Soyuz Makes Record-Breaking ‘Fast Track’ to Space Station

Screen capture from NASA TV of the Soyuz approaching the International Space Station with the Expedition 35/36 crew. Via NASA TV

It was same day, freaky-fast delivery for the Soyuz TMA-08M spacecraft bringing the crew of Expedition 35/36 to the International Space Station. The expedited flight had the crew arriving even quicker than expected, in just 5 hours and 45 minutes after launch. The new abbreviated four-orbit rendezvous with the ISS uses a modified launch and docking profile for the Russian ships. It has been tried successfully with three Progress resupply vehicles, but this is the first time it has been used on a human flight.

In the past, Soyuz manned capsules and Progress supply ships were launched on trajectories that required about two days, or 34 orbits, to reach the ISS. The new fast-track trajectory has the rocket launching shortly after the ISS passes overhead. Then, additional firings of the vehicle’s thrusters early in its mission expedites the time required for a Russian vehicle to reach the Station.

Liftoff of the Soyuz TMA-08M spacecraft took place at 4:43 p.m. EDT (20:43 UTC) on March 28 from the Baikonur Cosmodrome in Kazakhstan, and Russian commander Pavel Vinogradov, cosmonaut Aleksandr Misurkin and NASA astronaut Chris Cassidy docked with the ISS’s Poisk module at 10:28 p.m. EDT on Thursday (March 28; 0228 GMT Friday).

Hatches will be opened shortly, and Expedition 35 commander Chris Hadfield,astronaut Tom Marshburn and cosmonaut Roman Romanenko will welcome their new crewmates aboard. Update: Here’s the video of the hatch opening:

Find out more about the “fast-track” trajectory in our earlier articles here and here.

Space Station Crew Captures Soyuz Launch, As Seen from Orbit

Soyuz Rocket Launch - the moment of ignition, as-seen from their target, the Space Station. Credit: NASA/CSA/Chris Hadfield.

Just how much activity on Earth can be seen from orbit? In the dark of night, the Soyuz rocket launch on March 29/28, 2013 was bright enough to be seen by the International Space Station crew 350 km (220 miles) above. “Soyuz Rocket Launch – the moment of ignition, as-seen from their target, the Space Station,” tweeted ISS commander Chris Hadfield in sharing this image.

The new fast-track trajectory used for the first time for a crewed Soyuz has the rocket launching shortly after the ISS passes overhead, and so the ISS was in the perfect spot for the crew to witness the launch with their own eyes — at least with a camera and a zoom lens. The Soyuz TMA-08M spacecraft launched at 2:43 a.m. Friday local time from the Baikonur Cosmodrome in Kazakhstan (4:43 p.m. EDT, 20:43 UTC on March 28), carrying the crew of Pavel Vinogradov, Aleksandr Misurkin and Chris Cassidy.

The fast-track launch had the crew arriving in just 5 hours and 45 minutes after launch. This is the first crew to use this quick trajectory. It came with the added bonus of the launch being visible from space.

Survival: Terrifying Moments in Space Flight

Apollo 13's dangerous explosion in 1970 inspired a movie, released in 1995, that starred (left to right) Bill Paxton, Kevin Bacon and Tom Hanks. Credit: Universal Pictures

Space is a dangerous and sometimes fatal business, but happily there were moments where a situation happened and the astronauts were able to recover.

An example: today (March 16) in 1966, Neil Armstrong and Dave Scott were just starting the Gemini 8 mission. They latched on to an Agena target in the hopes of doing some docking maneuvers. Then the spacecraft started spinning inexplicably.

 

They undocked and found themselves tumbling once per second while still out of reach of ground stations. A thruster was stuck open. Quick-thinking Armstrong engaged the landing system and stabilized the spacecraft. This cut the mission short, but saved the astronauts’ lives.

