul of VAB for NASA’s SLS Mars Rocket Reaches Halfway Point With Platform Installation

Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building required to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today. The new platforms give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A major overhaul of the iconic Vehicle Assembly Building (VAB) readying it for launches of NASA’s SLS Mars rocket by 2018 has reached the halfway point with installation of massive new access platforms required to enable assembly of the mammoth booster at the Kennedy Space Center (KSC) – as seen firsthand during an exclusive up close facility tour by Universe Today.

“We are in the full development stage right now and roughly 50% complete with the platforms on this job,” David Sumner, GSDO Deputy Sr. project manager for VAB development work at KSC, told Universe Today in an exclusive interview inside the VAB’s High Bay 3 on July 28, amidst workers actively turning NASA’s deep space dreams into full blown reality. See our exclusive up close photos herein – detailing the huge ongoing effort.

Upgrading and renovating the VAB is specifically the responsibility of NASA’s Ground Systems Development and Operations Program (GSDO) at Kennedy.

Inside VAB High Bay 3 – where previous generations of space workers proudly assembled NASA’s Saturn V Moon rocket and the Space Shuttle Orbiter launch stacks – today’s crews of workers were actively installing the newly manufactured work platforms needed to process and build the agency’s Space Launch System (SLS) rocket that will soon propel our astronauts back to exciting deep space destinations.

“We are very excited. We are at the beginning of a new program!” Sumner told me. “We have the infrastructure and are getting into operations soon.”

A heavy-lift crane lifts the first half of the F-level work platforms, F south, for NASA’s Space Launch System rocket, into position for installation July 15, in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Bill White
A heavy-lift crane lifts the first half of the F-level work platforms, F south, for NASA’s Space Launch System rocket, into position for installation July 15, in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Bill White

It’s certainly an exciting time as NASA pushes forward on all fronts in a coordinated nationwide effort to get the SLS rocket with the Orion EM-1 crew vehicle bolted on top ready and rolled out to Kennedy’s pad 39B for their planned maiden integrated blastoff by Fall 2018.

SLS and Orion are at the heart of NASA’s agency wide strategy to send astronauts on a ‘Journey to Mars’ by the 2030s.

SLS is the most powerful booster the world has even seen and is designed to boost NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

I walked into High Bay 3, scanned all around and up to the ceiling some 525 feet away and was thrilled to see a bustling construction site – the future of human voyages in deep space unfolding before my eyes. As I looked up to see the newly installed work platforms, I was surrounded by the constant hum of plenty of hammering, cutting, welding, hoisting, fastening, banging and clanging and workers moving equipment and gear around.

Welding work in progress by workers in the VAB transfer aisle for installation of huge work platforms inside High Bay 3 at KSC on July 28, 2016.  Credit: Julian Leek
Welding work in progress by workers in the VAB transfer aisle for installation of huge work platforms inside High Bay 3 at KSC on July 28, 2016. Credit: Julian Leek

Altogether a total of 10 levels of work platform levels will be installed in High Bay 3 – labeled K to A, from bottom to top. Each level consists of two platform halves, denoted as the North and South side platforms.

Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016.  Heavy duty cranes are used to install the new platforms which will enable access to assemble NASA’s SLS rocket at KSC in Florida.  Credit: Julian Leek
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016. Heavy duty cranes are used to install the new platforms which will enable access to assemble NASA’s SLS rocket at KSC in Florida. Credit: Julian Leek

What’s the status today?

“We are looking up at 5 of 10 platform levels with 10 of 20 platform halves installed here. A total of ten levels are being installed,” Sumner explained.

“We are installing them from the bottom up. The bottom five levels are installed so far.”

“We are up to about the 190 foot level right now with Platform F installation. Then we are going up to about the 325 foot level with the 10th platform [Platform A].

“So there are 10 levels for EM-1.”

Up close view looking out to the edge of Platform F showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Up close view looking out to the edge of Platform F showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

So much work was visible and actively in progress I definitely got the feeling from the ground up that NASA is now rapidly moving into the new post shuttle Era – dominated by the mammoth new SLS making its assembly debut inside these hallowed walls some 18 months or so from today.

“The work today is some outfitting on the platforms overhead here, as well as more work on the platform halves sitting in the transfer aisle and High Bay 4 to get them ready to lift and install into High Bay 3.”

“Overhead steel work is also ongoing here in High Bay 3 with additional steel work going vertical for reinforcement and mounting brackets for all the platforms going vertically.”

“So quite a few work locations are active with different crews and different groups.”

