Cosmologists have long hypothesized that the conditions of the early universe could have caused the formation of black holes not long after the Big Bang. These ‘primordial black holes’ have a much wider mass range than those that formed in the later universe from the death of stars, with some even condensed to the width of a single atom.
Continue reading “Gravitational Wave Observatories Could Detect Primordial Black Holes Speeding Through the Solar System”Primordial Black Holes Could Kick Out Stars and Replace Them.
Primordial black holes formed during the earliest stages of the evolution of the universe. Their immense gravity may be playing havoc in stellar systems. They can transfer energy into wide binary systems disrupting their orbits. Like celestial bullies their disruption might lead to extreme outcomes though like the ejection of a star, only to be replaced by the black hole itself! A new paper studies the interactions of systems like these and looks at ways we might be able to detect them.
Continue reading “Primordial Black Holes Could Kick Out Stars and Replace Them.”How a Black Hole Could Eat a Neutron Star from the Inside Out
Primordial black holes are thought to have formed early in the evolution of the universe. None have been discovered yet but if they do exist and they may be plentiful, drifting almost invisibly through the cosmos, then they might account for dark matter. One possible way to search for them is to see the results of their meals and a bizarre new theory suggests low mass black holes could be captured by neutron stars and become trapped inside, devouring them from within. If these strange objects existed then it would make neutron stars less common in locations where black holes would proliferate as observed around Galactic centre.
Continue reading “How a Black Hole Could Eat a Neutron Star from the Inside Out”Another Strike Against Primordial Black Holes as an Explanation for Dark Matter
The quest to understand dark matter has taken many twists and turns. It’s a scientific tale but also a human one. We know there’s a missing mass problem, but astrophysicists and cosmologists can’t figure out what the missing matter is. One of the most interesting potential solutions is primordial black holes (PBHs).
However, new research suggests that PBHs can only make up a small portion of dark matter if any at all.
Continue reading “Another Strike Against Primordial Black Holes as an Explanation for Dark Matter”Primordial Black Holes Can Only Explain a Fraction of Dark Matter
What is Dark Matter? That question is prominent in discussions about the nature of the Universe. There are many proposed explanations for dark matter, both within the Standard Model and outside of it.
One proposed component of dark matter is primordial black holes, created in the early Universe without a collapsing star as a progenitor.
Continue reading “Primordial Black Holes Can Only Explain a Fraction of Dark Matter”Some Clever Ways to Search for Primordial Black Holes
Primordial Black Holes (PBHs) have recently received much attention in the physics community. One of the primary reasons is the potential link to dark matter. In effect, if PBHs can be proven to exist, there’s a very good chance that they are what dark matter, the invisible thing that makes up 85% of the universe’s mass, is made of. If proven, that would surely be a Nobel-level discovery in astrophysics.
Continue reading “Some Clever Ways to Search for Primordial Black Holes”Roman Space Telescope Will Be Hunting For Primordial Black Holes
When astrophysicists observe the cosmos, they see different types of black holes. They range from gargantuan supermassive black holes with billions of solar masses to difficult-to-find intermediate-mass black holes (IMBHs) all the way down to smaller stellar-mass black holes.
But there may be another class of these objects: primordial black holes (PBHs) that formed in the very early Universe. If they exist, the Nancy Grace Roman Space Telescope should be able to spot them.
Continue reading “Roman Space Telescope Will Be Hunting For Primordial Black Holes”The Universe Could Be Filled With Ultralight Black Holes That Can't Die
It’s that time again! Time for another model that will finally solve the mystery of dark matter. Or not, but it’s worth a shot. Until we directly detect dark matter particles, or until some model conclusively removes dark matter from our astrophysical toolkit the best we can do is continue looking for solutions. This new work takes a look at that old theoretical chestnut, primordial black holes, but it has a few interesting twists.
Continue reading “The Universe Could Be Filled With Ultralight Black Holes That Can't Die”Could There Be a Black Hole Inside the Sun?
It’s a classic tale of apocalyptic fiction. The Sun, our precious source of heat and light, collapses into a black hole. Or perhaps a stray black hole comes along and swallows it up. The End is Nigh! If a stellar-mass black hole swallowed our Sun, then we’d only have about 8 minutes before, as the kids say, it gets real. But suppose the Sun swallowed a small primordial black hole? Then things get interesting, and that’s definitely worth a paper on the arXiv.
Continue reading “Could There Be a Black Hole Inside the Sun?”If We Could Find Them, Primordial Black Holes Would Explain a Lot About the Universe
There are three known types of black holes in the Universe: supermassive black holes that lurk in the centers of galaxies, stellar-mass black holes that are the remnants of massive stars, and intermediate-mass black holes that can be found in dense clusters of stars. But there is a fourth, hypothetical type of black hole known as primordial black holes (PBHs). If they exist, they could solve a few cosmological mysteries.
Continue reading “If We Could Find Them, Primordial Black Holes Would Explain a Lot About the Universe”