Gemini 8's Agena target before a stuck thruster on the spacecraft put the astronauts in a terrifying tumble. Credit: NASA
Gemini 8’s Agena target before a stuck thruster on the spacecraft put the astronauts in a terrifying tumble. Credit: NASA

Here are some other scary moments that astronauts in space faced, and survived:

Friendship 7: False landing bag indicator (1962)

Astronaut John Glenn views stencilling used as a model to paint the words "Friendship 7" on his spacecraft. Credit: NASA
Astronaut John Glenn views stencilling used as a model to paint the words “Friendship 7” on his spacecraft. Credit: NASA

John Glenn was only the third American in space, so you can imagine the amount of media attention he received during his three-orbit flight. NASA received an indication that his landing bag had deployed while he was still in space. Friendship 7’s Mercury spacecraft had its landing cushion underneath the heat shield, so NASA feared it had ripped away. Officials eventually informed Glenn to keep his retrorocket package strapped to the spacecraft during re-entry, rather than jettisoning it, in the hopes the package would keep the heat shield on. Glenn arrived home safely. It turned out to be a false indicator.

Apollo 11: Empty fuel tank (1969)

Apollo 11's Eagle spacecraft, as seen from fellow spaceship Columbia. Credit: NASA
Apollo 11’s Eagle spacecraft, as seen from fellow spaceship Columbia. Credit: NASA

Shortly after Neil Armstrong announced “Houston, Tranquility Base, here, the Eagle has landed” during Apollo 11, capsule communicator Charlie Duke answered, “Roger, Tranquility. We copy you on the ground. You got a bunch of guys about to turn blue. We’re breathing again. Thanks a lot.” They weren’t holding their breath just because it was the first landing on the moon; Armstrong was navigating a spacecraft that was almost out of fuel. The spacecraft Eagle overshot its landing and Armstrong did a series of maneuvers to put it on relatively flat ground. Accounts say he had less than 30 seconds of fuel when he landed on July 20, 1969.

Apollo 12: Lightning strike (1969)

Apollo 12's launch in 1969, moments before the rocket was struck by lightning. Credit: NASA
Apollo 12’s launch in 1969, moments before the rocket was struck by lightning. Credit: NASA

Moments after Apollo 12 headed from ground towards orbit, a lightning bolt hit the rocket and caused the spacecraft to go into what appeared to be a sort of zombie mode. The rocket was still flying, but the astronauts (and people on the ground) were unsure what to do. Scrambling, one controller suggested a command that essentially reset the spacecraft, and Apollo 12 was on its way. NASA did take some time to do some double-checking in orbit, to be sure, before carrying on with the rest of the mission. The agency also changed procedures about launching in stormy weather.

Apollo 13: Oxygen tank explosion (1970)

Evidence of the Apollo 13 explosion on the spacecraft Odyssey. Credit: NASA
Evidence of the Apollo 13 explosion on the service module. Credit: NASA

The astronauts of Apollo 13 performed a routine stir of the oxygen tanks on April 13, 1970. That’s when they felt the spacecraft shudder around them, and warning lights lit up. It turned out that an oxygen tank, damaged through a series of ground errors, had exploded in the service module that fed the spacecraft Odyssey, damaging some of its systems. The astronauts survived for days on minimal power in Aquarius, the healthy lunar module that was originally supposed to land on the moon. They arrived home exhausted and cold, but very much alive.

Apollo-Soyuz Test Project: Toxic vapours during landing (1975)

The Apollo command module used in the Apollo-Soyuz Test Project, during recovery. Credit: NASA
The Apollo command module used in the Apollo-Soyuz Test Project, during recovery. Credit: NASA

The Apollo-Soyuz Test Project was supposed to test out how well American and Russian systems (and people) would work together in space. Using an Apollo command module and a Russian Soyuz, astronauts and cosmonauts met in orbit and marked the first mission between the two nations. That almost ended in tragedy when the Americans returned to Earth and their spacecraft was inadvertently flooded with vapours from the thruster fuel. “I started to grunt-breathe to make sure I got pressure in my lungs to keep my head clear. I looked over at Vance [Brand] and he was just hanging in his straps. He was unconscious,” recalled commander Deke Slayton, in a NASA history book about the event. Slayton ensured the entire crew had oxygen masks, Brand revived quickly, and the mission ended shortly afterwards.

Mir: The fire (1997)

Jerry Linenger dons a mask during his mission on Mir in 1997. Credit: NASA
Jerry Linenger dons a mask during his mission on Mir in 1997. Credit: NASA

The crew on Mir was igniting a perchlorate canister for supplemental oxygen when it unexpectedly ignited. As they scrambled to put out the fire, NASA astronaut Jerry Linenger discovered at least one oxygen mask on board were malfunctioning as well. The crew managed to contain the fire quickly. Even though it affected life aboard the station for a while afterwards, the crew survived, did not need to evacuate, and helped NASA learn lessons that they still use aboard the International Space Station today.

