Did Supermassive Black Holes Collapse Directly out of Giant Clouds of gas? It Could Depend on Magnetic Fields

This artist’s impression shows a possible seed for the formation of a supermassive black hole. Credit: NASA/CXC/M. Weiss

Roughly half a century ago, astronomers realized that the powerful radio source coming from the center of our galaxy (Sagitarrius A*) was a “monster” black hole. Since then, they have found that supermassive black holes (SMBHs) reside at the center of most massive galaxies. This leads to what is known as Active Galactic Nuclei (AGN) or quasars, where the central region of a galaxy is so energetic that it outshines all of the stars in its galactic disk. In all that time, astronomers have puzzled over how these behemoths (which play a crucial role in galactic evolution) originated.

Astronomers suspect that the seeds that formed SMBHs were created from giant clouds of dust that collapsed without first becoming stars – aka. Direct Collapse Black Holes (DCBHs). However, the role of magnetic fields in the formation of DCBHs has remained unclear since none of the previous studies have been able to simulate the full accretion periods. To investigate this, an international team of astronomers ran a series of 3D cosmological magneto-hydrodynamic (MHD) simulations that accounted for DCBH formation and showed that magnetic fields grow with the accretion disks and stabilize them over time.

Continue reading “Did Supermassive Black Holes Collapse Directly out of Giant Clouds of gas? It Could Depend on Magnetic Fields”

Primordial Black Holes Could Have Triggered the Formation of Supermassive Black Holes

Artist view of merging black holes in the early universe. Credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

The early moments of the universe were turbulent and filled with hot and dense matter. Fluctuations in the early universe could have been great enough that stellar-mass pockets of matter collapsed under their own weight to create primordial black holes. Although we’ve never detected these small black holes, they could have played a vital role in cosmic evolution, perhaps growing into the supermassive black holes we see today. A new study shows how this could work, but also finds the process is complicated.

Continue reading “Primordial Black Holes Could Have Triggered the Formation of Supermassive Black Holes”

Primordial Black Holes Could Explain Dark Matter and the Growth of Supermassive Black Holes at the Same Time

How we might discover primordial black holes. Credit: ESA

It’s that time again. Time to look at a possible model to explain dark matter. In this case, a perennial favorite known as primordial black holes. Black holes have long been proposed as the source of dark matter. In many ways, they are the perfect candidate because they only interact with light and matter gravitationally. But stellar-mass black holes have been ruled out observationally. There simply aren’t enough of them to account for dark matter.

Continue reading “Primordial Black Holes Could Explain Dark Matter and the Growth of Supermassive Black Holes at the Same Time”

Gravitational-Wave Observatories Should be Able to Detect Primordial Black Hole Mergers, if They’re out There

The early universe. Credit: Tom Abel & Ralf Kaehler (KIPACSLAC)/ AMNH/NASA

The tumultuous era of the big bang may have been chaotic enough to flood the universe with primordial black holes. Eventually some of those black holes will find each other and merge, sending out ripples of gravitational waves. A comprehensive search for those gravitational wave signatures hasn’t found anything, putting tight constraints on the abundance of these mysterious objects.

Continue reading “Gravitational-Wave Observatories Should be Able to Detect Primordial Black Hole Mergers, if They’re out There”

Gravitational-Wave Detector Could Sense Merging Primordial Black Holes With the Mass of a Planet, Millions of Light-Years Away

Simulation of the gravitational waves of merging black holes. Credit: N. Fischer, H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes (SXS) Collaboration

Gravitational-wave detectors have been a part of astronomy for several years now, and they’ve given us a wealth of information about black holes and what happens when they merge. Gravitational-wave astronomy is still in its infancy, and we are still very limited in the type of gravitational waves we can observe. But that could change soon.

Continue reading “Gravitational-Wave Detector Could Sense Merging Primordial Black Holes With the Mass of a Planet, Millions of Light-Years Away”

What's the Connection Between Stellar-Mass Black Holes and Dark Matter?

Artist view of a black hole in the middle of solar system. Credit: Petr Kratochvil/PublicDomainPictures CC0

Imagine you are a neutron star. You’re happily floating in space, too old to fuse nuclei in your core anymore, but the quantum pressure of your neutrons and quarks easily keeps you from collapsing under your own weight. You look forward to a long stellar retirement of gradually cooling down. Then one day you are struck by a tiny black hole. This black hole only has the mass of an asteroid, but it causes you to become unstable. Gravity crushes you as the black hole consumes you from the inside out. Before you know it, you’ve become a black hole.

Continue reading “What's the Connection Between Stellar-Mass Black Holes and Dark Matter?”

If Planet 9 is a Primordial Black Hole, We Might Be Able to See Flares When it Consumes Comets

Artist's conception of accretion flares resulting from the encounter of an Oort-cloud comet and a hypothesized black hole in the outer solar system. Credit: M. Weiss

A comet-eating black hole the size of a planet? It’s possible. And if there’s one out there in the distant Solar System, a pair of researchers think they know how to find it.

If they do, we might finally put the Planet 9 issue to rest.

Continue reading “If Planet 9 is a Primordial Black Hole, We Might Be Able to See Flares When it Consumes Comets”

Planetary Mass Objects Discovered in Other Galaxies

In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)
In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)

A team of researchers at the University of Oklahoma have discovered “planetary mass bodies” outside of the Milky Way. They were discovered in one gravitationally-lensed galaxy, and in one gravitationally-lensed galaxy cluster using a technique called quasar micro-lensing. According to the researchers, the planetary mass objects are either planets or primordial black holes.

Continue reading “Planetary Mass Objects Discovered in Other Galaxies”

Now We Know That Dark Matter Isn’t Primordial Black Holes

The early universe. Credit: Tom Abel & Ralf Kaehler (KIPACSLAC)/ AMNH/NASA

For over fifty years, scientists have theorized that roughly 85% of matter in the Universe’s is made up of a mysterious, invisible mass. Since then, multiple observation campaigns have indirectly witnessed the effects that this “Dark Matter” has on the Universe. Unfortunately, all attempts to detect it so far have failed, leading scientists to propose some very interesting theories about its nature.

One such theory was offered by the late and great Stephen Hawking, who proposed that the majority of dark matter may actually be primordial black holes (PBH) smaller than a tenth of a millimeter in diameter. But after putting this theory through its most rigorous test to date, an international team of scientists led from the Kavli Institute for the Physics and Mathematics of the Universe (IPMU) has confirmed that it is not.

Continue reading “Now We Know That Dark Matter Isn’t Primordial Black Holes”