Let’s Clean up the Space Junk with Magnetic Space Tugs

In the future, derelict satellites could be grappled and removed from key orbits around Earth with a space tug using magnetic forces. Credit: Philippe Ogaki

After 50 years of sending rockets, satellites, and payloads into orbit, humanity has created something of a “space junk” problem. Recent estimates indicate that there are more than 170 million pieces of debris up there, ranging in size from less than 1 cm (0.4 in) to a few meters in diameter. Not only does this junk threaten spacecraft and the ISS, but collisions between bits of debris can cause more to form, a phenomena known as the Kessler Effect.

And thanks to the growth of the commercial aerospace industry and the development of small satellites, things are not likely to get any less cluttered up there anytime soon. Hence why multiple strategies are being explored to clean up the space lanes, ranging from robotic arms and nets to harpoons. But in what may be the most ambitious plan to date, the ESA has proposed creating space tugs with powerful magnets to yank debris out of orbit.

The concept comes from Emilien Fabacher, a researcher from the Institut Supérieur de l’Aéronautique et de l’Espace at the University of Toulouse, France. His concept for a magnetic tug seeks to address one type of space debris in particular – inoperable satellites. These uncontrolled, rapidly spinning objects often weigh up to several tons, and are therefore one of the most significant collision hazards there is.

Illustration showing the problem of space debris. Credit: ESA

When applied to the problem of orbital debris, magnetic attraction is an attractive solutions for the safe deorbiting of spent satellites. For starters, it relies on technology that is standard issue aboard many low-orbiting satellites, which is known as magnetorquers. These electromagnets allow satellites to adjust their orientation using the Earth’s magnetic field. Hence, debris-chasing satellites would not need to be specially equipped in advance.

What’s more, this same magnetic attraction or repulsion technology is being considered as a safe method for allowing multiple satellites to maintain close formations in space. Such satellites – like NASA’s Magnetospheric Multiscale mission (MMS), the Landsat 7 and the Earth Observing-1 satellites, and the ESA’s upcoming LISA mission – are either operational or soon will be around Earth.

Because of this, this kind of magnetic attraction technology presents a safe and effective alternative for deorbiting space junk. As Fabacher explained in a recent ESA press release:

“With a satellite you want to deorbit, it’s much better if you can stay at a safe distance, without needing to come into direct contact and risking damage to both chaser and target satellites. So the idea I’m investigating is to apply magnetic forces either to attract or repel the target satellite, to shift its orbit or deorbit it entirely.”

Artist’s impression of the ESA’s proposed Darwin mission, six formation-flying satellites that would look for exoplanets. Credit: ESA/Medialab

The concept emerged out of a conversation Fabacher had with experts from the ESA’s technical center in the Netherlands. As part of his PhD research, he was looking into how magnetic guidance, navigation and control techniques would work in practice. This led to a discussion about how similar technology could allow swarms of satellites to attract and remove debris from orbit.

After making some calculations that combined a rendezvous simulator with magnetic interaction models, and also taking account the ever-changing state of Earth’s own magnetosphere, Fabacher and his colleagues realized they had a working concept. “The first surprise was that it was indeed possible, theoretically – initially we couldn’t be sure, but it turns out that the physics works fine,” he said.

To break it down, the chaser satellites would generate a strong magnetic field using superconducting wires that are cooled to cryogenic temperatures. These satellites would also rely on magnetic fields to maintain precise flying formations, thus allowing a swarm of chaser satellites the ability to deal with multiple pieces of debris, or to coordinate and guide debris to a specific location.

According to Finn Ankersen – an ESA expert in rendezvous and docking and formation flight – these magnetic tugs would also be able to remove space debris with a very high level of precision. “This kind of contactless magnetic influence would work from about 10–15 meters out, offering positioning precision within 10 cm with attitude precision [of] 1 – 2º,” he said.

