Runaway Pulsar Produces Longest Jet Trail Ever Observed

An extraordinary jet trailing behind a runaway pulsar is seen in this composite image. Credit: X-ray: NASA/CXC/ISDC/L.Pavan et al, Radio: CSIRO/ATNF/ATCA Optical: 2MASS/UMass/IPAC-Caltech/NASA/NSF

One of the fastest-moving pulsars ever observed is spewing out a record-breaking jet of high-energy particles that stretches 37 light years in length – the longest object in the Milky Way galaxy.

“We’ve never seen an object that moves this fast and also produces a jet,” said Lucia Pavan of the University of Geneva in Switzerland and lead author of a paper analyzing the object. “By comparison, this jet is almost 10 times longer than the distance between the sun and our nearest star.”

The pulsar, a type of neutron star, is has the official moniker of IGR J11014-6103, but is also known as the “Lighthouse nebula.” Astronomers say the pulsar’s corkscrew-like trajectory can likely be traced back to its birth in the collapse and subsequent explosion of a massive star. The curly-cue pattern in the trail suggests the pulsar is wobbling like a spinning top.

The team says that their findings suggest that “jets are common to rotation-powered pulsars, and demonstrate that supernovae can impart high kick velocities to misaligned spinning neutron stars, possibly through distinct, exotic, core-collapse mechanisms.”

The object was first seen by the European Space Agency satellite INTEGRAL. The pulsar is located about 60 light-years away from the center of the supernova remnant SNR MSH 11-61A in the constellation of Carina. Its implied speed is between 4 – 8 million km/hr (2.5 million and 5 million mph), making it one of the fastest pulsars ever observed.

IGR J11014-6103 also is producing a cocoon of high-energy particles that enshrouds and trails behind it in a comet-like tail. This structure, called a pulsar wind nebula, has been observed before, but the Chandra data show the long jet and the pulsar wind nebula are almost perpendicular to one another.

Usually, the spin axis and jets of a pulsar point in the same direction as they are moving.

“We can see this pulsar is moving directly away from the center of the supernova remnant based on the shape and direction of the pulsar wind nebula,” said co-author Pol Bordas, from the University of Tuebingen in Germany. “The question is, why is the jet pointing off in this other direction?”

One possibility requires an extremely fast rotation speed for the iron core of the star that exploded. A problem with this scenario is that such fast speeds are not commonly expected to be achievable.

“With the pulsar moving one way and the jet going another, this gives us clues that exotic physics can occur when some stars collapse,” said co-author Gerd Puehlhofer also of the University of Tuebingen.

Read the team’s paper.

Source: Chandra

This Neutron Star Behaves Just Like The Hulk

The Hulk (Bruce Banner), as portrayed in The Avengers. Credit: Marvel & Subs

When Bruce Banner gets angry, he gets big and green and strong and well, vengeful. The Hulk is the stuff of comic book legend and as Mark Ruffalo recently showed us in The Avengers, Banner’s/Hulk’s personality can transform on a dime.

Turns out rapid transformations are the case in astronomy, too! Scientists found a peculiar neutron star that can change from radio pulsar, to X-ray pulsar, back and forth. In the Hulk’s case, a big dose of gamma rays likely fuelled his ability to transform. This star’s superpowers, however, likely come from a companion star.

“What we’re seeing is a star that is the cosmic equivalent of ‘Dr. Jekyll and Mr. Hyde,’ with the ability to change from one form to its more intense counterpart with startling speed,” stated Scott Ransom, an astronomer at the National Radio Astronomy Observatory.

“Though we have known that X-ray binaries — some of which are observed as X-ray pulsars — can evolve over millions of years to become rapidly spinning radio pulsars, we were surprised to find one that seemed to swing so quickly between the two.”

A neutron star and its companion flipping between accretion (when it emits X-rays) and when accretion has stopped (when it emits radio pulses). Credit: Bill Saxton; NRAO/AUI/NSF. Animation by Elizabeth Howell
A neutron star and its companion flipping between accretion (when it emits X-rays) and when accretion has stopped (when it emits radio pulses). Credit: Bill Saxton; NRAO/AUI/NSF. Animation by Elizabeth Howell

The star’s double personality came to light after astronomers made an accidental double-discovery. IGR J18245-2452, as the star is called, was flagged as a millisecond radio pulsar in 2005 using the  National Science Foundation’s Robert C. Byrd Green Bank Telescope. Then this year, another team found an X-ray pulsar in the same region of the star cluster M28.

