First Color Image of Curiosity’s Tracks from Orbit

HiRISE image of Curiosity’s tracks, landing zone and the MSL rover at John Klein outcrop (NASA/JPL/University of Arizona)

As Curiosity prepares for the historic first drilling operation on Mars, the HiRISE camera aboard the Mars Reconnaissance Orbiter captured an image of it from 271 km (169 miles) up, along with twin lines of tracks and the blast marks from the dramatic rocket-powered descent back on August 6 (UTC).

The image here was acquired on Jan. 13, Sol 157 of the MSL mission, as part of a dual HiRISE/CRISM observation of the landing site. According to The University of Arizona’s HiRISE site it’s the first time the rover’s tracks have been imaged in color.

Her original landing site can be seen at the right edge. (Wait… did I just say “her?”)

The pair of bright white spots in the HiRISE image show the area immediately below where sky crane’s rockets were pointed. Those areas were “blasted clean” and therefore show brightest. The larger dark scour zone is dark because the fine dust has been blown away from the area leaving darker materials.

– Ross A. Beyer, UofA HiRISE team

Curiosity can be seen as she (yes, it was confirmed today during ScienceOnline2013 that the rover — like all exploration vehicles — is a girl) was preparing for drilling into a rock outcrop called John Klein within the “Yellowknife” region in Gale Crater. Drilling is expected to begin today, Jan. 31.

MSL detail hirise

Orbital view (detail) of Curiosity at her drilling site in Yellowknife. Image was rotated so north is up. (NASA/JPL/University of Arizona)

Read more about the first drilling to be performed on Mars in this article by Ken Kremer, and see more news from the MSL mission here.

NASA Reveals Plans for New Mars Rover

Sequels are all the rage these days… even for NASA, apparently.

At the American Geophysical Union 2012 convention in San Francisco today, NASA’s associate administrator for science John Grunsfeld revealed the agency’s plans for another Mars mission. Slated to land in 2020, it will be a rover based on the same design as Mars Science Laboratory. Estimated cost of the mission was announced to be $1.5 billion.

This news brought mixed reactions from many of those in attendance as well as followers online, as while more exploration of the Red Planet is certainly an exciting concept, we have all heard — and seen — countless tales of budget cuts and funding problems throughout NASA over recent years, and many proposed missions and collaborations have had to be shelved or cut short due to lack of funds (remember ExoMars?) Even though the budget for this mission is supposedly “not being taken from other areas,” it’s clearly not going to them either. It will be interesting to see how this plays out across the agency.

The full press release from NASA can be seen below:

(Via NASA)

Building on the success of Curiosity’s Red Planet landing, NASA has announced plans for a robust multi-year Mars program, including a new robotic science rover set to launch in 2020. This announcement affirms the agency’s commitment to a bold exploration program that meets our nation’s scientific and human exploration objectives.

“The Obama administration is committed to a robust Mars exploration program,” NASA Administrator Charles Bolden said. “With this next mission, we’re ensuring America remains the world leader in the exploration of the Red Planet, while taking another significant step toward sending humans there in the 2030s.”

The planned portfolio includes the Curiosity and Opportunity rovers; two NASA spacecraft and contributions to one European spacecraft currently orbiting Mars; the 2013 launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter to study the Martian upper atmosphere; the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission, which will take the first look into the deep interior of Mars; and participation in ESA’s 2016 and 2018 ExoMars missions, including providing “Electra” telecommunication radios to ESA’s 2016 mission and a critical element of the premier astrobiology instrument on the 2018 ExoMars rover.

The plan to design and build a new Mars robotic science rover with a launch in 2020 comes only months after the agency announced InSight, which will launch in 2016, bringing a total of seven NASA missions operating or being planned to study and explore our Earth-like neighbor.

The 2020 mission will constitute another step toward being responsive to high-priority science goals and the president’s challenge of sending humans to Mars orbit in the 2030s.

The future rover development and design will be based on the Mars Science Laboratory (MSL) architecture that successfully carried the Curiosity rover to the Martian surface this summer. This will ensure mission costs and risks are as low as possible, while still delivering a highly capable rover with a proven landing system. The mission will constitute a vital component of a broad portfolio of Mars exploration missions in development for the coming decade.