Why Space Debris Mitigation is needed. Click for animation. Credit: ESA

The concept is being developed with support provided by the ESA’s Networking/Partnering Initiative, a program that offers support to universities and research institutes for the sake of developing space-related technologies. And it comes at a time when the issue of space debris is becoming increasingly worrisome.

Left unchecked, space debris is likely to become a very serious hazard in the coming years and decades. Already, it is estimated that the small satellite market will grow by $5.3 billion in the next decade (according to Space Works and Eurostat) and many private companies are looking to provide regular launch services to accommodate that growth.

If we intend to begin making a return to the Moon and mounting missions to Mars, we need to make sure the space lanes are clear! And given the importance of the International Space Station to scientific research and international collaboration, and with companies like Bigelow Aerospace looking to establish space habitats in orbit, something has to be done about this problem before it gets completely out of control!

Who knows? Maybe a small fleet or magnetic tugs is just what we need to clean up this mess!

Further Reading: ESA

High-Speed Space Broadband for Everyone. SpaceX Details their Plans to Launch 1000s of Internet Satellites

A number companies are deploying satellites this year to create space-based internet services. Credit: AMNH.

SpaeeX and Tesla-founder Elon Musk has made some rather bold promises over the years. In addition to building a fleet of reusable rockets, an Interplanetary Transport System, colonizing Mars, and revolutionizing transportation, he has also made it clear that he hopes to provide worldwide broadband access by deploying a “constellation” of internet-providing satellites.

In November of 2016, SpaceX filed an application with the Federal Communications Commission (FCC) for a license to operate this constellation of non-geostationary satellites (NGS). And earlier this week, the US Senate Committee on Commerce. Science, and Transportation convened a hearing to explore this proposal for next-generation telecommunications services.

The hearing was titled, “Investing in America’s Broadband Infrastructure: Exploring Ways to Reduce Barriers to Deployment”. In the course of things, the committee heard from representatives of government and industry who spoke about the best ways to offer streamlined broadband access (especially in rural areas), the necessary infrastructure, and how to encourage private investment.

SpaceX’s proposed satellite constellation – 4,425 broadband internet satellites – could provide the entire world with high-speed internet access. Credit: ESA

Of those the committee heard from, Ms. Patricia Cooper – VP of Satellite Government Affairs for SpaceX – was on hand to underscore the company’s vision. As she stated:

“SpaceX sees substantial demand for high-speed broad band in the United States and worldwide. As the Committee is aware, millions of Americans outside of limited urban areas lack basic, reliable access. Furthermore, even in urban areas, a majority of Americans lacks more than a single fixed broadband provider from which to choose and may seek additional competitive options for high-speed service.”

Cooper also cited recent FCC findings, which indicated that millions of Americans lag behind other developed nations in terms of broadband speed, access, and price competitiveness. Basically, thirty-four million American citizens do not have access to 25 megabits per second (“Mbps”) broadband service while 47% of students in the US lack the connectivity to meet the FCC’s short-term goal of 100 Mbps per 1,000 students and staff.

This is at at a time when global demand for broadband services and internet connectivity continue to grow at an unprecedented rate. According to a report prepared by Cisco in 2016 – titled “White paper: Cisco VNI Forecast and Methodology, 2015-2020” – global Internet Protocol (IP) traffic surpassed the zettabyte threshold. In other words, over 1,000 billion gigabytes of data were exchanged worldwide in a single year!

SpaceX plans to beginning launching their internet-providing satellites aboard their Falcon 9 rockets beginning next year. Credit: Ken Kremer/Kenkremer.com

By 2020, that figure is projected to double, global fixed broadband speeds are expected to nearly double, and the number of devices connected to IP networks is projected to outnumber the global population by a factor of about 3 to 1. To remedy this situation, and bring broadband access in the US up to the average for developed nations, SpaceX plans to launch 4,425 broadband satellites.