It took a little while to sort out the confusion, we’re sure, but eventually astronomers realized it was the same object behaving differently. That said, they were mighty confused: “This was particularly intriguing because radio pulses don’t come from an X-ray binary and the X-ray source has to be long gone before radio signals can emerge,” stated lead researcher Alessandro Papitto, who is with of Institute of Space Sciences in Catalunya (Institut d’Estudis Espacials de Catalunya) in Spain.

The key, it turns out, comes from the interplay with the star’s companion. Material doesn’t flow continuously, as astronomers previously believed is true of these system types, but in bunches. Starting and stopping the flow then led to swings in the behavior, making the star alternate between X-ray and radio emissions.

So to sum up what is happening:

– Neutron stars like IGR J18245-2452 are superdense star remnants that formed after supernovas. A teaspoon of this material is often cited as being as heavy as a mountain (but be careful, as mass and weight are different). Still, we can all understand this stuff is very dense and would take a superhero (Hulk?) to move.

– A neutron star that has a normal star nearby forms an X-ray binary, which happens when the neutron star poaches starstuff off its companion. When the material hits the neutron star, the stuff gets really hot and emits X-rays.

– When the material stops, magnetic fields on the neutron produce radio waves. These appear to blink on and off from the perspective of Earth, as the neutron rotates super-fast (several times a second).

Pulsar diagram (© Mark Garlick)
Pulsar diagram (© Mark Garlick)

In the case of IGR J18245-2452, it behaved like an X-ray binary star for about a month, stopped suddenly, and then sent out radio waves for a while before flipping back again. (A month is less than a blink in astronomical terms, when you recall the universe is 13.8 billion years old.)

To take the longer view, astronomers used to believe that X-ray binaries could evolve into radio emitters over time. Now, though, it appears a star can be these two things at almost the same time.

“During periods when the mass flow is less intense, the magnetic field sweeps away the gas and prevents it from reaching the surface and creating X-ray emission,” NASA stated. “With the region around the neutron star relatively gas free, radio signals can easily escape and astronomers detect a radio pulsar.”

A whole suite of telescopes in Earth and space contributed to this discovery, but of note: the X-ray source was first spotted with the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). You can read more details in the paper published in Nature.

Sources: National Radio Astronomy Observatory and NASA

Weekly Space Hangout – Aug. 16, 2013

Like your space news, but you just can’t handle reading any more? Then watch our Weekly Space Hangout, where we give you a rundown of all the big space news stories that broke this week.

Host: Fraser Cain

Panel: Brian Koberlein, David Dickinson, Nancy Atkinson, Nicole Gugliucci

CIA Comes Clean About Area 51
Elon Musk’s Hyperloop
Space Fence Shut Down
Magnetar Discovered Near the Galactic Core
IAU Updates Their Naming Policy
Bright Nova in Delphinus

We record the Weekly Space Hangout every Friday at 12 pm Pacific / 3 pm Eastern as a live Google+ Hangout on Air. Join us live on YouTube, or you can listen to the audio after the fact on the 365 Days of Astronomy Podcast.

Weekly Space Hangout – April 26, 2013

We had an action packed Weekly Space Hangout on Friday, with a vast collection of different stories in astronomy and spaceflight. This week’s panel included Alan Boyle, Dr. Nicole Gugliucci, Scott Lewis, Jason Major, and Dr. Matthew Francis. Hosted by Fraser Cain.

Some of the stories we covered included: Pulsar Provides Confirmation of General Relativity, Meteorites Crashing into Saturn’s Rings, Radio Observations of Betelgeuse, Progress Docks with the ISS, Hubble Observes Comet ISON, Grasshopper Jumps 250 Meters, April 25th Lunar Eclipse, and the Mars One Reality Show.

We record the Weekly Space Hangout every Friday at 12 pm Pacific / 3 pm Eastern. You can watch us live on Google+, Cosmoquest or listen after as part of the Astronomy Cast podcast feed (audio only).

Einstein Right Again! Rapidly Spinning Pulsar Follows General Relativity

This artist’s impression shows the exotic double object that consists of a tiny, but very heavy neutron star that spins 25 times each second, orbited every two and a half hours by a white dwarf star. The neutron star is a pulsar named PSR J0348+0432 that is giving off radio waves that can be picked up on Earth by radio telescopes. Although this unusual pair is very interesting in its own right, it is also a unique laboratory for testing the limits of physical theories. This system is radiating gravitational radiation, ripples in spacetime. Although these waves (shown as the grid in this picture) cannot be yet detected directly by astronomers on Earth they can be sensed indirectly by measuring the change in the orbit of the system as it loses energy. As the pulsar is so small the relative sizes of the two objects are not drawn to scale.

