Slimmed Down Red Giants Had Their Mass Stolen By a Companion Star

Millions of stars that can grow up to 620 million miles in diameter, known as ‘red giants,’ exist in our galaxy, but it has been speculated for a while that there are some that are possibly much smaller. Now a team of astronomers at the University of Sydney have discovered several in this category and have published their findings in the journal Nature Astronomy.

“It’s like finding Wally… we were extremely lucky to find about 40 slimmer red giants, hidden in a sea of normal ones. The slimmer red giants are either smaller in size or less massive than normal red giants.”

PhD candidate Mr Yaguang Li from the University of Sydney, as quoted from the source article.
Continue reading “Slimmed Down Red Giants Had Their Mass Stolen By a Companion Star”

When the Sun Dies, Earth’s Magnetosphere won’t Provide Protection any More

The Earth’s magnetic field is an underappreciated wonder of the natural world.  It protects our atmosphere, provides some of the most breathtaking scenery when it creates auroras, and allows people to navigate from one side of the world to the other.  Unfortunately, it won’t be able to save us from the death of the Sun though.  At least that’s the finding of some new research by Dr. Dimitri Veras of the University of Warwick and Dr. Aline Vidotto of Trinity College Dublin.

Continue reading “When the Sun Dies, Earth’s Magnetosphere won’t Provide Protection any More”

Measuring the Temperatures of Red Giants is Actually Pretty Tricky

Red giant stars are, well, red and giant. But astronomers have always had difficulty estimating their temperatures, due to their complex and turbulent atmospheres. Without an accurate gauge of their temperatures, it’s difficult to tell when they will end their lives in gigantic supernova explosions. Now a team of astronomers have developed a more effective technique for taking the temperature of red giants, based on the amount of iron in the stars.

Continue reading “Measuring the Temperatures of Red Giants is Actually Pretty Tricky”

A New Study Says That Betelgeuse Won’t Be Exploding Any Time Soon

I have stood under Orion The Hunter on clear evenings willing its star Betelgeuse to explode. “C’mon, blow up!” In late 2019, Betelgeuse experienced an unprecedented dimming event dropping 1.6 magnitude to 1/3 its max brightness. Astronomers wondered – was this dimming precursor to supernova? How cosmically wonderful it would be to witness the moment Betelgeuse explodes. The star ripping apart in a blaze of light scattering the seeds of planets, moons, and possibly life throughout the Universe. Creative cataclysm.

Only about ten supernova have been seen with the naked eye in all recorded history. Now we can revisit ancient astronomical records with telescopes to discover supernova remnants like the brilliant SN 1006 (witnessed in 1006AD) whose explosion created one of the brightest objects ever seen in the sky. Unfortunately, latest research suggests we all might be waiting another 100,000 years for Betelgeuse to pop. However, studying this recent dimming event gleaned new information about Betelgeuse which may help us better understand stars in a pre-supernova state.

This comparison image shows Betelgeuse, before and after its unprecedented dimming
ESO / M. Montargès et al.
Continue reading “A New Study Says That Betelgeuse Won’t Be Exploding Any Time Soon”

If dark matter is a particle, it should get inside red giant stars and change the way they behave

Dark matter makes up the vast majority of matter in the universe, but we can’t see it. At least, not directly. Whatever the dark matter is, it must interact with everything else in the universe through gravity, and astronomers have found that if too much dark matter collects inside of red giant stars, it can potentially cut their lifetimes in half.

Continue reading “If dark matter is a particle, it should get inside red giant stars and change the way they behave”

1 in 10 Red Giants are Covered in Spots, and They Rotate Surprisingly Quickly

Sunspots are common on our Sun. These darker patches are cooler than their surroundings, and they’re caused by spikes in magnetic flux that inhibit convection. Without convection, those areas cool and darken.

Lots of other stars have sunspots, too. But Red Giants (RGs) don’t. Or so astronomers thought.

A new study shows that some RGs do have spots, and that they rotate faster than thought.

Continue reading “1 in 10 Red Giants are Covered in Spots, and They Rotate Surprisingly Quickly”

Stars Like Our Sun Become Lithium Factories as They Die

In the beginning, the big bang created three elements: hydrogen, helium, and lithium. But it only produced a trace of lithium. For every lithium atom created, the big bang produced about 10 billion hydrogen atoms, and 3 billion helium atoms. The ratio of primordial elements is one of the triumphs of the big bang model. It predicts the ratio of hydrogen (H) and helium (4He) perfectly, and even works for the ratios of other isotopes, such as deuterium (2H) and helium-3 (3He). But it doesn’t work for lithium, and we aren’t sure why.

Continue reading “Stars Like Our Sun Become Lithium Factories as They Die”