These will begin being launched in 2019 aboard the company’s fleet of Falcon 9 rockets. The launches will continue until they have reached full capacity, which is expected to be by 2024. As Cooper outlined it:

“Later this year, SpaceX will begin the process of testing the satellites themselves, launching one prototype before the end of the year and another during the early months of 2018. Following successful demonstration of the technology, SpaceX intends to begin the operational satellite launch campaign in 2019. The remaining satellites in the constellation will be launched in phases through 2024, when the system will reach full capacity with the Ka- and Ku-Band satellites. SpaceX intends to launch the system onboard our Falcon 9 rocket, leveraging significant launch cost savings afforded by the first stage reusability now demonstrated with the vehicle.”

Other details included the operational altitudes of the satellites – ranging from 1,110 to 1,325 km (690 to 823 mi) – as well as the necessary infrastructure on the ground, which would include “ground control facilities, gateway Earth stations, and end-user Earth stations.” SpaceX has also indicated that it plans to deploy an additional 7.500 satellites that will operate at lower altitudes in order to boost broadband capacity in large population centers.

Naturally, there have to be those people who hear words like “satellite constellation” and immediately think “space junk”. Certainly, the deployment of between 4,425 and 11,925 satellites in the coming years will lead to increasing concerns about “orbital clutter”. Especially when other telecommunications providers are seeking to get in on the trend – a good example being Google’s Project Loon.

Why Space Debris Mitigation is needed. Credit: ESA

And while the subject did not come up during the hearing, it will be unavoidable in the coming years and decades. But in the meantime, the idea of bringing internet access to the world – particularly the developing regions of the world where the infrastructure may not otherwise exist – has the potential of being a great social leveler. In the coming decades, it is expected that internet use will reach proportions unheard of a few decades ago.

By 2020 alone, it is estimated that the number of Internet users will reach almost 5 billion – or roughly half the world projected population of 10 billion. This represents an almost threefold increase from the number of internet users in 2010 (1.7 billion) and an almost 14 fold increase since 2000 (360 million). As such, any investment that will help ensure that this growth occurs more equally across geographic and social barriers is certainly a good one.

The committee also heard testimony from Larry Downes, the Project Director of the Georgetown Center for Business and Public Policy, and Brian Hendricks – the head of Technology Policy & Public Affairs for the Americas Region for Nokia. In addition to addressing the current sate of broadband internet in the US, they made multiple recommendations on how the non-geostationary internet satellite industry could be fostered and developed.

You can read the transcripts and check out the live webcast by going to the hearing page.

Further Reading: US SCCST

Eye Opening Numbers On Space Debris

Still image taken from a movie, Space debris ? a journey to Earth, to be released April 18th, 2017. Credit: ESA

Orbital debris, otherwise known as “space junk”, is a major concern. This massive cloud that orbits the Earth is the result of the many satellites, platforms and spent launchers that have been sent into space over the years. And as time went on, collisions between these objects (as well as disintegrations and erosion) has created even more in the way of debris.

Aside from threatening satellites and posing a danger to long-term orbital missions – like the International Space Station – this situation could pose serious problems for future space launches. And based on the latest numbers released by the Space Debris Office at the European Space Operations Center (ESOC), the problem has been getting getting worse. Continue reading “Eye Opening Numbers On Space Debris”

ESA Regrets Not Buying Windshield Insurance

The chip in the ISS' Cupola window, photographed by astronaut Tim Peake. Credit: ESA/NASA/Tim Peake

It is known as the Cupola, an observation and work area that was installed aboard the International Space Station in 2010. In addition to giving the crew ample visibility to support the control of the Station’s robotic arms, it is also the best seat in the house when it comes to viewing Earth, celestial objects and visiting vehicles. Little wonder then why sp many breathtaking pictures have been taken from inside it over the years.

So you can imagine how frustrating it must be for the crew when a tiny artificial object (aka. space debris) collides with the Cupola’s windows and causes it to chip. And thanks to astronaut Tim Peake and a recent photo he chose to share with the world, people here on Earth are able to see just how this looks from the receiving end for the first time.