A unique and exotic laboratory about 6,800 light-years from Earth is helping Earth-based astronomers test Albert Einstein’s theory of general relativity in ways not possible until now. And the observations exactly match predictions from general relativity, say scientists in a paper to be published in the April 26 issue of the journal Science.

Using ESO’s Very Large Telescope along with other radio telescopes, John Antoniadis, a PhD student at the Max Planck Institute for radio Astronomy (MPIfR) in Bonn and lead author of the paper, says the bizarre pair of stars makes for an excellent test case for physics.

“I was observing the system with ESO’s Very Large Telescope, looking for changes in the light emitted from the white dwarf caused by its motion around the pulsar,” says Antoniadis. “A quick on-the-spot analysis made me realize that the pulsar was quite a heavyweight. It is twice the mass of the Sun, making it the most massive neutron star that we know of and also an excellent laboratory for fundamental physics.”

The strange pair consists of a tiny and unusually heavy neutron star that spins 25 times per second. The pulsar, named PSR J0348+0432 is the remains of a supernova explosion. Twice as heavy as our Sun, the pulsar would fit within the confines of the Denver metropolitan area; it’s just 20 kilometers across or about 12 miles. The gravity on this strange star is more than 300 billion times stronger than on Earth. At its center, where the intense gravity squeezes matter even more tightly together, a sugar-cubed-sized block of star stuff would weight more than one billion tons. Only three other pulsars outside globular clusters spin faster and have shorter periods.

J0348+0432 could easily fit within the confines of most American cities, including Denver, Colo. Want to see how big J0348+0432 is compared to your city? Check out this map tool. Zoom into or search for your city, enter 10 km into the radius distance field, and click on a point on the map.)
J0348+0432 could easily fit within the confines of most American cities, including Denver, Colo. Want to see how big J0348+0432 is compared to your city? Check out this map tool. Zoom into or search for your city, enter 10 km into the radius distance field, and click on a point on the map. Credit: Google Maps
In addition, a much larger white dwarf, the extremely hot, burned-out core of a Sun-like star, whips around J0348+0432 every 2.5 hours.

As a consequence, radio astronomers Ryan Lynch and colleagues who discovered the pulsar in 2011, realized the pair would enable scientists to test theories of gravity that were not possible before. Einstein’s general theory of relativity describes gravity as a curvature in spacetime. Like a bowling ball nestled in a stretched bedsheet, spacetime bends and warps in the presence of mass and energy. The theory, published in 1916, has withstood all tests so far as the simplest explanation for observed astronomical phenomena. Other theories of gravity make different predictions but these differences would reveal themselves only in extremely strong gravitational fields not found within our solar system. J0348+0432 offered the opportunity to study Einstein’s theory in detail.

Loading player…

This video shows an artist’s impression of the exotic double object known as PSR J0348+0432. This system is radiating gravitational radiation, or ripples, in spacetime. Although these waves cannot be yet detected directly by astronomers on Earth they can be detected indirectly by measuring the change in the orbit of the system as it loses energy. Credit: ESO/L.Calçada

Antoniadis’ team combined observations of the white dwarf from the European Southern Observatory’s Very Large Telescope with the precise timing of the pulsar from other radio telescopes, including the Green Bank Telescope in West Virginia, Effelsberg 100 meter radio telescope in Germany, and the Arecibo Observatory in Puerto Rico. Astronomers predict such close pulsar binaries radiate gravity waves and lose minute amounts of energy over time causing the orbital period of the white dwarf companion to change slightly. The astronomers found that predictions for this change closely matched those of general relativity while competing theories were different.

“Our radio observations were so precise that we have already been able to measure a change in the orbital period of 8 millionths of a second per year, exactly what Einstein’s theory predicts,” states Paulo Freire, another team member, in the press release.

ESO: Einstein Was Right – So Far
Astrophysical Journal: The Green Bank Telescope 350 MHz Drift-scan Survey II: Data Analysis and the Timing of 10 New Pulsars, Including a Relativistic Binary
Aspen Center for Physics Physical Application of Millisecond Pulsars meeting January 2013: The Compact Relativistic Binary PSR J0348+0432

Pulsar Sets New Speed Record

A pulsar may have been spotted racing through space at over 6 million miles per hour (9.65 million km/h), setting a new speed record for these curious cosmic objects. If observations are what they appear to be, astronomers will have to recalculate the incredible forces created by supernova explosions.