Two additional new platform halves are sitting in the VAB transfer aisle and are next in line for installation. With two more awaiting in VAB High Bay 4. Fabrication of additional platform halves is ongoing at KSC’s nearby Oak Hill facility.

“The rest are being fabricated in our Oak Hill facility. So we have almost everything on site so far.”

Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3.   The new platforms give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3. The new platforms give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Hensel Phelps is the general contractor for the VAB transformation. Subcontractors include S&R, Steel LLC, Sauer Inc., Jacobs and Beyel Bros Crane and Rigging.

The work platforms enable access to the SLS rocket at different levels up and down the over 300 foot tall rocket topped by the Orion crew capsule. They will fit around the outer mold line of SLS – including the twin solid rocket boosters, the core stage, and upper stage – and Orion.

The SLS core stage is being manufactured at NASA’s Michoud Assembly Facility in New Orleans, where I recently inspected the first completed liquid hydrogen tank test article – as reported here. Orion EM-1 is being manufactured here at Kennedy – as I reported here.

The first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The platforms will provide access for workers to assemble, process and test all the SLS and Orion components before rolling out to Launch Complex 39B atop the 380 foot tall Mobile Launcher – which is also undergoing a concurrent major renovation and overhaul.

As of today, five of the ten levels of platforms are in place.

Each of the giant platforms made of steel measures about 38 feet long and close to 62 feet wide. They weigh between 300,000 and 325,000 pounds.

The most recently installed F North and South platforms were put in place on the north and south walls of the high bay on July 15 and 19, respectively.

Here’s the view looking out to Platform F:

View looking out to both halves of Platform F and down to Platform G showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
View looking out to both halves of Platform F and down to Platform G showing the outer mold line snaking around the SLS core stage and a solid rocket booster from the 190 foot level under construction inside the VAB High Bay 3 on July 28, 2016 at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

How are the platforms installed ?

The platforms are carefully lifted into place by workers during a process that lasts about four hours.

“The 325 and 250 ton overhead facility cranes are used to [slowly] lift and move the platform halves back and forth between the VAB transfer aisle and High Bay 4 and into the SLS High Bay 3.”

Then they are attached to rail beams on the north and south walls of the high bay.

Construction workers from Beyel Bros Crane and Rigging also use a Grove 40 ton all terrain crane. It is also outfitted with man baskets to get to the places that cannot be reached by scaffolding in High Bay 3.

Installation of the remaining five levels of platforms should be completed by mid-2017.

“The job will be done by the middle of 2017. All the construction work will be done,” Sumner explained.

“Then we will get into our verification and validations with the Mobile Launcher (ML). Then the ML will roll in here around middle to late 2017 [for checkouts and testing] and then roll out to the pad [for more testing]. After that it will roll back in here. Then we will be ready to stack the SLS starting after that!”

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA's Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The platforms will be tested beginning later this year, starting with the lowest platforms at the K-level, and working all the way up to the top, the A-level.

The platforms are attached to a system of rail beams that “provide structural support and contain the drive mechanisms to retract and extend the platforms,” according to a NASA fact sheet.

“Each platform will reside on four Hillman roller systems on each side – much like a kitchen drawer slides in and out. A mechanical articulated tray also moves in and out with each platform.”

The F-level platforms are located about 192 feet above the VAB floor.

“They will provide access to the SLS core stage (CS) intertank for umbilical mate operations. The “F-1” multi-level ground support equipment access platform will be used to access the booster forward assemblies and the CS to booster forward attach points. The upper level of F-1 will be used to remove the lifting sling used to support forward assembly mate for booster stacking operations.”

“Using the five platforms that are now installed, workers will have access to all of the Space Launch System rocket’s booster field joints and forward skirts, the core stage intertank umbilical and interface plates,” says Mike Bolger, GSDO program manager at Kennedy.

Looking190 feet down from Platform F to the VAB floor along all five newly installed access platforms in High Bay 3. Construction worker on Platform G below is working near the outer mold line for the SLS rocket that will fill this space by early 2018 at KSC in Florida.  Credit: Ken Kremer/kenkremer.com
Looking 190 feet down from Platform F to the VAB floor along all five newly installed access platforms in High Bay 3. Construction worker on Platform G below is working near the outer mold line for the SLS rocket that will fill this space by early 2018 at KSC in Florida. Credit: Ken Kremer/kenkremer.com

‘NASA is transforming KSC into a launch complex for the 21st Century,’ as KSC Center Director and former shuttle commander Bob Cabana often explains.

So it was out with the old and in with the new to carry out that daunting task.