Continue reading “ESA Regrets Not Buying Windshield Insurance”

A Fiery End for Kosmos 1315 Over Hawaii

Reentry of Kosmos-1315 captured by Joshua Lambus. Click here to see the full video.

A relic of the Cold War surprised beach-goers and Hawaiian islands residents Sunday night, as Kosmos-1315 reentered the Earth’s atmosphere in a dramatic display.

The reentry occurred right around 11:00 PM Sunday night on August 30th local time (Hawaii is 10 hours behind Universal Time). Folks in the satellite tracking community had been following the predicted reentry for some time, which was projected for August 31st at 10:56 UT +/- an hour. That puts the Hawaii sighting right at the beginning of the window.

Image credit:
Kosmos-1315 reenters over the Pacific Ocean near Hawaii. Image credit: Lance Owens
“We were outside, about 11:00. I have a TV outside on our lanai (deck) and we had watched the 10:00 news, when we were just wrapping it up for the evening,” Hawaiian resident Lance Owens told Universe Today. “My wife sees this unreal thing in the sky. Our first description was it looked like someone dragging a “sparkler” across our sky like those old spaceship movies. It took at least a minute to get across our skyline. It appeared to be breaking up right in front of our eyes. I did not hear any boom, but the visuals were incredible!”
Image credit
A close-up of the reentry of Kosmos 1315 from Sunday night. Image credit: Lance Owens

Kosmos 1315 (Sometimes listed as Cosmos 1315) was an electronic signal intelligence (ELINT) satellite launched from the Plesetsk Cosmodrome in the then Soviet Union on October 13th, 1981. First developed in the late 1960s, Kosmos 1315 was a typical Tselina-D type component of the two-satellite Tselina ELINT system. Kosmos 1315 was launched atop a Vostok-2M rocket, the booster for which still remains in orbit today as NORAD ID 1981-103B. Kosmos 1315 was in a 533 x 574 km low Earth orbit.

Long-time satellite tracker Ted Molczan has been compiling a list of reentries that goes back to the dawn of the Space Age, and notes that this was the 256th reentry sighting he’s confirmed in his cataloging effort.

“Objects launched by Russia account for 205 sightings or 80 percent, followed by the U.S., which accounts for 40 sightings or 16 percent. China, Europe and Japan account for the remaining 4 percent,” Molczan told Universe Today. “Considering the vast areas of the Earth that have been under-reported, the total number of reentries seen during the Space Age probably is between 500 and 1000, the large majority lost to history.”

This was a fine example of a classic reentry versus a typical fireball or meteor train. Satellites typically have a slower reentry velocity, and you can see this in several of the videos captured of the event. Most fireball captures come from security and dashboard cams (remember Chelyabinsk?) or cameras that are already up and running recording another event, such as a concert or a football game. The famous Peekskill meteor in 1992 was captured in the background during a high school football game. Remember, during Chelyabinsk, the very first images of the event were from dashcams; minutes later, after everyone rushed to aim their hastily deployed mobile phone cameras at the contrail, we got the recordings of the blast wave.  The very fact that several folks grabbed their phones and managed to capture the reentry in progress on Sunday night (how fast can YOU have your phone out, camera running?) speaks to the slow, stately traverse typical of a satellite reentry.

The position of Kosmos-1315 at 9:17 UT. Image credit: Orbitron
The position of Kosmos-1315 at 9:17 UT. Image credit: Orbitron

…and folks on social media often try to get in on the hype during a breaking story involving a meteor train or fireball event. Feel free to try to be creative, but trust us, we’ve seen ‘em all. Some ‘meteor wrongs’ (to paraphrase Meteorite Man Geoff Notkin) that typically get recycled and advertised as new videos are: the reentries of Mir, Hayabasa, the aforementioned Peekskill event, Chelyabinsk, and screen grabs from the film Armageddon.

