The Sun Could Hurl Powerful Storms at Earth From its Goofy Smile

NASA recently photographed the Sun "smiling" (Credit: NASA/Goddard Space Flight Center/Solar Dynamics Observatory)

Our Sun is the very reason we’re alive. It provides warmth and the energy our planet needs to keep going. Now you can add photogenic to its illustrious résumé, as NASA recently photographed our giant ball of nuclear fusion doing something quite peculiar.

Continue reading “The Sun Could Hurl Powerful Storms at Earth From its Goofy Smile”

Meet The Solar Ring: A Proposed Spacecraft That Will Have a Panoramic View of the Sun

solar magnetic
Coronal loops in the Sun's atmosphere as viewed in ultraviolet "light." Courtesy UCAR.

The Sun is active, dynamic, and occasionally violent. Unfortunately our view of the Sun is limited to a small handful of orbiting satellites and ground-based observatories. The Solar Ring is new proposal that hopes to radically change that picture by launching a trio of satellites around the Sun to give continuous, 360° panoramic images in real time. The observatory could revolutionize our understanding of our parent star.

Continue reading “Meet The Solar Ring: A Proposed Spacecraft That Will Have a Panoramic View of the Sun”

Will Solar Cycle 25 Dazzle or Fizzle in 2021?

Solar flare

A new study suggests that Solar Cycle 25 may be more powerful than previously predicted.

It’s the big question in solar astronomy for 2021 and the new decade. Will Solar Cycle 25 wow observers, or be a washout? A new study goes against the consensus, suggesting we may be in for a wild ride… if predictions and analysis of past solar cycle transitions hold true.

Continue reading “Will Solar Cycle 25 Dazzle or Fizzle in 2021?”

A Sunspot Seen by the Most Powerful Solar Telescope in the World

This is the first sunspot image taken on January 28, 2020 by the NSF’s Inouye Solar Telescope’s Wave Front Correction context viewer. The image reveals striking details of the sunspot’s structure as seen at the Sun’s surface. Image credit: NSO/AURA/NSF

A new image from the world’s largest solar observatory shows a spectacular, high resolution view of a gigantic sunspot. The sunpspot measures about 16,000 km (10,000 miles) across, large enough that Earth could fit inside.

Continue reading “A Sunspot Seen by the Most Powerful Solar Telescope in the World”

25 Years of Solar Cycles in One Incredible SOHO Mosaic

The ESA/NASA Solar and Heliospheric Observatory (SOHO) has been observing the Sun for 25 years. Credit: ESA

For a quarter of a century, the ESA-NASA Solar and Heliospheric Observatory (SOHO) has been essential in helping scientists understand the heart of our Solar System, the Sun. The SOHO mission launched 25 years ago this week, and to celebrate, ESA compiled a wonderful mosaic of images, and NASA put together a remarkable SOHO “greatest hits” timelapse video.

Continue reading “25 Years of Solar Cycles in One Incredible SOHO Mosaic”

Do Ripples on the Surface of the Sun tell us that a Flare is Coming?

Credit: NSF

Flares from the sun are some of the nastiest things in the solar system. When the sun flares, it belches out intense X-ray radiation (and sometimes even worse). Predicting solar flares is a tricky job, and a new research paper sheds light on a possible new technique: looking for telltale ripples in the surface of the sun minutes before the blast comes.

Continue reading “Do Ripples on the Surface of the Sun tell us that a Flare is Coming?”

Solar Orbiter is Already Starting to Observe the Sun

Artist's impression of ESA's Solar Orbiter spacecraft. Credit: ESA/ATG medialab

On February 10th, 2020, the ESA’s Solar Orbiter (SolO) launched and began making its way towards our Sun. This mission will spend the next seven years investigating the Sun’s uncharted polar regions to learn more about how the Sun works. This information is expected to reveal things that will help astronomers better predict changes in solar activity and “space weather”.

Last week (on Thursday, Feb. 13th), after a challenging post-launch period, the first solar measurements obtained by the SolO mission reached its international science teams back on Earth. This receipt of this data confirmed that the orbiter’s instrument boom deployed successfully shortly after launch and that its magnetometer (a crucial instrument for this mission) is in fine working order.

Continue reading “Solar Orbiter is Already Starting to Observe the Sun”

RAISE: How to Capture 1,500 Solar Images in a Five Minute Flight

RAISE in the cleanroom prior to launch. Credit: NASA/RAISE.

Quick: how do you aim an instrument at the Sun from a moving rocket on a fifteen minute suborbital flight?