STS-51F: Abort to orbit (1985)

STS-51F aborted to orbit during its launch. Credit: NASA
STS-51F aborted to orbit during its launch. Credit: NASA

The crew of space shuttle Challenger endured two aborts on this mission. The first one took place at T-3 seconds on July 12, when a coolant valve in one of the shuttle’s engines malfunctioned. NASA fixed the problem, only to face another abort situation shortly after liftoff on July 29. One of the engines shut down too early, forcing the crew to abort to orbit. The crew was able to carry on its mission, however, including many science experiments aboard Spacelab.

STS-114: Foam hitting Discovery (2005)

Discovery during STS-114, as seen from the International Space Station. CREDIT: NASA
Discovery during STS-114, as seen from the International Space Station. CREDIT: NASA

When Discovery lifted off in 2005, the fate of the entire shuttle program was resting upon its shoulders. NASA had implemented a series of fixes after the Columbia disaster of 2003, including redesigning the process that led to foam shedding off Columbia’s external tank and breaching the shuttle wing. Wayne Hale, a senior official in the shuttle program, later recalled his terror when he heard of more foam loss on Discovery: “I think that must have been the worst call of my life. Once earlier I had gotten a call that my child had been in an auto accident and was being taken to the hospital in an ambulance. That was a bad call. This was worse.” The foam, thankfully, struck nothing crucial and the crew survived. NASA later discovered the cracks in the foam are linked to changes in temperature the tank undergoes, and made more changes in time for a much more successful mission in 2006.

We’ve probably missed some scary moments in space, so which ones do you recall?

Live from 1969: Apollo 9 Returns Home

The crew of Apollo 9: Commander James McDivitt, Command Module Pilot Dave Scott and Lunar Module Pilot Rusty Schweickart. Credit: NASA

“On the success of Apollo 9 mission hangs the hope for future manned missions to the Moon,” said famous CBS newsman Walter Cronkite. HD TV it’s not, but this is a fun look back at actual news footage from the Apollo 9 mission, which landed back on Earth on March 13, 1969, forty-four years ago today.

The ten-day Apollo 9 mission was the first manned flight of the lunar module and while in Earth orbit the crew tested the spacecraft for lunar operations. The crew included Commander Jim McDivitt, Command Module pilot Dave Scott and one of our favorite astronauts, the Lunar Module pilot Rusty Schweickart.

They successfully demonstrated the complete rendezvous and docking operations and conducted an EVA during their 151 Earth orbits. The mission carried the largest payload at that point in time to Earth orbit.

Lessons From a Space Dummy

Ivan Ivanovich, currently on display at the Smithsonian National Air and Space Museum. Credit: Eric Long, courtesy of the National Air and Space Museum.

Before a man could head into space, the Russians felt a mannequin needed to get there first.

It was on this day (March 9) in 1961 that Ivan Ivanovich — the mannequin, or space dummy — made his first flight in a Sputnik. He then took another turn in space later that month before being placed into storage for decades. United States businessman (and failed presidential candidate) Ross Perot bought him at auction in the 1990s, and lent him to the Smithsonian National Air and Space Museum. He’s on display there today.

Universe Today caught up with Cathleen Lewis, the museum’s curator of international space programs and spacesuits in the division of space history. She explained that the mannequin was actually designed and built by three organizations:

– Zvezda (aka JSC Zvezda and RD&PE Zvezda), a firm known for high-altitude suits and spacesuits;

– The Institute for Bio-Medical Problems, which performed aerospace medicine research;

– The Moscow Institute for Prosthetics, which built the mannequin using specifications from the first two groups.

Yuri Gagarin - first human in space. Credit: Russian Archives
Yuri Gagarin – first human in space. Credit: Russian Archives

Here are some of the lessons the Russians learned from Ivan Ivanovich’s flight, according to Lewis:

What the environment is like inside the spacecraft. While the Soviets had already sent dogs and other animals into space in that time, Lewis said they were sent up in their own self-contained canisters. The chest cavity of Ivan included accelerator and angular rate changes to see what gravity changes he was experiencing. He also measured the level of radiation. Notably, Ivan actually went up twice before the first man in space (Yuri Gagarin), but the reasons are still unclear. “One assumes that because they did do it twice, they weren’t satisfied with the result the first time,” Lewis said. “But there were not a lot of modifications [between flights], so it might have been a testing failure or ambiguity in the results.”