“We took the old shuttle platforms out, went down to the [building] structure over the past few years and are now putting up the new SLS platforms,” Sumner elaborated.

“All the demolition work was done a few years ago. So we are in the full development stage right now and roughly 50% complete with the platforms on this job.”

And after NASA launches EM-1, significantly more VAB work lies ahead to prepare for the first manned Orion launch on the EM-2 mission set for as soon as 2021 – because it will feature an upgraded and taller version of the SLS rocket – including a new upper stage.

“For EM-2, the plan right now is we will add two more levels and relocate three more. So we will do some adjustments and new installations in the upper levels for EM-2.”

“It’s been an honor to be here and work here in the VAB every day – and prepare for the next 50 years of its life.”

“We are at the beginning of a new program. We have the infrastructure and are getting into operations soon,” Sumner said. “We have hopefully got a long way to go on the future of space exploration, with many decades of exploration ahead.”

“We are on a ‘Journey to Mars’ and elsewhere. So this is the beginning of all that. It’s very exciting!”

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Looking down from newly installed VAB High Bay 3 Platform F to Platform G on July 28, 2016.  New platforms enable access to assemble NASA’s SLS rocket at KSC in Florida.  Credit: Julian Leek
Looking down from newly installed VAB High Bay 3 Platform F to Platform G on July 28, 2016. New platforms enable access to assemble NASA’s SLS rocket at KSC in Florida. Credit: Julian Leek
Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3.   The new platforms give technicians access to assemble NASA’s SLS rocket at KSC in Florida.  Credit: Julian Leek
Two halves of Platform D sit in the VAB transfer aisle on July 28, 2016 awaiting installation into High Bay 3. The new platforms give technicians access to assemble NASA’s SLS rocket at KSC in Florida. Credit: Julian Leek
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today.  The new platforms are required to give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up to the 5 pairs of newly installed massive work platforms inside High Bay 3 of the Vehicle Assembly Building on July 28, 2016 during exclusive facility visit by Universe Today. The new platforms are required to give technicians access to assemble NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
US Flag hangs proudly inside the VAB - America’s Premier Spaceport to Deep Space.  Credit: Lane Hermann
US Flag hangs proudly inside the VAB – America’s Premier Spaceport to Deep Space. Credit: Lane Hermann
View of the VAB and Mobile Launcher from the KSC Launch Complex 39 Press Site.   NASA is upgrading the VAB with new platforms to assemble and launch  NASA’s Space Launch System rocket at the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
View of the VAB and Mobile Launcher from the KSC Launch Complex 39 Press Site. NASA is upgrading the VAB with new platforms to assemble and launch NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft  for launches from Space Launch Complex 39B the Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft for launches from Space Launch Complex 39B the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

NASA Welds Together 1st SLS Hydrogen Test Tank for America’s Moon/Mars Rocket – Flight Unit in Progress

The first liquid hydrogen tank, also called the qualification test article, on NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine on July 22, 2016 after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

MICHOUD ASSEMBLY FACILITY, NEW ORLEANS, LA – NASA has just finished welding together the very first fuel tank for America’s humongous Space Launch System (SLS) deep space rocket currently under development – and Universe Today had an exclusive up close look at the liquid hydrogen (LH2) test tank shortly after its birth as well as the first flight tank, during a tour of NASA’s New Orleans rocket manufacturing facility on Friday, July 22, shortly after completion of the milestone assembly operation.

“We have just finished welding the first liquid hydrogen qualification tank article …. and are in the middle of production welding of the first liquid hydrogen flight hardware tank [for SLS-1] in the big Vertical Assembly Center welder!” explained Patrick Whipps, NASA SLS Stages Element Manager, in an exclusive hardware tour and interview with Universe Today on July 22, 2016 at NASA’s Michoud Assembly Facility (MAF) in New Orleans.

“We are literally putting the SLS rocket hardware together here at last. All five elements to put the SLS stages together [at Michoud].”

This first fully welded SLS liquid hydrogen tank is known as a ‘qualification test article’ and it was assembled using basically the same components and processing procedures as an actual flight tank, says Whipps.

“We just completed the liquid hydrogen qualification tank article and lifted it out of the welding machine and put it into some cradles. We will put it into a newly designed straddle carrier article next week to transport it around safely and reliably for further work.”

And welding of the liquid hydrogen flight tank is moving along well.

“We will be complete with all SLS core stage flight tank welding in the VAC by the end of September,” added Jackie Nesselroad, SLS Boeing manager at Michoud. “It’s coming up very quickly!”