The mission will advance the science priorities of the National Research Council’s 2011 Planetary Science Decadal Survey and responds to the findings of the Mars Program Planning Group established earlier this year to assist NASA in restructuring its Mars Exploration Program.

“The challenge to restructure the Mars Exploration Program has turned from the seven minutes of terror for the Curiosity landing to the start of seven years of innovation,” Grunsfeld said. “This mission concept fits within current and projected Mars exploration budget, builds on the exciting discoveries of Curiosity, and takes advantage of a favorable launch opportunity.”

The specific payload and science instruments for the 2020 mission will be openly competed, following the Science Mission Directorate’s established processes for instrument selection. This process will begin with the establishment of a science definition team that will be tasked to outline the scientific objectives for the mission.

This mission fits within the five-year budget plan in the president’s Fiscal Year 2013 budget request, and is contingent on future appropriations.

Plans also will include opportunities for infusing new capabilities developed through investments by NASA’s Space Technology Program, Human Exploration and Operations Mission Directorate, and contributions from international partners.

________________________

NASA and John Grunsfeld will be hosting a follow-up press conference later today at AGU, which will be streamed live online at 7 p.m. EST/4 p.m. PST. Stay tuned for more information.

 

Curiosity’s Laser Leaves Its Mark

Before-and-after images from Curiosity’s ChemCam  micro-imager show holes left by its million-watt laser (NASA/JPL-Caltech/LANL/CNES/IRAP/LPGN/CNRS)

PEWPEWPEWPEWPEW! Curiosity’s head-mounted ChemCam did a little target practice on August 25, blasting millimeter-sized holes in a soil sample named “Beechey” in order to acquire spectrographic data from the resulting plasma glow. The neat line of holes is called a five-by-one raster, and was made from a distance of about 11.5 feet (3.5 meters).

Sorry Obi-Wan, but Curiosity’s blaster is neither clumsy nor random!

Mounted to Curiosity’s “head”, just above its Mastcam camera “eyes”, ChemCam combines a powerful laser with a telescope and spectrometer that can analyze the light emitted by zapped materials, thereby determining with unprecedented precision what Mars is really made of.

Read: Take a Look Through Curiosity’s ChemCam

For five billionths of a second the laser focuses a million watts of energy onto a specific point. Each of the 5 holes seen on Beechey are the result of 50 laser hits. 2 to 4 millimeters in diameter, the holes are much larger than the laser point itself, which is only .43 millimeters wide at that distance.

ChemCam’s laser allows Curiosity to zap and examine targets up to 23 feet (7 meters) away. Credit: J-L. Lacour/CEA/French Space Agency (CNES)

“ChemCam is designed to look for lighter elements such as carbon, nitrogen, and oxygen, all of which are crucial for life,” said Roger Wiens, principal investigator of the ChemCam team. “The system can provide immediate, unambiguous detection of water from frost or other sources on the surface as well as carbon – a basic building block of life as well as a possible byproduct of life. This makes the ChemCam a vital component of Curiosity’s mission.”

Visit the official ChemCam site for more information.

Take a Look Through Curiosity’s ChemCam

This (adjusted) image was taken by ChemCam’s Remote Micro-Imager on Sol 15 (NASA/JPL-Caltech/LANL)

While Curiosity has been getting a good look around its landing spot on Mars, taking in the sights and sending back some impressive views of distant hills and Gale Crater’s enormous central peak, it’s also been peering very closely at some tiny targets just meters away — with its head-mounted, laser-powered and much-touted ChemCam.

The images above and below were acquired by ChemCam’s Remote Micro-Imager on August 21, the 15th “Sol” of the mission. A full-sized image accessed from the public MSL mission site, it’s been brightened quite a bit to show the details of the target rocks.

Mounted to Curiosity’s “head”, just above its Mastcam camera “eyes”, ChemCam combines a powerful laser with a telescope and spectrometer that can analyze the light emitted by zapped materials, thereby determining with unprecedented precision what Mars’ rocks are really made of.

So even though the rover hasn’t actually roved anywhere yet, it’s still performing valuable scientific investigations of Mars — without moving a single wheel. (UPDATE: actually, Curiosity has begun to do some roving — here are some images of its first wheel tracks!)