A typical Tselina-D style Kosmos series satellite. Image credit: Yuzhnoye Design
A typical Tselina-D style Kosmos series satellite. Image credit: Yuzhnoye Design

“As is common with reentries, a few people reported the phenomenon as a UFO. A couple of witnesses perceived the glowing fragments as individual craft of some kind,” Molczan told Universe Today. “Satellite orbits closely follow the curvature of the Earth’s surface, and they continue to do so as they begin their final descent during reentry. As reentry proceeds, velocity is lost due to drag, causing the descent to gradually become steeper, but to an observer, the motion appears to be nearly horizontal. By the time an object descends below about 30 kilometers, it will have lost nearly all of its forward velocity, and from there, any surviving fragments will descend almost vertically to the Earth.”

This final descent is similar to what’s known as ‘dark flight’ prior to a meteorite impact.

And though we usually get a few high interest reentries such as Phobos-Grunt or UARS every year, space junk is reentering worldwide weekly. The Aerospace Corp. keeps a running list of upcoming reentries, and the See-Sat-L message board is a great source of fast-breaking news.

It’s definitely a space junk shooting gallery out there. Keep those smartphones charged up and handy, and keep watching the skies!

How Do Astronauts Avoid Debris?

How Do Astronauts Avoid Debris?

So, just how do we keep our space stations, ships and astronauts from being riddled with holes from all of the space junk in orbit around Earth?

We revel in the terror grab bag of all the magical ways to get snuffed in space. Almost as much as we celebrate the giant brass backbones of the people who travel there.

We’ve already talked about all the scary ways that astronauts can die in space. My personal recurring “Hail Mary full of grace, please don’t let me die in space” nightmare is orbital debris.

We’re talking about a vast collection of spent rockets, dead satellites, flotsam, jetsam, lagan and derelict. It’s not a short list. NASA figures there are 21,000 bits of junk bigger than 10 cm, 500,000 particles between 1 and 10 cm, and more than 100 million smaller than 1 cm. Sound familiar, humans? This is our high tech, sci fi great Pacific garbage patch.

Sure, a tiny rivet or piece of scrap foil doesn’t sound very dangerous, but consider the fact that astronauts are orbiting the Earth at a velocity of about 28,000 km/h. And the Tang packets, uneaten dehydrated ice cream, and astronaut poops are also traveling at 28,000 km/h. Then think about what happens when they collide. Yikes… or yuck.

Here’s the International Space Station’s solar array. See that tiny hole? Embiggen and clarinosticate! That’s a tiny puncture hole made in the array by a piece of orbital crap.

The whole station is pummeled by tiny pieces of space program junk drawer contents. Back when the Space Shuttle was flying, NASA had to constantly replace their windows because of the damage they were experiencing from the orbital equivalent of Dennis the Menace hurling paint chips, fingernail clippings, and frozen scabs.

That’s just little pieces of paint. What can NASA do to keep Sandra Bullock safe from the larger, more dangerous chunks that could tear the station a new entry hatch?

For starters, NASA and the US Department of Defense are constantly tracking as much of the orbital debris that they can. They know the position of every piece of debris larger than a softball. Which I think, as far as careers go, would be grossly underestimated for its coolness and complexity at a cocktail party.

Artist's impression of debris in low Earth orbit. Credit: ESA
Artist’s impression of debris in low Earth orbit. Credit: ESA

“What do you do for a living?”
“Me, oh, I’m part of the program which tracks orbital debris to keep astronauts safe.”
“So…you track our space garbage?”
“Uh, actually, never mind, I’m an accountant.”

Furthermore, they’re tracking everything in low Earth orbit – where the astronauts fly – down to a size of 5 cm. That’s 21,000 discrete objects.

NASA then compares the movements of all these objects and compares it to the position of the Space Station. If there’s any risk of a collision, NASA takes preventative measures and moves the Space Station to avoid the debris.

The ISS has thrusters of its own, but it can also use the assistance of spacecraft which are docked to it at the time, such as a Russian Soyuz capsule.

NASA is ready to make these maneuvers at a moment’s notice if necessary, but often they’ll have a few days notice, and give the astronauts time to prepare. Plus, who doesn’t love a close call?