“The welding of the forward dome to barrel 1 on the liquid hydrogen flight tank is complete. And we are doing phased array ultrasonic testing right now!”

SLS is the most powerful booster the world has even seen and one day soon will propel NASA astronauts in the agency’s Orion crew capsule on exciting missions of exploration to deep space destinations including the Moon, Asteroids and Mars – venturing further out than humans ever have before!

The LH2 ‘qualification test article’ was welded together using the world’s largest welder – known as the Vertical Assembly Center, or VAC, at Michoud.

And it’s a giant! – measuring approximately 130-feet in length and 27.6 feet (8.4 m) in diameter.

See my exclusive up close photos herein documenting the newly completed tank as the first media to visit the first SLS tank. I saw the big tank shortly after it was carefully lifted out of the welder and placed horizontally on a storage cradle on Michoud’s factory floor.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA's new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

Finishing its assembly after years of meticulous planning and hard work paves the path to enabling the maiden test launch of the SLS heavy lifter in the fall of 2018 from the Kennedy Space Center (KSC) in Florida.

The qual test article is the immediate precursor to the actual first LH2 flight tank now being welded.

“We will finish welding the liquid hydrogen and liquid oxygen flight tanks by September,” Whipps told Universe Today.

Up close view of the dome of the newly assembled first ever liquid hydrogen test tank for NASA's new Space Launch System (SLS) heavy lift rocket on July 22, 2016  after it was welded together at NASA’s Michoud Assembly Facility in New Orleans.  Sensors will be attached to both ends for upcoming structural loads and proof testing.  Credit: Ken Kremer/kenkremer.com
Up close view of the dome of the newly assembled first ever liquid hydrogen test tank for NASA’s new Space Launch System (SLS) heavy lift rocket on July 22, 2016 after it was welded together at NASA’s Michoud Assembly Facility in New Orleans. Sensors will be attached to both ends for upcoming structural loads and proof testing. Credit: Ken Kremer/kenkremer.com

Technicians assembled the LH2 tank by feeding the individual metallic components into NASA’s gigantic “Welding Wonder” machine – as its affectionately known – at Michoud, thus creating a rigid 13 story tall structure.

The welding work was just completed this past week on the massive silver colored structure. It was removed from the VAC welder and placed horizontally on a cradle.

I watched along as the team was also already hard at work fabricating SLS’s first liquid hydrogen flight article tank in the VAC, right beside the qualification tank resting on the floor.

Welding of the other big fuel tank, the liquid oxygen (LOX) qualification and flight article tanks will follow quickly inside the impressive ‘Welding Wonder’ machine, Nesselroad explained.

The LH2 and LOX tanks sit on top of one another inside the SLS outer skin.

The SLS core stage – or first stage – is mostly comprised of the liquid hydrogen and liquid oxygen cryogenic fuel storage tanks which store the rocket propellants at super chilled temperatures. Boeing is the prime contractor for the SLS core stage.

To prove that the new welding machines would work as designed, NASA opted “for a 3 stage assembly philosophy,” Whipps explained.

Engineers first “welded confidence articles for each of the tank sections” to prove out the welding techniques “and establish a learning curve for the team and test out the software and new weld tools. We learned a lot from the weld confidence articles!”

“On the heels of that followed the qualification weld articles” for tank loads testing.

“The qualification articles are as ‘flight-like’ as we can get them! With the expectation that there are still some tweaks coming.”

“And finally that leads into our flight hardware production welding and manufacturing the actual flight unit tanks for launches.”

“All the confidence articles and the LH2 qualification article are complete!”

What’s the next step for the LH2 tank?

The test article tank will be outfitted with special sensors and simulators attached to each end to record reams of important engineering data, thereby extending it to about 185 feet in length.

Thereafter it will loaded onto the Pegasus barge and shipped to NASA’s Marshall Space Flight Center in Huntsville, Alabama, for structural loads testing on one of two new test stands currently under construction for the tanks. The tests are done to prove that the tanks can withstand the extreme stresses of spaceflight and safely carry our astronauts to space.

“We are manufacturing the simulators for each of the SLS elements now for destructive tests – for shipment to Marshall. It will test all the stress modes, and finally to failure to see the process margins.”

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

The SLS core stage builds on heritage from NASA’s Space Shuttle Program and is based on the shuttle’s External Tank (ET). All 135 ET flight units were built at Michoud during the thirty year long shuttle program by Lockheed Martin.

“We saved billions of dollars and years of development effort vs. starting from a clean sheet of paper design, by taking aspects of the shuttle … and created an External Tank type generic structure – with the forward avionics on top and the complex engine section with 4 engines (vs. 3 for shuttle) on the bottom,” Whipps elaborated.