Seen in observations made with 3 different telescopes — NASA’s Chandra X-ray Observatory, ESA’s XMM-Newton, and the Parkes radio telescope in Australia — the x-ray-emitting object IGR J11014-6103 appears to be racing away from the remnants of a supernova in the constellation Carina, 30,000 light-years from Earth.

The comet-shaped object is thought to be a pulsar, the rapidly-spinning, superdense remains of a star. The facts that it’s dim in optical and infrared wavelengths and hasn’t changed in x-ray brightness between XMM-Newton observations in 2003 and Chandra measurements in 2011 support the claim.

IGR J11014’s comet-like shape may be the result of its breakneck speed through space as its pulsar wind nebula gets blown back by the high-energy bow shock created at the forefront of its passage.

Pulsar wind nebulae are the results of charged particles streaming out from the pulsar itself. The particles, traveling at nearly light-speed, are rapidly decelerated by the interstellar medium and create a visible shock wave. In the case of IGR J11014, the pulsar wind is formed into a “tail” by its bow shock — effectively a sonic boom in front of it.

Further observations will be needed to confirm that IGR J11014 is indeed a pulsar, especially considering that actual pulsations have not yet been detected. If it is a pulsar, and is really traveling at the record-breaking speeds it appears to be — between 5.4 and 6.5 million miles per hour, more than 12 times faster than the Sun travels around the center of the galaxy — a new model of supernova explosions may be required.

Read more on the Chandra news release here.

Image: X-ray: NASA/CXC/UC Berkeley/J.Tomsick et al & ESA/XMM-Newton, Optical: DSS; IR: 2MASS/UMass/IPAC-Caltech/NASA/NSF. Video: NASA/CXC/A. Hobart.

Weekly SkyWatcher’s Forecast: February 19-25, 2012

Messier 41 - Credit: NOAO/AURA/NSF


Greetings, fellow SkyWatchers! It’s going to be an awesome week as we watch the planets – Mars, Saturn, Jupiter, Venus and Mercury – dance along the ecliptic plane. You don’t even need a telescope for this show! But that’s not all. We’ll take a look at a wealth of bright star clusters, challenging studies and lots more. I’ll see you in the back yard…

Sunday, February 19 – Today is the birthday of Nicolas Copernicus. Born in 1473, he was the creator of the modern solar system model which illustrated the retrograde motion of the outer planets. Considering this was well over 530 years ago, and in a rather “unenlightened” time, his revolutionary thinking about what we now consider natural is astounding.

Have you been observing retrograde motion while keeping track of Mars? Good for you! You may have also noticed that Mars has dimmed slightly over the last few weeks. Right now it’s around -1.0. Keep track of its many faces!

While we still have dark skies on our side, let’s head for a handful of difficult nebulae in a region just west of Gamma Monocerotis. For binoculars, check out the region around Gamma, it is rich in stars and very colorful! You are looking at the very outer edge of the Orion spiral arm of our galaxy. For small scopes, have a look at Gamma itself – it’s a triple system that we’ll be back to study. For larger scopes? It’s Herschel hunting time…

NGC 2183 (Right Ascension: 6 : 10.8 – Declination: -06 : 13 ) and NGC 2185 (Right Ascension: 6 : 11.1 – Declination: -06 : 13 ) will be the first you encounter as you move west of Gamma. Although they are faint, just remember they are nothing more than a cloud of dust illuminated by faint stars on the edge of the galactic realm. The stars that formed inside provided the light source for these wispy objects and at their edges lay in intergalactic space.

To the southwest is the weaker NGC 2182 (Right Ascension: 6 : 09.5 – Declination: -06 : 20), which will appear as nothing more than a faint star with an even fainter halo about it, with NGC 2170 (Right Ascension: 6 : 07.5 – Declination: -06 : 24) more strongly represented in an otherwise difficult field. While the views of these objects might seem vaguely disappointing, you must remember that not everything is as bright and colorful as seen in a photograph. Just knowing that you are looking at the collapse of a giant molecular cloud that’s 2400 light-years away is pretty impressive!