For example, in some alerts, the astronauts have gotten into their Soyuz escape craft, ready to abandon the Station if there’s a catastrophic impact. And if they have even less warning, the astronauts have to just hunker down in some of the Station’s more sturdy regions and wait out the debris flyby.

The Iridium constellation - a robust satellite network (Iridium)
The Iridium constellation – a robust satellite network (Iridium)

This isn’t speculation and overcautious nannying on NASA’s part. In 2009 an Iridium communications satellite was smashed by a dead Russian Kosmos-2251 military satellite. The collision destroyed both satellites instantly. As icing on this whirling, screaming metallic orbital-terror-cake, it added 2,000 new chunks of debris to the growing collection.

Most material was in a fairly low orbit, and much of it has already been slowed down by the Earth’s atmosphere and burned up.

This wasn’t the first time two star-crossed satellites with a love that could-not-be had a shrapnel fountain suicide pact, and I promise it won’t be the last. Each collision adds to the total amount of debris in orbit, and increases the risk of a run-away cascade of orbital collisions.

We should never underestimate the bravery and commitment of astronauts. They strap themselves to massive explosion tubes and weather the metal squalls of earth orbit in tiny steel life-rafts. So, would you be willing to risk all that debris for a chance to fly in orbit? Tell us in the comments below.

Could Lizard Hands Help Us Clean Up Space Junk?

Image of a gecko foot, whose ability to stick on to surfaces inspired NASA's Jet Propulsion Laboratory to develop a possible space debris snagging system. Credit: Wikimedia Commons

We’ve written extensively about the orbital debris problem here on Universe Today. In a nutshell, just about every time we launch something from Earth there are bits and pieces that are left behind. Screws. Paint flecks. Sometimes bigger pieces from rocket stages, or at worst, dysfunctional satellites.

Added to the list of lasers, magnets, robot hands and other ideas to get space junk out of orbit is a new one from NASA — gecko grippers. Yes, lizard hands. The idea is by using techniques from these animal appendages, we might be able to efficiently snag dead satellites or other debris at low cost.

Space debris is all whizzing above us and puts us at risk for devastating crashes that can create a sort of prison of debris for any spacecraft hoping to fly above the atmosphere. We’ve already had to move the shuttle and International Space Station due to threats, and the fear is as more satellites reach space, the problem will get worse.

Here’s what NASA has to say about the idea, which is led by Aaron Parness, a robotics researcher at the Jet Propulsion Laboratory:

The gripping system … was inspired by geckos, lizards that cling to walls with ease. Geckos’ feet have branching arrays of tiny hairs, the smallest of which are hundreds of times thinner than a human hair. This system of hairs can conform to a rough surface without a lot of force. Although researchers cannot make a perfect replica of the gecko foot, they have put “hair” structures on the adhesive pads of the grippers.

The grippers were put through their paces in a simulated microgravity test in August (recently highlighted on NASA’s website). On a plane that flew parabolas with brief “weightless” periods, the grippers managed to grab on to a 20-pound cube and a 250-pound researcher-plus-spacecraft-material-panels combination.

NASA-funded researchers test "gecko grippers" on a simulated-microgravity flight to see how effective they could be for snagging satellites. Here, a researcher has strapped spacecraft-like panels to his body to perform the test. Credit: NASA/YouTube (screenshot)
NASA-funded researchers test “gecko grippers” on a simulated-microgravity flight to see how effective they could be for snagging satellites. Here, a researcher has strapped spacecraft-like panels to his body to perform the test. Credit: NASA/YouTube (screenshot)

The key limitation was researchers actually held on to their invention themselves, but eventually they hope to use a robotic leg or arm to achieve the same purpose. Meanwhile, on the ground, the grippers have been used on dozens of spacecraft surfaces in a vacuum and in temperatures simulating what you’d find in orbit.