“This is truly an engineering marvel like the External Tank was – with its strength that it had and carrying the weight that it did. If you made our ET the equivalent of a Coke can, our thickness was about 1/5 of a coke can.”

“It’s a tremendous engineering job. But the ullage pressures in the LOX and LH2 tanks are significantly more and the systems running down the side of the SLS tank are much more sophisticated. Its all significantly more complex with the feed lines than what we did for the ET. But we brought forward the aspects and designs that let us save time and money and we knew were effective and reliable.”

The Vertical Weld Center tool used to fabricate barrel segments for the SLS liquid hydrogen and oxygen core stage tanks via vertical friction stir welding operations at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The Vertical Weld Center tool used to fabricate barrel segments for the SLS liquid hydrogen and oxygen core stage tanks via vertical friction stir welding operations at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank (LOX), the intertank, the liquid hydrogen tank (LH2) and the engine section.

The LH2 and LOX tanks feed the cryogenic propellants into the first stage engine propulsion section which is powered by a quartet of RS-25 engines – modified space shuttle main engines (SSMEs) – and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The tanks are assembled by joining previously manufactured dome, ring and barrel components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.

The LH2 tank is the largest major part of the SLS core stage. It holds 537,000 gallons of super chilled liquid hydrogen. It is comprised of 5 barrels, 2 domes, and 2 rings.

The LOX tank holds 196,000 pounds of liquid oxygen. It is assembled from 2 barrels, 2 domes, and 2 rings and measures over 50 feet long.

The material of construction of the tanks has changed compared to the ET.

“The tanks are constructed of a material called the Aluminum 2219 alloy,” said Whipps. “It’s a ubiquosly used aerospace alloy with some copper but no lithium, unlike the shuttle superlightweight ET tanks that used Aluminum 2195. The 2219 has been a success story for the welding. This alloy is heavier but does not affect our payload potential.”

“The intertanks are the only non welded structure. They are bolted together and we are manufacturing them also. It’s much heavier and thicker.”

Overall, the SLS core stage towers over 212 feet (64.6 meters) tall and sports a diameter of 27.6 feet (8.4 m).

NASA’s Vehicle Assembly Center is the world’s largest robotic weld tool. The domes and barrels are assembled from smaller panels and piece parts using other dedicated robotic welding machines at Michoud.

The total weight of the whole core stage empty is 188,000 pounds and 2.3 million pounds when fully loaded with propellant. The empty ET weighed some 55,000 pounds.

Considering that the entire Shuttle ET was 154-feet long, the 130-foot long LH2 tank alone isn’t much smaller and gives perspective on just how big it really is as the largest rocket fuel tank ever built.

“So far all the parts of the SLS rocket are coming along well.”

“The Michoud SLS workforce totals about 1000 to 1500 people between NASA and the contractors.”

Every fuel tank welded together from now on after this series of confidence and qualification LOX and LH2 tanks will be actual flight article tanks for SLS launches.

“There are no plans to weld another qualification tank after this,” Nesselroad confirmed to me.

What’s ahead for the SLS-2 core stage?

“We start building the second SLS flight tanks in October of this year – 2016!” Nesselroad stated.

The world’s largest welder was specifically designed to manufacture the core stage of the world’s most powerful rocket – NASA’s SLS.

The Vertical Assembly Center welder was officially opened for business at NASA’s Michoud Assembly Facility in New Orleans on Friday, Sept. 12, 2014.

NASA Administrator Charles Bolden was personally on hand for the ribbon-cutting ceremony at the base of the huge VAC welder.

The state-of-the-art welding giant stands 170 feet tall and 78 feet wide. It complements the world-class welding toolkit being used to assemble various pieces of the SLS core stage including the domes, rings and barrels that have been previously manufactured.

The Gore Weld Tool (foreground) and  Circumferential Dome Weld Tool (background) Center tool used to fabricate dome segments for the SLS liquid hydrogen and oxygen core stage tanks via vertical friction stir welding operations at NASA’s Michoud Assembly Facility in New Orleans.  Credit: Ken Kremer/kenkremer.com
The Gore Weld Tool (foreground) and Circumferential Dome Weld Tool (background) used to fabricate dome segments for the SLS liquid hydrogen and oxygen core stage tanks via vertical friction stir welding operations at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) Block 1 configuration with a liftoff thrust of 8.4 million pounds – more powerful than NASA’s Saturn V moon landing rocket.