– The communications network. During the early years of the space program, the Americans had a number of ground and ship stations scattered around the world. These stations allowed constant, but not completely continuous, contact with the astronauts. The Soviets had a much smaller network, and wanted to know exactly when the cosmonauts would be audible to ground control. The solution? Recorded singing. “They were broadcasting a song, a folk song from the spacecraft,” she said. The song had an unintended consequence: those listening in from other countries thought there was an actual cosmonaut on board, leading to rumors that other cosmonauts died before Gagarin’s flight, she said.

Limited public outreach. In the closed Soviet society of the time, public broadcasts of missions generally happened after the fact. Engineers had to figure out how not to alarm the locals if Ivanovich ended up falling nearby a populated area and officials could not retrieve him first. They therefore wrote the word “mannequin” on Ivan to make sure people understood what was going on. It turned out the precaution was never needed, though. “He was more on target than Gagarin,” Lewis said.

Q & A with Astronaut Jerry Ross, Record-Setting Frequent Space Flyer

Jerry Ross peers into the orbiter crew cabin during the STS-37 mission, smiling because he manually extending the Gamma Ray Observatory’s antenna. Credit: NASA

If there was a frequent flyer program for astronauts, Jerry Ross would be a gold status member. Ross is a veteran of seven space shuttle missions, making him a co-record holder for most spaceflights with fellow former NASA astronaut Franklin Chang-Diaz, and with nine spacewalks, he has the second most EVAs by a NASA astronaut. He is one of only three astronauts to have served throughout the entire Space Shuttle Program. Ross has written a new book about his life and career as an astronaut, “Spacewalker: My Journey in Space and Faith as NASA’s Record-Setting Frequent Flyer.” This is the first time he has told his story, reflecting on the legacy of the Shuttle program, its highs and lows, and the future of manned space flight.

Ross talked with Universe Today about his experiences and his new book. (Find out how you can win a copy of the book here.)

Universe Today: What made you decide to write a book about your experiences?

Jerry Ross: I wanted to share my experiences of what it was like to suit up to go out on a spacewalk and also help people understand what it is like to be an astronaut, that we are regular people who do regular work most of the time and only get to fly in space once in a while. In addition I wanted to entertain a little, use some funny stories that I had told many times to my friends when we were down at the Cape waiting for a launch, and a lot of times people would say, ‘those are great stories, you ought to write a book.’ After more and more people said that I started to take it a little more seriously.

Additionally I wrote it for my granddaughters who were young enough while I was still flying in space to not remember much, and in fact the youngest one was born after I had completed my flying. But probably the most important reason is that throughout my astronaut career I made a point that while I was talking with young students about their lives and what they could do with their God-given talents and capabilities, that they should dream large, study hard and work hard to reach their goals and not give up too easily. Throughout many of my talks over the years at schools, I have used my own career as a way of pointing out to them that, yeah, you are going to have some setbacks, your life won’t go in a straight line. You’ll have to study hard and work hard but you don’t have to be a straight-A student. And don’t give up too easily on what your goals are. I am one of the very fortunate ones who was able realize very early in my life what I wanted to do. I was able to set those goals and was able to achieve them, and what happened in my life was so much better than I could have dreamed about!

Jerry Ross, frequent flying astronaut. Credit: NASA
Jerry Ross, frequent flying astronaut. Credit: NASA.

UT: You are obviously very dedicated to NASA. How does it feel to have the spaceflight records you have, and to have been a part the agency that is such an iconic part of America?

JR: The records are a byproduct of the what I said before; working hard and not giving up. I am and I was very dedicated to what our country was doing in space but I am somewhat frustrated that we are not doing more now. The records are quite frankly something that I wish I could have pushed much higher. I would have hoped to have flown many more times and done more spacewalks as well. Frankly, I’m disappointed that my records haven’t fallen and that those records aren’t continuing to be broken.

If we’re not continuing to push forward in space and do things more routinely and more aggressively, then as a country we are failing to be the leaders of the world that we should be in terms of leading humankind further into the Universe, learning more about the Universe and about ourselves, and potentially being able to live on other planets someday. While the records are nice — and it is kind of nice to put that in your bio that you hold the world record — it is not something that I hang onto, and like I said, I hope we will get back into a much more aggressive program that will push more people into space faster and farther.