Monday, February 20 – Today in history celebrates the Mir space station launch in 1986. Mir (Russian for “peace”) was home to both cosmonauts and astronauts as it housed 28 long duration crews during its 15 years of service. To date it is one of the longest running space stations and a triumph for mankind. Spasiba! Today in 1962, John Glenn was onboard Friendship 7 and became the first American to orbit the Earth. As Colonel Glenn looked out the window, he reported seeing “fireflies” glittering outside his Mercury space capsule. Let’s see if we can find some…

The open cluster M41 (Right Ascension: 6 : 46.0 – Declination: -20 : 44) in Canis Major is just a quick drift south of the brightest star in the northern sky – Sirius. Even the smallest scopes and binoculars will reveal this rich group of mixed magnitude stars and fill the imagination with strange notions of reality. Through larger scopes, many faint groupings emerge as the star count rises to well over 100 members. Several stars of color – orange in particular – are also seen along with a number of doubles.

First noted telescopically by Giovanni Batista Hodierna in the mid-1500s, ancient texts indicate that Aristotle saw this naked-eye cluster some 1800 years earlier. Like other Hodierna discoveries, M41 was included on Messier’s list – along with even brighter clusters of antiquity such as Praesepe in Cancer and the Pleiades in Taurus. Open cluster M41 is located 2300 light years away and recedes from us at 34km/sec – about the speed Venus moves around the Sun. M41 is a mature cluster, around 200 million years old and 25 light years in diameter. Remember M41… Fireflies in night skies.

Tuesday, February 21 – Tonight is New Moon! Tonight let’s take a journey just a breath above Zeta Tauri and spend some quality time with a pulsar embedded in the most famous supernova remnant of all. Factually, we know the Crab Nebula to be the remains of an exploded star recorded by the Chinese in 1054. We know it to be a rapid expanding cloud of gas moving outward at a rate of 1,000 km per second, just as we understand there is a pulsar in the center. We also know it as first recorded by John Bevis in 1758, and then later cataloged as the beginning Messier object – penned by Charles himself some 27 years later to avoid confusion while searching for comets. We see it revealed beautifully in timed exposure photographs, its glory captured forever through the eye of the camera — but have you ever really taken the time to truly study M1 (Right Ascension: 5 : 34.5 – Declination: +22 : 01)? Then you just may surprise yourself…

In a small telescope, M1 might seem to be a disappointment – but do not just glance at it and move on. There is a very strange quality to the light which reaches your eye, even though initially it may just appear as a vague, misty patch. Allow your eyes to adjust and M1 will appear to have “living” qualities – a sense of movement in something that should be motionless. The “Crab” holds true to many other spectroscopic studies. The concept of differing light waves crossing over one another and canceling each other out – with each trough and crest revealing differing details to the eye – is never more apparent than during study. To observe M1 is to at one moment see a “cloud” of nebulosity, the next a broad ribbon or filament, and at another a dark patch. When skies are stable you may see an embedded star, and it is possible to see six such stars.

Many observers have the ability to see spectral qualities, but they need to be developed. From ionization to polarization – our eye and brain are capable of seeing to the edge of infra-red and ultra-violet. Even a novice can see the effects of magnetism in the solar “Wilson Effect.” But what of the spinning neutron star at M1’s heart? We’ve known since 1969 that M1 produces a “visual” pulsar effect. About once every five minutes, changes occurring in the neutron star’s pulsation affect the amount of polarization, causing the light waves to sweep around like a giant “cosmic lighthouse” and flash across our eyes. M1 is much more than just another Messier. Capture it tonight!!

Wednesday, February 22 – Today in 1966, Soviet space mission Kosmos 110 was launched. Its crew was canine, Veterok (Little Wind) Ugolyok (Little Piece of Coal); both history making dogs. The flight lasted 22 days and held the record for living creatures in orbit until 1974 – when Skylab 2 carried its three-man crew for 28 days.

Since we’ve studied the “death” of a star, why not take the time tonight to discover the “birth” of one? Our journey will start by identifying Aldeberan (Alpha Tauri) and move northwest to bright Epsilon. Hop 1.8 degrees west and slightly to the north for an incredibly unusual variable star – T Tauri.

Discovered by J.R. Hind in October 1852, T Tauri and its accompanying nebula, NGC 1555 (Right Ascension: 4 : 22.9 – Declination: +19 : 32), set the stage for discovery with a pre-main sequence variable star. Hind reported the nebula, but also noted that no catalog listed such an object in that position. His observations also included a 10th magnitude uncharted star and he surmised that the star in question was a variable. On each count Hind was right, and both were followed by astronomers for several years until they began to fade in 1861. By 1868, neither could be seen and it wasn’t until 1890 that the pair was re-discovered by E.E. Barnard and S.W. Burnham. Five years later? They vanished again.