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

The exact launch dates fully depend on the budget NASA receives from Congress and who is elected President in the November 2016 election – and whether they maintain or modify NASA’s objectives.

“If we can keep our focus and keep delivering, and deliver to the schedules, the budgets and the promise of what we’ve got, I think we’ve got a very capable vision that actually moves the nation very far forward in moving human presence into space,” said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington, during the post QM-2 SRB test media briefing in Utah last month.

“This is a very capable system. It’s not built for just one or two flights. It is actually built for multiple decades of use that will enable us to eventually allow humans to go to Mars in the 2030s.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SLS and Orion crew vehicle, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Juno at Jupiter, Orbital ATK Antares & Cygnus, Boeing, Space Taxis, Mars rovers, NASA missions and more at Ken’s upcoming outreach events:

July 27-28: “ULA Atlas V NRO Spysat launch July 28, SpaceX launch to ISS on CRS-9, SLS, Orion, Juno at Jupiter, ULA Delta 4 Heavy NRO spy satellite, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Graphic shows all the dome, barrel, ring and engine components used to assemble the five major structures of the core stage of NASA’s Space Launch System (SLS) in Block 1 configuration. Credits: NASA/MSFC
Graphic shows all the dome, barrel, ring and engine components used to assemble the five major structures of the core stage of NASA’s Space Launch System (SLS) in Block 1 configuration. Credits: NASA/MSFC
At NASA’s Michoud Assembly Facility in New Orleans, Patrick Whipps/NASA SLS Stages Element Manager and Ken Kremer/Universe Today discuss details of SLS manufacture by the Circumferential Dome Weld Tool used to fabricate dome segments for the SLS liquid hydrogen and oxygen core stage tanks.   Credit: Ken Kremer/kenkremer.com
At NASA’s Michoud Assembly Facility in New Orleans, Patrick Whipps/NASA SLS Stages Element Manager and Ken Kremer/Universe Today discuss details of SLS manufacture by the Circumferential Dome Weld Tool used to fabricate dome segments for the SLS liquid hydrogen and oxygen core stage tanks. Credit: Ken Kremer/kenkremer.com
Graphic shows Block I configuration of NASA’s Space Launch System (SLS). Credits: NASA/MSFC
Graphic shows Block I configuration of NASA’s Space Launch System (SLS). Credits: NASA/MSFC

NASA Completes Awesome Test Firing of World’s Most Powerful Booster for Human Mission to Mars – Gallery

Ignition of the qualification motor (QM-2) booster during test firing for NASA’s Space Launch System as seen on Tuesday, June 28, 2016, at Orbital ATK Propulsion System's (SLS) test facilities in Promontory, Utah.  Credit: Julian Leek
Ignition of the qualification motor (QM-2) booster during test firing for NASA’s Space Launch System as seen on Tuesday, June 28, 2016, at Orbital ATK Propulsion System’s (SLS) test facilities in Promontory, Utah. Credit: Julian Leek

The world’s most powerful booster that will one day propel NASA astronauts on exciting missions of exploration to deep space destinations including the Moon and Mars was successfully ignited this morning, June 28, during an awesome ground test firing on a remote mountainside in Utah, that qualifies it for an inaugural blastoff in late 2018.

The two-minute-long, full-duration static test for NASA’s mammoth Space Launch System (SLS) rocket involved firing the new five-segment solid rocket booster for its second and final qualification ground test as it sat restrained in a horizontal configuration at Orbital ATK’s test facilities at a desert site in Promontory, Utah.

The purpose was to provide NASA and prime contractor Orbital ATK with critical data on 82 qualification objectives. Engineers will use the data gathered by more than 530 instrumentation channels on the booster to certify the booster for flight.

The 154-foot-long (47-meter) booster was fired up on the test stand by the Orbital ATK operations team at 11:05 a.m. EDT (9:05 a.m. MT) for what is called the Qualification Motor-2 (QM-2) test.

“We have ignition of NASA’s Space Launch System motor powering us on our Journey to Mars,” said NASA commentator Kim Henry at ignition!

A gigantic plume of black smoke and intense yellow fire erupted at ignition spewing a withering cloud of ash into the Utah air and barren mountainside while consuming propellant at a rate of 5.5 tons per second.

It also sent out a shock wave reverberating back to excited company, NASA and media spectators witnessing the event from about a mile away as well as to another 10,000 or so space enthusiasts and members of the general public gathered to watch from about 2 miles away.

