Gravitationally Lensed Supernovae are Another Way to Measure the Expansion of the Universe

Hubble Space Telescope image of a gravitational lens.
This Hubble Space Telescope image shows the powerful gravity of a galaxy embedded in a massive cluster of galaxies producing multiple images of a single distant supernova far behind it.

Supernova are a fascinating phenomenon and have taught us much about the evolution of stars. The upcoming Nancy Grace Roman telescope will be hunting the elusive combination of supernovae in a gravitational lens system. With its observing field 200 times that of Hubble it stands a much greater chance of success. If sufficient lensed supernovae are found then they could be used to determine the expansion rate of the Universe. 

Continue reading “Gravitationally Lensed Supernovae are Another Way to Measure the Expansion of the Universe”

Nancy Grace Roman Could Find the First Stars in the Universe

Simulation of a star ripped apart in a tidal disruption event. Credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR)

In the beginning, the Universe was so hot and so dense that light could not travel far. Photons were emitted, scattered, and absorbed as quickly as the photons in the heart of the brightest stars. But in time the cosmos expanded and cooled to the point that it became transparent, and the birthglow of the Big Bang could traverse space and time for billions of years. We still see it as the microwave cosmic background. As the Universe expanded it grew dark, filled only with warm clouds of hydrogen and helium. In time those clouds collapsed to form the first stars, and light again filled the heavens.

Continue reading “Nancy Grace Roman Could Find the First Stars in the Universe”

There Could be Trillions of Rogue Planets Wandering the Milky Way

Artist's rendition of an ice-encrusted, Earth-mass rogue planet free-floating through space. (Credit: NASA’s Goddard Space Flight Center)

A pair of new studies set to be published in The Astronomical Journal examine new discoveries in the field of rogue planets, which are free-floating exoplanets that drift through space unbound by the gravitational tug of a star. They can form within their own solar system and get ejected, or they can form independently, as well. The first study examines only the second discovery of an Earth-mass rogue planet—the first being discovered in September 2020—while the second study examines the potential number of rogue planets that could exist in our Milky Way Galaxy.

Continue reading “There Could be Trillions of Rogue Planets Wandering the Milky Way”

Nancy Grace Roman and Vera Rubin Will be the Perfect Astronomical Partnership

Rubin Observatory under a full moon in April 2022. Credit: Rubin Observatory/NSF/AURARubinObs/NSF/AURA

Two of the most important telescopes being constructed at the moment are Vera C. Rubin and Nancy Grace Roman. Each has the capability of transforming our understanding of the universe, but as a recent paper on the arxiv shows, they will be even more transformative when they work together.

Continue reading “Nancy Grace Roman and Vera Rubin Will be the Perfect Astronomical Partnership”

Nancy Grace Roman Could Detect Supermassive Dark Stars

Artist view dark neutron star. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

The first stars of the universe were very different than the stars we see today. They were made purely of hydrogen and helium, without heavier elements to help them generate energy in their core. As a result, they were likely hundreds of times more massive than the Sun. But some of the first stars may have been even stranger. In the early universe, dark matter could have been more concentrated than it is now, and it may have powered strange stellar objects known as dark stars.

Continue reading “Nancy Grace Roman Could Detect Supermassive Dark Stars”

Nancy Grace Roman Will be Launching on a Falcon Heavy Rocket

Artist's impression of the Nancy Grace Roman Space Telescope, named after NASA’s first Chief of Astronomy. When launched later this decade, the telescope should make a significant contribution to the study of FFPs. Credits: NASA

In 2026, the Nancy Grace Roman Space Telescope (RST) – aka. the “Mother of Hubble” – will take to space and begin addressing some of the deepest mysteries of the Universe. This will include capturing the deepest field images of the cosmos, refining measurements of the Hubble Constant (aka. Hubble’s Law), and determining the role of Dark Matter and Dark Energy in the evolution of the cosmos. Alongside its next-generation partner, the James Webb Space Telescope (JWST), the RST will acquire infrared images with over 200 times the surveying power of its predecessor with the same rich level of detail.

On Tuesday, July 19th, NASA announced that it had awarded SpaceX with a Launch Services (NLS) II contract to provide the rocket that will deploy the RST mission to space. As specified in the NLS II, the launch will take place in October 2026 (May 2027, at the latest) and consist of a Falcon Heavy rocket transporting the RST from Launch Complex 39A at NASA’s Kennedy Space Center to orbit. This indefinite-delivery/indefinite-quantity contract is valued at approximately $255 million and covers the launch and other mission-related costs.

Continue reading “Nancy Grace Roman Will be Launching on a Falcon Heavy Rocket”

Digging Through Kepler Data Turns Up a Near Twin of Jupiter

The exoplanet, K2-2016-BLG-0005Lb, is almost identical to Jupiter in terms of its mass and its distance from its sun was discovered using data obtained in 2016 by NASA's Kepler space telescope. The exoplanetary system is twice as distant as any seen previously by Kepler, which found over 2,700 confirmed planets before ceasing operations in 2018. Image Credit: Specht et al. 2022.

NASA’s Kepler planet-hunting spacecraft was deactivated in November 2018, about ten years after it launched. The mission detected over 5,000 candidate exoplanets and 2,662 confirmed exoplanets using the transit method. But scientists are still working with all of Kepler’s data, hoping to uncover more planets in the observations.

A team of researchers have announced the discovery of one more planet in the Kepler data, and this one is nearly a twin of Jupiter.

Continue reading “Digging Through Kepler Data Turns Up a Near Twin of Jupiter”

Nancy Grace Roman Just Passed a Critical Design Review

High-resolution illustration of the Roman spacecraft against a starry background. Credit: NASA's Goddard Space Flight Center

By 2027, the Nancy Grace Roman Space Telescope – or Roman Space Telescope (RST), for short – will take to space and build on the legacy of the venerable Hubble Space Telescope (HST). Combing a large primary mirror, a camera as sensitive as its predecessors, and next-generation surveying capabilities, Roman will have the power of “One-Hundred Hubbles.” It’s little wonder then why the telescope is named after Dr. Roman (1925 – 2018), NASA’s first Chief Astronomer and the “Mother of Hubble.”

As part of its journey towards realization, this next-generation space telescope recently passed a crucial milestone. This would be the all-important Mission Critical Design Review (CDR), signaling that all design and developmental engineering work is complete. With this milestone reached, the next-generation space telescope is now ready to move from the conceptual stage into the fabrication and assembly phase.

Continue reading “Nancy Grace Roman Just Passed a Critical Design Review”

Roman Space Telescope Will Also Find Rogue Black Holes

In the past we’ve reported about how the Roman Space Telescope is going to potentially be able to detect hundreds of thousands of exoplanets using a technique known as “microlensing”. Exoplanets won’t be the only things it can find with this technique though – it should be able to find solitary black holes as well.

Continue reading “Roman Space Telescope Will Also Find Rogue Black Holes”

Roman Telescope Could Turn up Over 100,000 Planets Through Microlensing

Recently we reported on a haul of 2,200 new exoplanets from the 2 year primary mission of the Transiting Exoplanet Survey Satellite (TESS). But that is just the tip of the iceberg in terms of exoplanet hunting.  If calculations from NASA are correct the Nancy Grace Roman Space Telescope could detect up to 100,000 new exoplanets when it launches in 2025.

Continue reading “Roman Telescope Could Turn up Over 100,000 Planets Through Microlensing”