Read: Curiosity Blasts First Mars Rock with Powerful Laser Zapper

Because ChemCam uses a laser, Curiosity can examine many targets — up to a dozen — within a small time period without having to drive right up to them. Even the dustiest rocks won’t pose a problem for ChemCam – one or two zaps with its laser will be enough to vaporize any loose surface material.

In addition to searching for the building blocks of life hidden inside rocks, ChemCam will also serve a precautionary role for future explorers by helping identify the potential toxicity of Mars’ soil and dust. When astronauts one day land on Mars, they are going to get dusty. It’s important to know if Mars’ dust contains anything dangerous like lead, arsenic (and who knows what else!)

See the latest images from the MSL mission — including more ChemCam pictures — here.

Images: NASA/JPL-Caltech/LANL. Edited by J. Major.

Curiosity’s Sundial Carries a Message of Hope

 A recent high-definition image from Curiosity’s Mastcam shows the rover’s sundial (NASA/JPL-Caltech)

While Curiosity is definitely loaded up with some of the most high-tech instruments ever made to investigate the surface of Mars, it also carries a very low-tech instrument: a sundial (aka the “MarsDial”) which can be used to determine the position of the Sun in the sky and the season on Mars just like they do here on Earth. Curiosity’s sundial also has additional color calibration tools for the rover’s Mastcam, which captured the image above on August 19 — the 13th “Sol” of the mission.

The connection between a device invented by people thousands of years ago being in use today on a robotic explorer on another planet didn’t go unnoticed by the Mars Exploration Rover team either; in addition to the words “Mars 2012” and “To Mars, To Explore” around its top bezel, Curiosity’s sundial also carries a message of history, hope and inspiration printed along its edges…

Along with line drawings and the word for “Mars” in sixteen languages, Curiosity’s sundial bears the following inscription:

“For millennia, Mars has stimulated our imaginations. First, we saw Mars as a wandering star, a bringer of war from the abode of the gods. In recent centuries, the planet’s changing appearance in telescopes caused us to think that Mars had a climate like the Earth’s. Our first space age views revealed only a cratered, Moon-like world, but later missions showed that Mars once had abundant liquid water. Through it all, we have wondered: Has there been life on Mars? To those taking the next steps to find out, we wish a safe journey and the joy of discovery.”

Curiosity’s successful landing on Mars at 10:31 p.m. on August 5, 2012 (PDT) was only the first (although very exciting!) step of its mission, and the first of hopefully many next steps to explore our neighboring world. Perhaps one day this message will be revisited by human explorers on Mars who may then reflect back on how it all began, and all of the innovations, hope and — well, curiosity — that made each of their rust-dusted steps possible.

Follow the sun, Curiosity!

Find out more about Curiosity’s many science and exploration instruments on JPL’s interactive 3D page here, and keep up with the latest MSL downloaded images here.

What Curiosity Looks Like From 200 Kilometers Up

Here’s a look down at Curiosity from the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter, orbiting approximately  200 km (125 miles) above the surface of Mars. This new image, released today, shows the rover inside Gale Crater surrounded by a skirt of blue-tinted material, including several bright radiating marks –the  result of the descent stage rockets clearing layers of dust from the surface.

In this exaggerated-color view the blue indicates material of a different texture and composition than the surrounding area. HiRISE captures images in visible light wavelengths as well as near-infrared, which we can’t see. To us, the blue material would look grey.

North is up, and Curiosity’s ultimate exploration target, Gale Crater’s central peak, Mount Sharp, is off frame to the lower right.

Click here for a full-size version of the HiRISE image scan, showing the scene above plus some areas further north and south — including portions of the dark dune fields visible in recent images from Curiosity.

It’s nice to know that Curiosity has friends in high places!

Image: NASA/JPL/University of Arizona

 

Curiosity’s First 360-Degree Color Panorama

Doesn’t Gale Crater look lovely this time of year? This is the first 360-degree panorama of color images taken by Curiosity’s color Mast Camera. The individual images used in this first panorama may only have been thumbnail-sized, but the effect is no less stunning.

(Click the image to panoramify.)

 The images were acquired on August 9 EDT. Although taken during late afternoon at Gale crater, the individual images still had to be brightened as Mars only receives half the amount of sunlight that Earth does.

Full-size 1200×1200 pixel images will be available at a later date.