Ignition of the qualification motor (QM-2) booster during test firing for NASA’s Space Launch System as seen on Tuesday, June 28, 2016, at Orbital ATK Propulsion System's (SLS) test facilities in Promontory, Utah.  Credit: Julian Leek
Ignition of the qualification motor (QM-2) booster during test firing for NASA’s Space Launch System as seen on Tuesday, June 28, 2016, at Orbital ATK Propulsion System’s (SLS) test facilities in Promontory, Utah. Credit: Julian Leek

“What an absolutely amazing day today for all of us here to witness this test firing. And it’s not just a test firing. It’s really a qualification motor test firing that says this design is ready to go fly and ready to go do the mission which it’s designed to go do,” said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington, during the post QM-2 test media briefing today.

Thrilled spectators witness the Qualification Motor-2 (QM-2) test firing on June 28, 2016 at Orbital ATK test facilities in Promontory, Utah.  Credit: Jean Leek
Thrilled spectators witness the Qualification Motor-2 (QM-2) test firing on June 28, 2016 at Orbital ATK test facilities in Promontory, Utah. Credit: Jean Leek

The critically important test marks a major milestone clearing the path to the first SLS launch that could happen as soon as September 2018, noted Gerstenmaier

“The team did a tremendous professional job to get all this ready for the firing. We will get over 500 channels of data on this rocket. They will pour over the data to ensure it will perform exactly the way we intended it to at these cold conditions.”

Qualification motor (QM-2) booster fires up erupting massive smoke cloud during test of NASA’s Space Launch System on Tuesday, June 28, 2016, at Orbital ATK test facilities in Promontory, Utah.  Credit: Dawn Taylor
Qualification motor (QM-2) booster fires up erupting massive smoke cloud during test of NASA’s Space Launch System on Tuesday, June 28, 2016, at Orbital ATK test facilities in Promontory, Utah. Credit: Dawn Taylor

The QM-2 booster had been pre-chilled for several weeks inside a huge test storage shed to conduct this so called ‘cold motor test’ at approximately 40 degrees Fahrenheit (5 C) – corresponding to the colder end of its accepted propellant temperature range.

NASA’s Space Launch System (SLS) rocket with lift off using two of the five segment solid rocket motors and four RS-25 engines to power the maiden launch of SLS and NASA’s Orion deep space manned spacecraft in late 2018.

The SLS boosters are derived from the four segment solid rocket boosters (SRBs) originally delevoped for NASA’s space shuttle program and used for 3 decades.

“This final qualification test of the booster system shows real progress in the development of the Space Launch System,” said NASA associate administrator Gerstenmaier.

“Seeing this test today, and experiencing the sound and feel of approximately 3.6 million pounds of thrust, helps us appreciate the progress we’re making to advance human exploration and open new frontiers for science and technology missions in deep space.”

Despite being cooled to 41 F (5 C) for the cold motor test the flames emitted by the 12-foot-diameter (3.6-meter) booster are actually hot enough at some 6000 degrees Fahrenheit to boil steel.

The internal pressure reaches about 900 psi.

NASA's Space Launch System Solid Rocket Booster infographic
NASA’s Space Launch System Solid Rocket Booster infographic

The first ground test called QM-1 was conducted at 90 degrees Fahrenheit, at the upper end of the operating range, in March 2015 as I reported earlier here.

This second ground test firing took place about 1 hour later than originally planned due to a technical issue with the ground sequencing computer control system.

The next time one of these solid rocket boosters fire will be for the combined SLS-1/Orion EM-1 test flight in late 2018.

Each booster generates approximately 3.6 million pounds of thrust. Overall they will provide more than 75 percent of the thrust needed for the rocket and Orion spacecraft to escape Earth’s gravitational pull, says NASA.

“It was awesome to say the least,” space photographer and friend Julian Leek who witnessed the test first hand told Universe Today.

“Massive fire power released over the Utah mountains. There was about a five second delay before you could hear the sound – that really got everyone’s attention!”

“It was absolutely magnificent,” space photographer friend Dawn Taylor told me. “Can’t wait to see it at the Cape when it goes vertical.”

To date Orbital ATK has cast 3 of the 10 booster segments required for the 2018 launch, said Charlie Precourt, vice president and general manager of Orbital ATK’s Propulsion Systems Division in Promontory, Utah.

I asked Precourt about the production timing for the remaining segments.

“All of the segments will be delivered to NASA at the Kennedy Space Center (KSC) in Florida by next fall,” Precourt replied during the media briefing.

“They will be produced at a rate of roughly one a month. We also have to build the nozzles up and so forth.”

When will booster stacking begin inside the Vehicle Assembly Building (VAB) at KSC?