Jerry Ross suits up for the STS-74 mission in 1995. Credit: NASA.
Jerry Ross suits up for the STS-74 mission in 1995. Credit: NASA.

UT: Do you have a favorite mission or favorite moment that you cherish from all your spaceflights?

JR: That question is just like asking a mother which one of her seven children she likes best! Every one of my flights was unique and different. All of them were a lot of fun with great crews and great missions. If I had to pick one, it would probably be the first flight, just because it was my first. It was an exciting mission, a great crew and I got to go on my first spacewalk, which laid the foundation for even more spacewalks in the future. At the time I launched I was already assigned to another mission, so it was a great time in my career when I was still fairly young but was really starting to feel the success of all the hard work.

UT: What was the most unexpected thing or experience you had?

JR: I think the most unexpected thing — and I talk about it in the book — is the epiphany I had on my fourth spacewalk on my third space shuttle mission when I was high above the payload on a foot restraint on the end of the robotic arm. The rest of the crew was concentrating on working with (astronaut) Jay Asp who was doing some work in the payload bay. I had the chance to look into deep space. It was at night and I turned off my helmet-mounted lights and just looked at the Universe and the uncountable number of stars out there. And all of a sudden I had this sense come over me — it was totally unexpected, it wasn’t something I was thinking about or contemplating — but it was a sense that I was doing what God had intended me to do, being in space in a spacesuit, working to fix satellites and assemble things in space. What a reassurance that you picked the right path, and that you are doing exactly what you were intended to do!

For an engineer to have any feelings at all, and especially a feeling like that traveling at 5 miles a second above the Earth is pretty incredible.

UT: I really enjoyed the sidebar pieces in the book that were written by the people important in your life – your friend Jim, and your wife and children. How did you decide to include that, and did you have any trouble convincing them to be a part of the book?

JR: The book started out with John Norberg, my co-writer, coming down and doing a series of interviews with me and also with my family members and my best friend Jim Gentleman, and one of my two sisters in Indiana. Initially, John was going to write more of the book than it ended up being. It was a much more collaborative effort than I had anticipated. But those sidebars or insights from others was totally his idea and one that I entirely latched onto once we started writing. I think it is a great insight into the rest of the family and how we operated as a family. I’ve had this comment multiple times now from folks that these additional insights were especially enjoyable.

Jerry Ross works on the International Space Station during the STS-110 mission in 2002. Credit: NASA
Jerry Ross works on the International Space Station during the STS-110 mission in 2002. Credit: NASA

UT: Your daughter Amy also works at NASA, and has helped to create better gloves for spacewalking. How gratifying is that to have her be a part of NASA?

JR: I think any parent is pleased if one of their children decides to follow in their footsteps. I guess that somehow validates that what the parent has been doing was something they valued and thought was interesting and exciting. Amy was exposed to it and was never encouraged one way or the other to be part of NASA or not, so it was very satisfying to see her do that. It was equally gratifying for me for my wife Karen to get into the space program working for United Space Alliance as one of the support contractors, and as you read in the book she helped supply the food for the shuttle and the station.

You also might be interested to know that Amy was interviewed for the astronaut program in January. For this selection process they had around 6,000 people who applied and they narrowed it down to about 400 that they deemed most qualified, and from that 400 they brought in 120, and she made that cut.

Amy Ross is an advanced space suit designer at NASA's Johnson Space Center. Image Credit: NASA.
Amy Ross is an advanced space suit designer at NASA's Johnson Space Center. Image Credit: NASA.

They will further reduce the number down to about 50 that will be brought back in for a second round of additional interviews and screenings, mostly some fairly heavy medical testing, and then from that they will select about 10 or so in the middle of the year. So we are extremely excited for her and keeping our fingers crossed.

UT: You write in detail about the two shuttle accidents. How difficult were those two periods of time – both personally and for everyone in the astronaut office?

JR: It was a tremendous loss. The astronaut office is relatively small. At the time of those losses, we were in the neighborhood of about 100 people total, and you get to know folks pretty well. To have your friends doing what we all enjoyed and seeing them be lost and then learning that probably, had we been smarter or more diligent, we as an agency could have prevented both of those accidents. That is very hurtful.