The two grey patches in the foreground at left and right are the result of Curiosty’s sky crane rockets blasting the Martian surface. Scientists will be investigating these areas as they expose material that was previously hidden beneath Mars’ red dust.

The base of Gale Crater’s 3.4-mile (5.5 km) high central peak, named Mt. Sharp in honor of planetary science pioneer Robert P. Sharp, can be seen in the distance at center. (Check out an oblique view of a portion of Mt. Sharp acquired by HiRISE camera here.)

You can play with an interactive 360-degree panorama at the NASATech website, put together by John O’Connor, and if you look closely, visible is the full JPL logo on the middle right wheel — in Morse Code!

As always, you can find more news from the MSL mission here.

Image: NASA/JPL-Caltech

A Panorama of Curiosity’s Surroundings

Taken this morning (mission Sol 2) with the rover’s left Navcam, here’s a high-res panorama of Curiosity’s view at its landing site within Gale crater. The wide-angle view was assembled from two separate raw images, so while the mountainous rim of the crater is lined up horizontally there’s some distortion in alignment of objects closer to the rover due to the angle of the Navcam lens. Still, it’s a very cool view of Curiosity’s surroundings!

See the latest images from the MSL mission here, and check out 3D anaglyph images from Curiosity here.

Image: NASA/JPL-Caltech. Edited by J. Major.

(Image updated to link to full-size version.)

Will Curiosity Look for Life on Mars? Not Exactly…

“Curiosity is not a life detection mission. We’re not actually looking for life and we don’t have the ability to detect life if it was there. What we are looking for is the ingredients of life.”
– John Grotzinger, MSL Project Scientist

And with these words this latest video from NASA’s Jet Propulsion Laboratory begins, explaining what Curiosity’s goal will be once it arrives on Mars on August 5. There will be a lot of media coverage of the event and many news stories as the date approaches, and some of these will undoubtedly refer to Mars Science Laboratory as a “search for life on Mars” mission… but in reality the focus of MSL is a bit subtler than that (if no less exciting.)

But hey, one can always dream

Video: NASA/JPL

Kickstart Your DNA (And a Rover) To The Moon!


Omega Envoy, the non-profit research lab Earthrise Space, Inc.’s team competing for the Google Lunar X PRIZE, has launched a Kickstarter project to help fund a 4-axis CNC milling machine needed to continue development on their proposed lunar rover. CNC machines don’t come cheap, but in typical Kickstarter fashion Earthrise Space is offering incremental rewards to anyone who donates to their project — from mentions on their site to t-shirts, Moon globes and facility tours (and even 5-gallon tubs of duck sauce) and, if you’re lucky enough to have deep pockets and a desire to help a student training ground get their designs off the ground, you can even have your DNA sent to the Moon!

From the Google Lunar X PRIZE article:

For the first time in human history, individuals will have the opportunity to send a sample of their DNA to the lunar surface. For a pledged donation of $10,000 or more, ESI will collect your DNA sample, package it into a storage container mounted on the company’s Lunar Descent Vehicle and fly it to the surface of the moon where it will be preserved for all time.

“We are excited to be exploring new approaches for fundraising and for public engagement, including through the crowdsourcing Kickstarter platform,” said ESI’s Chief Operating Officer (COO) Joseph Palaia. “We are hopeful that this Kickstarter project helps us to make significant progress towards our near-term fundraising goals, while also providing some incredible rewards for our supporters.”

With the Google Lunar X PRIZE, a total of $30 million in prize money is available to the first privately funded team to safely land a robot on the surface of the Moon, have that robot travel 500 meters over the surface, and send HD video, images and data back to Earth.

Of the 26 teams in the competition, ESI is one of only six teams which have been selected for a NASA Innovative Lunar Demonstrations Data contract worth up to $10M. But the contract is awarded incrementally and a multi-axis CNC machine is needed to take their designs to the next level (and meet upcoming contract goals.) Donate to their Kickstarter project here.

At whatever level you contribute, know that you are helping students build real spacecraft, and you’re going to be getting some pretty amazing rewards as well! The students appreciate your support!

— Omega Envoy team, ESI

Find out more about ESI’s project on the Earthrise Space Inc. website, and check out the other Google Lunar X PRIZE competitors here.

Source: Google Lunar X PRIZE blog