Booster shipments start shipping from Utah this fall. Booster stacking in the VAB starts in the spring of 2018,” Alex Priskos, manager of the NASA SLS Boosters Office at Marshall Space Flight Center in Huntsville, Alabama, told me.

Furthermore a preliminary look at the data indicates that all went well.

“What an outstanding test. After a look at some very preliminary data everything looks great so far,” Priskos said at the briefing. “We’re going to be digging into the data a lot more as we go forward.”

The five-segment Qualification Motor-2 (QM-2) test booster for NASA's SLS just prior to full duration firing at Orbital ATK test facility in Promontory, Utah, on June 28, 2016.  Credit: Julian Leek
The spent five-segment Qualification Motor-2 (QM-2) test booster for NASA’s SLS soon after the full duration firing at Orbital ATK test facility in Promontory, Utah, on June 28, 2016. Credit: Julian Leek

Meanwhile the buildup of US flight hardware continues at NASA and contractor centers around the US, as well as the Orion service module from ESA.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds.

In February 2016 the welded skeletal backbone for the Orion EM-1 mission arrived at the Kennedy Space Center for outfitting with all the systems and subsystems necessary for flight.

The core stage fuel tank holding the cryogenic liquid oxygen and hydrogen propellants is being welded together at NASA’s Michoud Assembly Facility in New Orleans, LA.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Although the SLS-1 flight in 2018 will be uncrewed, NASA plans to launch astronauts on the SLS-2/EM-2 mission slated for the 2021 to 2023 timeframe.

It all depends on the budget NASA receives from Congress and who is elected President in the election in November 2016.

“If we can keep our focus and keep delivering, and deliver to the schedules, the budgets and the promise of what we’ve got, I think we’ve got a very capable vision that actually moves the nation very far forward in moving human presence into space,” Gerstenmaier explained at the briefing.

“This is a very capable system. It’s not built for just one or two flights. It is actually built for multiple decades of use that will enable us to eventually allow humans to go to Mars in the 2030s.

One forerunner to the Mars mission could be a habitation module around the Moon perhaps five years from now.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

An Orbital ATK technician inspects hardware and instrumentation on a full-scale, test version booster for NASA's new rocket, the Space Launch System. The booster is being cooled to approximately 40 degrees Fahrenheit ahead of its second qualification ground test June 28 at Orbital ATK's test facilities in Promontory, Utah. Testing at the thermal extremes experienced by the booster on the launch pad is important to understanding the effects of temperature on the performance of how the propellant burns.   Credits: Orbital ATK
An Orbital ATK technician inspects hardware and instrumentation on a full-scale, test version booster for NASA’s new rocket, the Space Launch System. The booster is being cooled to approximately 40 degrees Fahrenheit ahead of its second qualification ground test June 28 at Orbital ATK’s test facilities in Promontory, Utah. Testing at the thermal extremes experienced by the booster on the launch pad is important to understanding the effects of temperature on the performance of how the propellant burns. Credits: Orbital ATK
The second and final qualification motor (QM-2) test for the Space Launch System’s booster is seen, Tuesday, June 28, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. During the Space Launch System flight the boosters will provide more than 75 percent of the thrust needed to escape the gravitational pull of the Earth, the first step on NASA’s Journey to Mars. Photo Credit: (NASA/Bill Ingalls)
The second and final qualification motor (QM-2) test for the Space Launch System’s booster is seen, Tuesday, June 28, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. During the Space Launch System flight the boosters will provide more than 75 percent of the thrust needed to escape the gravitational pull of the Earth, the first step on NASA’s Journey to Mars. Photo Credit: (NASA/Bill Ingalls)
Mountainside test location for the Qualification motor-2 (QM-2) test of the 5-segment solid rocket motor designed for NASA's Space Launch System (SLS) at Orbital ATK test facility in Promontory, Utah, on June 28, 2016.  Credit: Julian Leek
Mountainside test location for the Qualification motor-2 (QM-2) test of the 5-segment solid rocket motor designed for NASA’s Space Launch System (SLS) at Orbital ATK test facility in Promontory, Utah, on June 28, 2016. Credit: Julian Leek
The five-segment Qualification motor-2 (QM-2) test booster for NASA's Space Launch System (SLS) being readied for full duration firing at Orbital ATK test facility in Promontory, Utah, on June 28, 2016.  Credit: NASA
The five-segment Qualification motor-2 (QM-2) test booster for NASA’s Space Launch System (SLS) being readied for full duration firing at Orbital ATK test facility in Promontory, Utah, on June 28, 2016. Credit: NASA