You go through a lot of soul searching, especially after the Challenger accident when we were still very early in the shuttle program to lose a vehicle and friends that way. My family was still quite young and it makes you really do some soul searching about whether or not you should continue to do that and put your life and therefore your family at risk. We talked about it quite a bit as a family and fortunately we all agreed that it would be letting our friends down if we decided to pull out and go do something else.

Jerry Ross during the  STS-110 mission in 2002, coming through one of the many hatches on the International Space Station. Credit: NASA.
Jerry Ross during the STS-110 mission in 2002, coming through one of the many hatches on the International Space Station. Credit: NASA.

UT: You mentioned this earlier, and you don’t mince words in the book about your disappointment with the direction NASA is going. Have your thoughts changed any about the SLS?

JR: No, I still think that the agency is wandering in the forest. Most of the direction that we are getting from Congress is the direction that reinstituted the SLS and is pushing Orion forward. The administration is really pushing the commercial space aspect, and it still makes me very nervous that the commercial space guys may not pan out. It makes me nervous that NASA won’t have more control and insight on what is going on with the vehicles, from both a safety and operational perspective. It makes me nervous that we are planning to rely up on them solely to get to and from low Earth orbit, when in fact if they have an accident either with one of our crews or theirs, it could precipitate a lawsuit, which might put them into bankruptcy. Where would we be then?

So there are lots of reasons why I don’t think this is the right answer. I totally agree with commercial space if they want to go spend their own nickel and go do things, that is fine. As a government agency I think we should provide all the help and assistance that we can, but at the same time I don’t think we should be diverting resources of NASA’s programs to be paying for theirs. And that is what we are doing right now.

If we had not stopped the Constellation program, we would be in the process of getting ready to go launch an Orion right now. So what we are doing is delaying progress for the nation and what is going to happen in respect to commercial space is not at all certain. I frankly do not see any business model that would keep any of those commercial systems operating without a great underwriting and usage by NASA. And so I don’t see the logic in what is going on.

UT: Your faith is obviously very important to you, and I recall the one line you wrote, that you find it impossible to believe that everything you saw from space was created without God. In some circles, it seems to be that it is either science or religion that the two are hard to mix. But you obviously have no problem mixing the two in your life.

JR: Absolutely. I have had no problems along those lines whatsoever. I think the problems come when people try to read too literally passages in the Bible, and to not to just accept God on faith. So, somehow I think people try to limit God by reading an exact passage in the Bible, in a certain kind of Bible, when in fact the passage would read quite differently depending on what kind of Bible you are reading.

UT: Is there anything else that you feel is important for people to know about your book or your experiences in general?

JR: I hope people will read the book and enjoy it, number one! Secondly I hope they will get a better understanding of what it takes to make a spaceflight happen. But probably the most important thing is that I hope that it might help young adults and school age children interested in science and engineering. But the main emphasis of the book is to set goals for yourself, study hard, work hard and don’t give up too easily.

UT: Jerry, its been an honor to talk with you! Thank you very much.

JR: I’ve enjoyed it, thank you!

Jerry Ross on the end of the space shuttle's RMS during STS-61B in 1985, demonstrating the feasibility of assembling structures in space. Credit: NASA.

Iran Launches a Monkey on a Suborbital Rocket

According to Iran state media, Iran launched a suborbital rocket last week with a passenger aboard: a monkey. A gray tufted monkey survived the flight, riding inside an “indigenous bio-capsule” which was recovered after the flight. While the US and other nations are worried that Iran’s real goal is to have a nuclear missile program, Iran’s Defense Minister Ahmad Vahidi told state television that this launch was a “big step” towards sending astronauts into space by 2020.

Iranian news agencies said the rocket traveled to an altitude of 120 kilometres (75 miles) for a suborbital flight. The space capsule was named Pishgam, which is “Pioneer” in Farsi. The launch has not yet been independently verified.

“This success is the first step towards man conquering the space and it paves the way for other moves,” General Vahidi said, but added that the process of putting a human into space would be a lengthy one.

“Today’s successful launch follows previous successes we had in launching (space) probes with other living creatures,” he said, referring to the launch in the past of a rat, turtles and worms into space.

A previous attempt in 2011 by Iran to put a monkey into space failed, and they never provided an explanation for the failure.

Much of Iran’s technological equipment derives from modified Chinese and North Korean technology. Iran denies that its long-range ballistic technology is linked to its atomic program.