There’s no guarantee that the system itself will make it to space, as it’s still in the early stages of testing. But in a statement, Parness said he thinks it’s possible that “our system might one day contribute to a solution.” NASA also said these could be used for small satellites to attach to the space station, but development would need to move quickly in that case. The station is only guaranteed to be in use until 2020, with possible extension to 2024.

Source: Jet Propulsion Laboratory

How Can We Clean Up That Space Junk?

How Can We Clean Up That Space Junk?

We’re total litterbugs. Here on Earth, and out in space. What are some strategies that have been developed to clean up all that junk in space and make it safer to explore?

Humans are great at lots of things. We’ve built amazing landmarks, great works of art, and have a legacy of unique cultures and languages spanning the globe…

We’re also great at not cleaning up after ourselves. As if the oceanic garbage patches weren’t enough, humans are actually filling space with junk too.

That’s okay, right? Space might be infinite, and if you average the amount of stuff we know about versus the amount of space, there’s barely anything out there at all. Space can handle all that junk, right? Right? Sure it can! Space is just fine. Don’t you worry for one second about space. Space is big. Sure it’d kill us in a heartbeat, but it’s got no feelings to hurt! It’s just space!

Now I’m going to encourage you to be a little selfish, as this actually a problem for us. I know, it’s hard to believe that somehow, with our baked-in levels of neglect, we’re creating a global problem for us and future generations. I feel like this our thing now. It’s what defines us. Our littering up of space might prevent humans from ever being able to escape our planet again.

Here’s the deal. In the decades that humans have been launching stuff into space, nobody ever thought too hard about what we should do about our rockets and satellites after we’re done with them. It’s not like you can ever fill up space.

Astronomers are currently tracking 19,000 individual objects larger than 5 cm, and there are likely more than 300,000 objects smaller than 1 cm. All this stuff sticks around and continues to orbit the Earth. Over time debris collides with more debris, creating smaller and smaller pieces of space junk.

Some scientists are concerned that we might reach a point where this junk forms an impenetrable shield of shrieking metal around the Earth, that would tear apart any spacecraft that tries to leave our planet. I like to call this the “Spacelitter Singularity”. It’s an unstoppable cascade of collisions and chaos that converts the area around the Earth into a relentless blender of progressively smaller and smaller high velocity projectiles. Which would be bad.

Image plot of space junk. Image credit: NASA
Image plot of space junk. Image credit: NASA

So, how do we avoid that? How can we minimize the amount of space junk we throw into orbit? And how can get rid of the garbage that’s already out there? For starters, anyone launching stuff into space needs to minimize the amount of debris they generate. Rockets should maneuver back into the atmosphere to burn up. Astronauts need to keep track of their tools and gloves.

Engineers would also need to plan out what will happen to their spacecraft at the end of their lives. Instead of letting them just die, mission controllers need to be able to maneuver spacecraft into a safer parking orbit, or alternately, back into the atmosphere.

Something will need to be done with the space junk that’s already out there, chopping itself into smaller and smaller pieces. One idea is to have a one-up, one-down policy rule for companies. For every spacecraft they launch, they collect and de-orbit another spacecraft in roughly the same orbit. Or we could create a special junk removal spacecraft.

Space Junk.  Image credit:  Jonas Bendiksen/Eurasianet.org
Space Junk. Image credit: Jonas Bendiksen/Eurasianet.org

These would use efficient ion engines to track and dock with pieces of space junk, collecting them together. Once the spacecraft had collected enough material, or run out of fuel, it could be safely de-orbited, or possibly transform into garbage truck Voltron.

The most awesome idea I’ve come across is to build a space-based laser system that could target and fire on pieces of space debris as they go by. Small pieces would be vaporized, and larger objects would be slowed down as the vaporization would act as a decelerating thrust, lowering their orbit. That’s right, one solution is to build a real life game of Asteroids.

Once again, a lack of forethought has a created a problem that will trouble future generations. Getting into space in the first place is super hard, and cleaning it up is going to take more work than we ever thought.

What do you think? How should we clean up space to make it safe for future generations of space faring humans? Tell us in the comments below.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!