T Tauri is the prototype of this particular class of variable stars and is itself totally unpredictable. In a period as short as a few weeks, it might move from magnitude 9 to 13 and other times remain constant for months on end. It is about equal to our own Sun in temperature and mass – and its spectral signature is very similar to Sol’s chromosphere – but the resemblance ends there. T Tauri is a star in the initial stages of birth!

T Tauri are all pre-main sequence and are considered “proto-stars”. In other words, they continuously contract and expand, shedding some of their mantle of gas and dust. This gas and dust is caught by the star’s rotation and spun into an accretion disc – which might be more properly referred to as a proto-planetary disc. By the time the jets have finished spewing and the material is pulled back to the star by gravity, the proto-star will have cooled enough to have reached main sequence and the pressure may have allowed planetoids to form from the accreted material.

Thursday, February 23 – If you have an open western horizon, then be out at twilight! Right now the speedy inner planet – Mercury – will make a brief appearance. Depending on your time zone, you might also spot a very young Moon just above it! For curiosity seekers, you can also find asteroid Vesta to the south of the Moon, along with planet Uranus to the south-east. How cool is that?!

In 1987, Ian Shelton made an astonishing visual discovery – SN 1987a. This was the brightest supernova in 383 years. More importantly, before it occurred, a blue star of roughly 20 solar masses was already known to exist in that same location within the Large Magellanic Cloud. Catalogued as Sanduleak -69-202, that star is now gone. With available data on the star, astronomers were able to get a “before and after” look at one of the most extraordinary events in the universe! Tonight, let’s have a look at a similar event known as “Tycho’s Supernova.”

Located northwest of Kappa Cassiopeia, SN1572 appeared so bright in that year that it could be seen with the unaided eye for six months. Since its appearance was contrary to Ptolemaic theory, this change in the night sky now supported Copernicus’ views and heliocentric theory gained credence. We now recognize it as a strong radio source, but can it still be seen? There is a remnant left of this supernova, and it is challenging even with a large telescope. Look for thin, faint filaments that form an incomplete ring around 8 arc minutes across.

Friday, February 24 – Tonight the slender first crescent of the Moon makes its presence known on the western horizon. Before it sets, take a moment to look at it with binoculars. The beginnings of Mare Crisium will show to the northeast quadrant, but look just a bit further south for the dark, irregular blotch of Mare Undarum – the Sea of Waves. On its southern edge, and to lunar east, look for the small Mare Smythii – the “Sea of Sir William Henry Smyth.” Further south of this pair and at the northern edge of Fecunditatis is Mare Spumans – the “Foaming Sea.” All three of these are elevated lakes of aluminous basalt belonging to the Crisium basin.

For telescope users, wait until the Moon has set and return to Beta Monocerotis and head about a fingerwidth northeast for an open cluster challenge – NGC 2250 (Right Ascension: 6 : 32.8 – Declination: -05 : 02). This vague collection of stars presents itself to the average telescope as about 10 or so members that form no real asterism and makes one wonder if it is indeed a cluster. So odd is this one, that a lot of star charts don’t even list it!

Today in 1968, during a radar search survey, the first pulsar was discovered by Jocelyn Bell. The co-directors of the project, Antony Hewish and Martin Ryle, matched these observations to a model of a rotating neutron star, winning them the 1974 Physics Nobel Prize and proving a theory of J. Robert Oppenheimer from 30 years earlier.

Would you like to get a look at a region of the sky that contains a pulsar? Then wait until the Moon has well westered and look for guidestar Alpha Monocerotis to the south and bright Procyon to its north. By using the distance between these two stars as the base of an imaginary triangle, you’ll find pulsar PSR 0820+02 at the apex of your triangle pointed east.

Saturday, February 25 – As the Moon begins its westward journey after sunset in a position much easier to observe. The lunar feature we are looking for is at the north-northeast of the lunar limb and its view is often dependent on libration. What are we seeking? “The Sea of Alexander von Humboldt”…

Mare Humboldtianum can sometimes be hidden from view because it is an extreme feature. Spanning 273 kilometers, the basin in which it is contained extends for an additional 600 kilometers and continues around to the far side of the Moon. The mountain ranges which accompany this basin can sometimes be glimpsed under perfect lighting conditions, but ordinarily are just seen as a lighter area. The mare was formed by lava flow into the impact basin, yet more recent strikes have scarred Humboldtianum. Look for a splash of ejecta from crater Hayn further north, and the huge, 200 kilometer strike of crater Bel’kovich on Humboldtianum’s northeast shore.