The answer is very carefully, and NASA plans to do just that today, Thursday, November 6th as the Rapid Acquisition Imaging Spectrograph Experiment, also known as RAISE, takes to the skies over White Sands, New Mexico, to briefly study the Sun.

Capturing five images per second, RAISE is expected to gather over 1,500 images during five minutes of data collection near apogee.

Why use sub-orbital sounding rockets to do observations of the Sun? Don’t we already have an armada of space and ground-based instruments to accomplish this that stare at our nearest star around the clock? Well, it turns out that sounding rockets are still cost-effective means of testing and demonstrating new technologies.

“Even on a five-minute flight, there are niche areas of science we can focus on well,” said solar scientist Don Hassler of the Southwest Research Institute in Boulder, Colorado in a recent press release. “There are areas of the Sun that need to be examined with the high-cadence observations that we can provide.”

Indeed, there’s a long history of studying the Sun by use of high-altitude sounding rockets, starting with the detection of solar X-rays by a detector placed in a captured V-2 rocket launched from White Sands in 1949.

Credit: NASA.
Sub-orbital astronomy in 5 minutes: the flight of a sounding rocket. Credit: NASA.

RAISE will actually scrutinize an active region of the Sun turned Earthward during its brief flight to create what’s known as a spectrogram, or an analysis of solar activity at differing wavelengths. This gives scientists a three dimensional layered snapshot of solar activity, as different wavelengths correspond to varying velocities of solar material and wavelengths. Think of looking at layers of cake. This, in turn, paints a picture of how material is circulated and moved around the surface of the Sun.

This will be RAISE’s second flight, and this week’s launch will sport a brand new diffraction grating coated with boron carbide to enhance wavelength analysis. RAISE will also look at the Sun in the extreme ultraviolet which cannot penetrate the Earth’s lower atmosphere. Technology pioneered by missions such as RAISE may also make its way into space permanently on future missions, such as the planned European Space Agency and NASA joint Solar Orbiter Mission, set for launch in 2017. The Solar Orbit Mission will study the Sun close up and personal, journeying only 26 million miles or 43 million kilometres from its surface, well inside the perihelion of the planet Mercury.

“This is the second time we have flown a RAISE payload, and we keep improving it along the way,” Hassler continued. “This is a technology that is maturing relatively quickly.”

As you can imagine, RAISE relies on clear weather for a window to launch. RAISE was scrubbed for launch on November 3rd, and the current window for launch is set for 2:07 PM EST/19:07 Universal Time, which is 12:07 PM MST local time at White Sands. Unlike the suborbital launches from Wallops Island, the White Sands launches aren’t generally carried live, though they tend to shut down US highway 70 between Las Cruces and Alamogordo that bisects White Sands just prior to launch.

Currently, the largest sunspot turned forward towards the Earth is active region 2205.

Another recent mission lofted by a sounding rocket to observe the Sun dubbed Hi-C was highly successful during its short flight in 2013.

RAISE will fly on a Black Brant sounding rocket, which typically reaches an apogee of 180 miles or 300 kilometres.

Credit: NASA/SDO
A look at recent solar activity coming around the solar limb to be targeted by RAISE. Credit: NASA/SDO

Unfortunately, the massive sunspot region AR2192 is currently turned away from the Earth and will effectively be out of RAISE’s view. The largest in over a decade, the Jupiter sized sunspot wowed viewers of the final solar eclipse of 2014 just last month. This large sunspot group will most likely survive its solar farside journey and reappear around the limb of the Sun sometime after November 9th, good news if RAISE is indeed scrubbed today due to weather.

And our current solar cycle has been a very schizophrenic one indeed. After a sputtering start, solar cycle #24 has been anemic at best, with the Sun struggling to come out of a profound minimum, the likes of which hasn’t been seen in over a century. And although October 2014 produced a Jupiter-sized sunspot that was easily seen with eclipse glasses, you wouldn’t know that we’ve passed a solar maximum from looking at the Sun now. In fact, there’s been talk among solar astronomers that solar cycle #25 may be even weaker, or absent all together.

All this makes for fascinating times to study our sometimes strange star. RAISE observations will also be coordinated with views from the Solar Dynamics Observatory and the joint NASA-JAXA Hinode satellites in Earth orbit. We’ll also be at White Sands National Park today, hoping the get a brief view of RAISE as it briefly touches space.

It’s a great time for solar astronomy!

Most Powerful Solar Telescope on Earth Rises Atop Hawaiian Volcano

Construction on the new observatory on the summit of the Haleakala Crater on Maui, Hawaii this February. Credit: National Solar Observatory

Rising 10,000 feet above the sunburned faces of 2.2 million tourists a year, the largest solar telescope on the planet is under construction atop Haleakala Crater in Maui, Hawaii. Never mind all those admonitions about never staring at the sun. Astronomers can’t wait for the chance. 