Sources: SpaceRef, Fox News.

White House Petition: Could we Build the Starship Enterprise?

Could we build a version of the Starship Enterprise over the next 20 years? Credit: BuildTheEnterprise.org

Earlier this year, an engineer who goes by the name of BTE Dan proposed building a full-sized, ion-powered version of a Constitution-Class Enterprise – from the original Star Trek – saying it could be built with current technology and could be completed within 20 years. Now, BTE Dan has started a White House petition — not to build the Enterprise but to just do a feasibility study and conceptual design of the USS Enterprise interplanetary spaceship. As of this writing, the petition has 1,414 signatures of the 25,000 needed by January 21, 2013 to be considered by the Obama administration.

The petition reads:

We have within our technological reach the ability to build the 1st generation of the USS Enterprise. It ends up that this ship’s inspiring form is quite functional. This will be Earth’s first gigawatt-class interplanetary spaceship with artificial gravity. The ship can serve as a spaceship, space station, and space port all in one. In total, one thousand crew members & visitors can be on board at once. Few things could collectively inspire people on Earth more than seeing the Enterprise being built in space. And the ship could go on amazing missions, like taking the first humans to Mars while taking along a large load of base-building equipment for constructing the first permanent base there.

See the petition and sign it here.

BTE Dan told Universe Today earlier this year that what he really is hoping for is to find a segment of scientists and engineers in the space industry to take an active interest and contribute to the ideas on his website, BuildTheEnterprise.org to help move the concept forward.

“I have been getting many offers of help from engineers outside the space industry, and that’s great,” he said via email. “But also what is needed are some experienced space engineers who adopt a can-do attitude about the concept of the Gen1 Enterprise.”

BTE Dan prefers to remain anonymous at this point, and his biggest concern has been that the scientists and engineers at NASA and their space contractors were going to be hostile about the idea, as his first brush with them did not go well.

Diagram of a proposed current generation of a Starship Enterprise. Credit: BuildTheEnterprise.org

“I am an outsider poking around in their sandbox, and human nature is that people don’t like that,” he said, noting that he knows his design may have fatal flaws, but that is why he is looking for assistance.

“There is a lot of waste heat to get rid of, today’s ion propulsions engines need major advances, and perhaps stability problems will be found with the gravity wheel,” he said.

When Universe Today broke the story of the BuildTheEnterprise concept in May of this year, it went viral and BTE Dan’s website crashed under the traffic.

“I really did not expect this at all,” he said at the time. “I did not plan for this level of web traffic!” He has since made upgrades to handle more traffic.

His website is complete with conceptual designs, ship specs, a funding schedule, and almost every other imaginable detail of how the Enterprise could be built. It would be built entirely in space, have a rotating gravity section inside of the saucer, and be similar in size with the same look as the USS Enterprise that we know from Star Trek.

The White House takes petitions on many topics at the “We the People” website and will consider them if they receive 25,000 signatures. Earlier this year, a petition to build a Death Star space station by 2016 received over 32,000 signatures, but so far there has not been an official response about it from the White House.

New Crew Arrives at Space Station

The latest crew has arrived to the International Space Station! Cosmonaut and Expedition 34/35 Soyuz Commander Roman Romanenko, Flight Engineer Tom Marshburn of NASA and Flight Engineer Chris Hadfield of the Canadian Space Agency docked their Soyuz TMA-07M at 14:09 UTC (9:09 a.m. EST) to the Rassvet module on the Russian segment of the ISS. We extend special congratulations to Hadfield, as we have been featuring him in our series about his training for the mission. He told us how much he is looking forward to his 5-month mission in space. “After a lot of lucky coincidences and a lot of hard work I get to be one of those who stays for an extended period off the planet. I’m really looking forward to it,” he said.

Hatches are expected to open at 16:15 UTC (11:15 am EST) after checking for leaks, etc. The new crew will be welcomed by Expedition 34 commander Kevin Ford and Russian cosmonauts Evgeny Tarelkin and Oleg Novitskiy, who have been on board since Oct. 23.

NASA says the crew will begin with a relatively light schedule and a break for the holidays of Christmas, New Years and the Russian Christmas holiday on January 6. But they’ll be busy during their mission with the arrival of Russian and European Space Agency resupply and two commercial companies, SpaceX and Orbital are scheduled to send their cargo ships to the ISS in March and April.