When the Moon begins to wester, let’s head for Beta Monocerotis and hop about 3 fingerwidths east for an 8.9 magnitude open cluster that can be spotted with binoculars and is well resolved with a small telescope – NGC 2302 (Right Ascension: 6 : 51.9 – Declination: -07 : 04). This very young stellar cluster resides at the outer edge of the Orion spiral arm. While binoculars will see a handful of stars in a small V-shaped pattern, telescope users should be able to resolve 40 or so fainter members.

Until next week, may all of your journeys be at light speed!

If you enjoy the weekly observing column, then you’ll love the book, The Night Sky Companion 2012 written by Tammy Plotner. This fully illustrated observing guide includes star charts for your favorite objects and much more!

X-rays Unwrap a Poky Little Pulsar

A pulsar within a supernova remnant in the Small Magellanic Cloud. X-rays are blue; optical data is red and green. (NASA/CXC/Univ.Potsdam/L.Oskinova et al.)


For the first time astronomers have located a pulsar – the super-dense, spinning remains of a star – nestled within the remnants of a supernova in the Small Magellanic Cloud. The image above, a composite of x-ray  and optical light data acquired by NASA’s Chandra Observatory and ESA’s XMM-Newton, shows the pulsar shining brightly on the right surrounded by the ejected outer layers of its former stellar life.

The optically-bright area on the left is a large star-forming region of dust and gas nearby SXP 1062.

A pulsar is a neutron star that emits high-energy beams of radiation from its magnetic poles. These poles are not always aligned with its axis of rotation, and so the beams swing through space as the neutron star spins. If the Earth happens to be in direct line with the beams at some point along their path, we see them as rapidly flashing radiation sources… sort of like a cosmic lighthouse on overdrive.

What’s unusual about this pulsar – called SXP 1062 – is its slow rate of rotation. Its beams spin around at a rate of about once every 18 minutes, which is downright poky for a pulsar, most of which spin several times a second.

X-ray image of SXP 1062

This makes SXP 1062 one of the slowest known pulsars discovered within the Small Magellanic Cloud, a dwarf galaxy cruising alongside our own Milky Way about 200,000 light-years distant.

The supernova that presumably created the pulsar and its surrounding remnant wrapping is estimated to have taken place between 10,000 and 40,000 years ago – relatively recently, by cosmic standards. To see a young pulsar spinning so slowly is extra unusual since younger pulsars have typically been observed to have rapid rotation rates. Understanding the cause of its leisurely pace will be the next goal for SXP 1062 researchers.

Read more about SXP 1062on the Chandra photo album page.


Image credit: X-ray & Optical: NASA/CXC/Univ.Potsdam/L.Oskinova et al.

The Crab Gets Cooked With Gamma Rays

X-ray: NASA/CXC/ASU/J. Hester et al.; Optical: NASA/HST/ASU/J. Hester et al.; Radio: NRAO/AUI/NSF Image of the Crab Nebula combines visible light (green) and radio waves (red) emitted by the remnants of a cataclysmic supernova explosion in the year 1054. and the x-ray nebula (blue) created inside the optical nebula by a pulsar (the collapsed core of the massive star destroyed in the explosion). The pulsar, which is the size of a small city, was discovered only in 1969. The optical data are from the Hubble Space Telescope, and the radio emission from the National Radio Astronomy Observatory, and the X-ray data from the Chandra Observatory.


It’s one of the most famous sights in the night sky… and 957 years ago it was bright enough to be seen during the day. This supernova event was one of the most spectacular of its kind and it still delights, amazes and even surprises astronomers to this day. Think there’s nothing new to know about M1? Then think again…

An international collaboration of astrophysicists, including a group from the Department of Physics in Arts & Sciences at Washington University in St. Louis, has detected pulsed gamma rays coming from the heart of the “Crab”. Apparently the central neutron star is putting off energies that can’t quite be explained. These pulses between range 100 and 400 billion electronvolts (Gigaelectronvolts, or GeV), far higher than 25 GeV, the most energetic radiation recorded. To give you an example, a 400 GeV photon is almost a trillion times more energetic than a light photon.