Named for the late Senator Daniel Inouye, the Daniel K. Inouye Solar Telescope or DKIST will be the world’s premier ground-based solar observatory in the world. With its 4-meter (157.5-inch) primary mirror, DKIST is capable of distinguishing features down to 0.03 arc seconds or just 20-70 km (12-44 miles) wide at the sun’s surface. To achieve such fantastic resolutions the telescope will employ the latest adaptive optics technology to cancel the blurring effects of the atmosphere using a computer-controlled deformable mirror. 

capture the evolution of sunspot fine structure and finally understand its physical origin. (Image from the NSO Dunn Solar Telescope, courtesy of Thomas Rimmele.)
Extreme closeup of a sunspot showing the dark, central umbra (top) feathery penumbra and individual granules or hot gas. DKIST will capture the evolution of sunspot fine structure and finally understand its physical origin. Credit: NSO Dunn Solar Telescope, courtesy of Thomas Rimmele

Consider that the smallest features visible in large amateur telescopes are solar granules, columns of hot gas rising up from the sun’s interior. Each spans about 930 miles (1,500 km) and together give the sun’s surface the texture of finely-etched glass. DKIST will resolve features more than 60 times smaller. The current largest sun-dedicated telescope is the McMath-Pierce Solar Telescope , which has kept a steady eye on the home star with its 63-inch (1.6-meter) mirror since 1962 from Kitt Peak, Arizona.

DKIST cutaway showing light entering the top of the dome and gathered by the primary mirror, which is then reflected to a secondary mirror, which reflects the light to a science gallery below. Inset shows the light path in greater detail including the deformable mirror that will cancel the blurring effects of bad atmospheric seeing. Credit: L. Phelps
Observatory cutaway showing light entering the top of the dome and gathered by the primary mirror, which is reflected to a secondary mirror and from there through a series of smaller mirrors to the science gallery below. Inset shows the light path in greater detail including the deformable mirror that will cancel the blurring effects of atmospheric turbulence. Notice that the secondary mirror is offset with no obstructions between it and the primary mirror that would otherwise lessen the telescope’s ability to resolve fine detail. Credit: L. Phelps with enhancements by the author

DKIST will focus on three key areas: What is the nature of solar magnetism; how does that magnetism control our star; and how can we model and predict its changing outputs that affect the Earth? Astronomers hope to clearly resolve  solar flux tubes – magnetic field concentrations near the sun’s surface – thought to be the building blocks of magnetic structures in the atmosphere.

We still lack a complete understanding of how energy in the sun’s turbulent, churning interior is transferred to magnetic fields. Earth’s magnetic field is about 0.5 gauss at the surface. Fields within sunspots can range from 1,500 to 3,000 gauss – about the strength of a bar magnet but across a region several times larger than Earth.

A test of the Visible Broadband Imager (VBI) interference filter that will be used with DKIST
A test of the DKIST Visible Broadband Imager interference filter in 2012 shows material flowing from a sunspot’s outer penumbra into the surrounding solar gases. Credit: NSO

A better understanding of small scale magnetic structures, too tiny to be resolved with current telescopes, will help make sense of broader phenomena like sunspot formation, the heating of the solar corona and why the sun’s energy output varies. The solar constant, the amount of radiation we receive from the sun, increases with an increase in solar activity like spots and flares. Since the smallest magnetic elements are the biggest contributors to this increase, DKIST will be the first telescope able to image and study these structures directly, helping astronomers understand how variations in the sun’s output can lead to climate changes.

Left - Solar photosphere showing bright structures between granules  associated with magnetic fields. RIght - Computer model of a magnetic flux tube rising from the convective  zone into the photosphere. These are believed to be an important  conduit for energy flowing from the solar interior to the hot outer  atmosphere. Flux tubes are below the limit of resolution  in current telescopes. Credit: Paxman, Seldin, Keller / O. Steiner
Left – Solar photosphere showing bright structures between granules associated with magnetic fields bubbling up from below. Right – Computer model of a magnetic flux tube rising from the convective
zone into the photosphere. Flux tubes are believed to be an important
conduit for energy flowing from the solar interior to the hot outer
atmosphere but are below the limit of resolution
in current telescopes. Credit: Paxman, Seldin, Keller / O. Steiner

DKIST will do its work on rapid times scales, taking images once every 3 seconds. For comparison, NASA’s orbiting Solar Dynamics Observatory takes pictures in 8 different wavelengths every 10 seconds, STEREO one image every 3 minutes and SOHO (Solar Heliospheric Observatory) once every 12 minutes. The speedy shooting ability will help DKIST resolve rapidly evolving structures on the sun’s surface and lower atmosphere in a multitude of wavelengths of light from near-ultraviolet to deep infrared thanks to the the extraordinarily clean and dry air afforded by its high altitude digs.