Ford, Novitskiy and Tarelkin are scheduled to leave the ISS in the middle of March, and at that point, Hadfield will become commander of Expedition 35, the first Canadian to to command the ISS.

Hadfield, Marshburn and Romanenko during their final Soyuz sim on Earth. Credit: NASA

How To Train for a Mission to the ISS: The Soyuz

Expedition 34/35: Canadian Space Agency Flight Engineer Chris Hadfield, Soyuz Commander Roman Romanenko and Flight Engineer Tom Marshburn of NASA. The crew launches on Dec. 19, 2012 at 12:12 UTC (7:12 a.m. EST). For the second half of the mission, Hadfield will become the first Canadian commander of the International Space Station. Credit: NASA

Canadian astronaut Chris Hadfield has been sharing with us how much there is to learn and the training necessary for living on the International Space Station for five months. But astronauts and cosmonauts also have to learn how to fly on the Russian Soyuz, too, as right now, there’s no other ride to the space station.

“Soyuz is a wonderful spaceship,” Hadfield told Universe Today. “It has been refined and honed and perfected for decades, as if they took an early sculpture of something and have continuously whittled away at it to make it more and more purpose-built and improved.”

A view of Hadfield inside the Soyuz simulator. Credit: NASA

The most modern version, the TMA-M, is as good as they’ve ever made it, Hadfield said, with great modifications and improvements in avionics, sensors, computing power.

“So, it is a very capable, well-designed vehicle; a tough vehicle,” he said. “That is heartening and reassuring. It has the full ability to do almost everything on its own, but also full ability for us to take over and do almost everything manually if we need to.”

“There is an unbelievable thrill in getting into your own spaceship. This is the same hatch we’ll use on the launch pad,” Hadfield said via Twitter.

It is so robust that with just a stopwatch, the crews can bring it safely back to Earth and land within a 10-km circle of where they want to touch down.

All the training is in Russian. “Russian digital motion control theory is complex,” Hadfield said. “It took a full year of intensive one-on-one study to become ready to start flying the Soyuz.” This video shows Hadfield working in the simulator:

Hadfield said that not only does he have great respect for the Soyuz, but for the training provided by the Russian Space Agency, Roscosmos.

“They simulate it well, and they load us up to our limit of what they teach us,” he said, “getting into the very esoteric and complex things that can happen.”

For example, in full-up simulations where the crew are in the pressure suits, the trainers will do things like fill the cockpit with smoke as if there was a fire on board, so the “dashboard” can’t be seen, and the crew needs to know how to keep flying.

“Centrifuges make you dizzy while they accelerate & decelerate, & REALLY mess you up when you move your head. Otherwise OK,” Hadfield Tweeted.

In this video, Hadfield explains the Soyuz centrifuge, the largest human-rated centrifuge in the world, that puts the astronauts and cosmonauts in the same environment – G-force-wise – that they will be in during the harrowing descent when they return home, plummeting through Earth’s atmosphere and experience 4-8 times the force of Earth’s gravity.

“You need to be able to understand how that feels on your body and whether you are going to be able to work in that environment,” Hadfield said.

“Hatch to Another World – what it looks like to climb into a Soyuz spaceship. We then crawl down into our seats,” Hadfield said, via Twitter.

The Soyuz rocket is just as robust and one of the most reliable rockets ever. “The Soyuz launches all-weather, -40 degrees to +40 degrees,” Hadfield said. “It is rugged, built on experience, it is not delicate. I trust it with my life.”

“It takes these 32 engines to get these 3 humans safely above the air. And that’s just the start,” Hadfield said via Twitter.

“My Soyuz Checklists – from L to R: Launch/Entry, Malfunctions, Orbital Flight. Colour-coded for easy spaceflight,” said Hadfield via Twitter.

Hadfield talks about the Russian technology for the rocket and spaceship he will be flying in:

Hadfield’s son and daughter-in-law gave him a Soyuz-like pre-flight Christmas present:

“My first Soyuz simulator! Summer 1964, nearly 5 years old. Never too early to start training,” Hadfield shared on Twitter.

Previous articles in this series:
How to Train for Long Duration Space Flight with Chris Hadfield
How to Train for a Mission to the ISS: Medical Mayhem
How to Train for a Mission to the ISS: Eating in Space