“This is the first time very-high-energy gamma rays have been detected from a pulsar – a rapidly spinning neutron star about the size of the city of Ames but with a mass greater than that of the Sun,” said Frank Krennrich, an Iowa State professor of physics and astronomy and a co-author of the paper.

We can thank the Arizona based Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of four 12-meter Cherenkov telescopes covered in 350 mirrors for the findings. It is continually monitoring Earth’s atmosphere for the fleeting signals of gamma-ray radiation. However, findings like these on such a well-known object is nearly unprecedented.

“We presented the results at a conference and the entire community was stunned,” says Henric Krawczynski, PhD, professor of physics at Washington University. The WUSTL group led by James H. Buckley, PhD, professor of physics, and Krawczynski is one of six founding members of the VERITAS consortium.

An X-ray image of the Crab Nebula and pulsar. Image by the Chandra X-ray Observatory, NASA/CXC/SAO/F. Seward.

We know the Crab’s story and how its pulsar sweeps around like a lighthouse… But Krennrich said such high energies can’t be explained by the current understanding of pulsars. Not even curvature radiation can be at the root of these gamma-ray emissions.

“The pulsar in the center of the nebula had been seen in radio, optical, X-ray and soft gamma-ray wavelengths,” says Matthias Beilicke, PhD, research assistant professor of physics at Washington University. “But we didn’t think it was radiating pulsed emissions above 100 GeV. VERITAS can observe gamma-rays between100 GeV and 30 trillion electronvolts (Teraelectronvolts or TeV).”

Just enough to cook one crab… well done!

Original Story Source: Iowa State University News Release. For Further Reading: Washington University in St. Louis News Release.

Super Star Smashes into the Record Books.

Pulses from neutron star (rear) are slowed as they pass near foreground white dwarf. This effect allowed astronomers to measure masses of the system. CREDIT: Bill Saxton, NRAO/AUI/NSF


The discovery of a super massive neutron star has thrown our understanding of stellar evolution into turmoil. The new star, called PSR J1614-2230 contains twice the mass of the Sun but compressed down into a star that is smaller than the Earth (you could fit over a million Earth’s inside the Sun by comparison). It is estimated a thimbleful of material from the star could weigh more than 500 million tons — that equates to about a million airliners. The study has cast serious doubt over how matter reacts under extreme densities.

The study by a team of astronomers using the National Radio Astronomy Observatory in New Mexico focussed its attention on the star which is about 3,000 light years away (the distance light can travel in 3,000 years at a speed of 300,000 km per second). The stellar corpse whose life ended long ago is now rotating at an incredible speed, completing 317 rotations every second. Its emitting an intense beam of energy from its polar regions which just happens to point in the direction of us here on Earth. We can detect this radiation beam as it flashes on and off like a celestial lighthouse. This type of neutron star is classed a pulsar.

Artist impression of Pulsar
Artist impression of Pulsar

Rather fortuitously, the star is part of a binary star system and is orbited by a white dwarf star which completes one orbit in just nine days. Its through the measurements of the interaction of the two which gave astronomers the clue as to the pulsar’s mass. The orbit of the white dwarf takes it between the beam of radiation and us here on Earth so that the energy from the beam has to pass close by the companion star. By measuring the delay in the beam’s arrival caused by distortion of space-time in the proximity of the white dwarf, scientists can determine the mass of both objects. Its an effect called the Shapiro Delay and its simply luck that the orientation of the stars to the Earth allows the effect to be measured.

Dave Finley, Public Information Officer from NRAO told Universe Today ‘Pulsars are neutron stars, whose radiation beams emerge from the poles and sweep across the Earth.  The orientation of the poles (and thus of the beams) is a matter of chance. We just got very lucky with this system.’

The discovery which was made possible by the new ‘Green Bank Ultimate Pulsar Processing Instrument (GUPPI) was able to measure the pulses from the pulsar with incredible accuracy and thus come to the conclusion that the star weighed in at a hefty two times the mass of the Sun. Current theories suggested a mass of around one and a half solar masses were possible but this new discovery changes the understanding of the composition of such stars, even to the subatomic level.

Neutron stars or pulsars are extreme objects at the very edges of the conditions that matter can exist. They really test our knowledge of the physical Universe and slowly but surely, through dedicated work of teams of astronomers, we are not only learning more about the stars above our heads but more and more about matter in the Universe in which we live.

Mark Thompson is a writer and the astronomy presenter on the BBC One Show. See his website, The People’s Astronomer, and you can follow him on Twitter, @PeoplesAstro

Source: NRAO