Astronaut Drops a Mirror During a Spacewalk. Now There’s Another Piece of Space Junk

Oops.

Dropping a mirror on Earth is only minor cause for concern, perhaps about the potential of some upcoming bad luck. Dropping a mirror while on a spacewalk means creating a potentially dangerous new piece of space junk, all while thousands of people watch it happen, streaming live.  

Continue reading “Astronaut Drops a Mirror During a Spacewalk. Now There’s Another Piece of Space Junk”

There’s a 1 in 20 Chance That Two Dead Satellites Might Crash Tonight (Update: No Collision)

Update. It looks like we didn’t roll a 1 on the d20, and the satellites passed each other without an impact. But this will probably become a more common occurrence as the skies get more crowded.

Over sixty years of space exploration have left their mark in Low Earth Orbit (LEO), where thousands of objects create the risk of collisions. These objects include the spent first stages of rockets, fragments of broken-up spacecraft, and satellites that are no longer operational. As Donald Kessler predicted, the growing presence of “space junk” could result in regular collisions, leading to a cascading effect (aka. Kessler Syndrome).

This evening – on Wednesday, Jan. 29th – such a collision might take place. These satellites are the Infrared Astronomical Satellite (IRAS), an old space telescope launched by NASA, the Netherlands, and the UK; and the GGSE-4 gravitational experiment launched by the US Air Force. These two satellites run the risk of colliding when their orbits cross paths at 06:40 p.m. EST (03:40 p.m. PST) about 900 km (560 mi) above Pittsburgh, Pennsylvania.

Continue reading “There’s a 1 in 20 Chance That Two Dead Satellites Might Crash Tonight (Update: No Collision)”

A Television Satellite Might be About to Explode

On Friday (Jan. 19th), authorities at the Federal Communications Commission (FCC) announced that they had granted permission to cable tv provider DirecTV to begin the process of deorbiting their Spaceway-1 (F1) satellite. This was necessary ever since DirecTV detected a “major anomaly” with the satellite’s batteries which increased the risk of an explosion if its orbit remained unchanged.

Continue reading “A Television Satellite Might be About to Explode”

Can We Use Special Sails To Bring Old Satellites Back Down To Earth?

The growing problem of space debris in LEO (Low-Earth Orbit) is garnering more and more attention. With thousands of satellites in orbit, and thousands more on the way, our appetite for satellites seems boundless. But every satellite has a shelf-life. What do we do with them when they’ve outlived their usefulness and devolve into simple, troublesome space debris?

Continue reading “Can We Use Special Sails To Bring Old Satellites Back Down To Earth?”

Satellites Equipped With a Tether Would be Able to De-Orbit Themselves at the end of Their Life

There’s no denying it, we are facing an orbital debris problem! As of January 2019, the ESA’s Space Debris Office estimates that there are at least 34,000 pieces of large debris in Low Earth Orbit (LEO) – a combination of dead satellites, spent rocket stages, and other assorted bits of space junk. And with thousands of satellites scheduled to be launched in the next decade, that problem is only going to get worse.

This is a situation that cries out for solutions, especially when you consider the plans to commercialize LEO and start sending crewed missions to deep space in the coming years. A team of scientists from the Universidad Carlos III de Madrid (UC3M) has come up with a simple but elegant idea: equip future satellites with a tether system so they can de-orbit themselves at the end of their lives.

Continue reading “Satellites Equipped With a Tether Would be Able to De-Orbit Themselves at the end of Their Life”

Before We Ruin the Universe, We Should Follow Some Space Sustainability Guidelines

There are over 20,000 objects in orbit around Earth that are larger than 10 cm. Image Credit: European Space Agency.

There are 20,000 objects orbiting Earth at this moment that are larger than 10 cm. Out of that number, only about 2,000 are operational satellites. The other 18,000 objects are pieces of junk of varying sizes. But it’s not just junk: it’s dangerous junk.

If that doesn’t sound like a problem, keep this in mind: Thanks to SpaceX and others, we’re living in the age of cheap access to space, and we’re seeing more and more satellites boosted into orbit. The problem won’t go away on its own.

Continue reading “Before We Ruin the Universe, We Should Follow Some Space Sustainability Guidelines”

Spot Failed Soviet Venus Probe Kosmos 482 in Earth Orbit

Venera-8

A ghost from the old Soviet space program may return to Earth in the coming years. Mimicking a campy episode of the 70s series The Six Million Dollar Man, a Soviet Venus lander stranded in Earth orbit will eventually reenter the atmosphere, perhaps as early as late 2019. Fortunately, this isn’t the “Venus Death Probe” that the Bionic Man Steve Austin had to defeat, but Kosmos 482 is part of a fascinating forgotten era of the Space Age and one you can track down in the night sky, with a little skill and patience.

Continue reading “Spot Failed Soviet Venus Probe Kosmos 482 in Earth Orbit”

British Satellite Tests its Space Junk Harpoon

Last summer, a new type of debris-hunting satellite was released from the International Space Station (ISS). It’s known as the RemoveDebris spacecraft, a technology-demonstrator developed by Surrey Satellite Technology Ltd and the Surrey Space Center. The purpose of this satellite is to test whether satellites equipped with targeting software, a debris net and a harpoon are effective at combating space debris.

For the past few months, this spacecraft has been conducting a series of Active Debris Removal (ADR) exercises. About a week ago, according to a recent statement, the RemoveDebris satellite tested out its harpoon for the first time. As you can see from the video, the satellite successfully demonstrated its harpoon system and verified its ability to secure space debris and keep it from flying away.

Continue reading “British Satellite Tests its Space Junk Harpoon”

Micrometeorite Damage Under the Microscope

If there’s one thing that decades of operating in Low Earth Orbit (LEO) has taught us, it is that space is full of hazards. In addition to solar flares and cosmic radiation, one of the greatest dangers comes from space debris. While the largest bits of junk (which measure more than 10 cm in diameter) are certainly a threat, the real concern is the more than 166 million objects that range in size from 1 mm to 1 cm in diameter.

While tiny, these bits of junk can reach speeds of up to 56,000 km/h (34,800 mph) and are impossible to track using current methods. Because of their speed, what happens at the moment of impact has never been clearly understood. However, a research team from MIT recently conducted the first detailed high-speed imaging and analysis of the microparticle impact process, which will come in handy when developing space debris mitigation strategies.  Continue reading “Micrometeorite Damage Under the Microscope”

A New Solution to the Space Junk Problem. Spacecraft with Plasma Beams to Force Space Junk to Burn Up

A satellite using a bi-directional plasma thruster can direct one beam at space junk, sending it harmlessly into Earth's atmosphere. The other opposite beam can stabilize the position of the satellite itself. Image: Takahashi et. al. 2018.

Space junk is a growing problem. For decades we have been sending satellites into orbit around Earth. Some of them de-orbit and burn up in Earth’s atmosphere, or crash into the surface. But most of the stuff we send into orbit is still up there.

This is becoming an acute problem as years go by and we launch more and more hardware into orbit. Since the very first satellite—Sputnik 1—was launched into orbit in 1957, over 8000 satellites have ben placed in orbit. As of 2018, an estimated 4900 are still in orbit. About 3000 of those are not operational. They’re space junk. The risk of collision is growing, and scientists are working on solutions. The problem will compound itself over time, as collisions between objects create more pieces of debris that have to be dealt with.

Continue reading “A New Solution to the Space Junk Problem. Spacecraft with Plasma Beams to Force Space Junk to Burn Up”