DKIST is under construction in the observatory complex on Haleakala Crater in Maui, Hawaii. The Maui Space Surveillance is the large structure near top center. Photo take Oct. 2013. Credit: Bob King
DKIST is under construction in the observatory complex on Haleakala Crater in Maui, Hawaii. The Maui Space Surveillance Complex is the large structure right of center. Photo take Oct. 2013. Credit: Bob King

The new solar telescope will be in excellent company not far from the current Mees Solar Observatory and a stone’s throw from the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) telescope, the 79-inch (2-meter) Faulkes Telescope North and Maui Space Surveillance Complex which keeps an eye on man-made orbital debris. Tourists to Mt. Haleakala, a popular destination for tourists, can watch it take shape in the next few years while enjoying a hike in the cool air for which Haleakala is famous.

On August 31, 2012 a long filament of solar material that had been hovering in the sun's atmosphere, the corona, erupted out into space at 4:36 p.m. EDT. The coronal mass ejection, or CME, traveled at over 900 miles per second.
On August 31, 2012 a long filament of solar material erupted out into space as a coronal mass ejection, or CME, traveling at over 900 miles per second. By probing solar gases at high resolution and rapid time scales using DKIST’s high power optics and spectrographs, astronomers hope to better understand the first stirrings of these huge outbursts of solar energy. Credit: NASA

I first heard about the DKIST telescope from a burly stranger with fierce-looking tattoos. My wife and I vacationed in Maui last fall. One afternoon, while watching surfers ride the waves near the beach town of Paia, this big guy overheard us mention Duluth (Minn.), our hometown. He said he’d lived in Duluth for a time before moving to Hawaii and offered us a beer. We got to talking and learned he worked safety inspection at at the “biggest solar telescope in the world”, making the hour-long drive up the mountain 5 days a week.  I checked it out and he was absolutely right.

The Daniel K. Inouye Solar Telescope (formerly the Advanced Technology Solar Telescope) is being developed by a consortium led by the National Solar Observatory and comprising the University of Chicago, the New Jersey Institute of Technology, University of Hawaii, the High Altitude Observatory, NASA, the U.S. Air Force and others. For more details on the project, click HERE.

There’s poetry in building a large solar observatory on an island known for its sunny, warm climate. While vacationers flop out on Kaanapali Beach to vanquish the mid-winter chills, astronomers 50 miles away and 10,000 feet up will be at work coaxing secrets from the fiery ball of light that illuminates surf and scope alike.

The Sun Blasts Out Two X-Class Flares, Strongest of the Year

A close-up of an an X1.7-class solar flare on May 12, 2013 as seen by NASA's Solar Dynamics Observatory. Credit: NASA/SDO/AIA. Click for larger version.

The Sun gets active! On May 12, 2013, the Sun emitted what NASA called a “significant” solar flare, classified as an X1.7, making it the first X-class flare of 2013. Then earlier today, May 13, 2013, the Sun let loose with an even stronger flare, an X2.8-class. Both flares took place just beyond the limb of the Sun, and were also associated with another solar phenomenon, a coronal mass ejection (CME) which sent solar material out into space.

Neither CME was Earth-directed, and according to SpaceWeather.com, no planets were in the line of fire. However, the CMEs appear to be on course to hit NASA’s Epoxi, STEREO-B and Spitzer spacecraft on May 15-16. NASA said their mission operators have been notified, and if warranted, operators can put spacecraft into safe mode to protect the instruments. Experimental NASA research models show that the CMEs were traveling at about 1,930 km/second (1,200 miles per second) when they left the Sun.

The sunspot associated with these flares is just coming into view, and the next 24 to 48 hours should reveal much about the sunspot, including its size, magnetic complexity, and potential for future flares.

See more images and video below:

Both the X1.7 and the X2.8-class solar flare, plus a prominence eruption, all in one video:

SDO image of an X2.8-class flare on May 13, 2013. Credit: NASA/SDO
SDO image of an X2.8-class flare on May 13, 2013. Credit: NASA/SDO

NASA’s Solar Dynamics Observatory (SDO) captured this X1 flare (largest of the year so far) in extreme UV light: