A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal

The JWST has the power to see the most ancient galaxies in the Universe, as shown in this image of its first deep field. Now, astrophysicists have found carbon in one of these ancient galaxies. Image Credit: NASA, ESA, CSA, and STScI

Astrophysicists working with the JWST have found a surprising amount of metal in a galaxy only 350 million years after the Big Bang. How does that fit in with our understanding of the Universe?

Continue reading “A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal”

Have We Seen the First Glimpse of Supermassive Dark Stars?

Three dark star candidates, JADES-GS-z13-0 (top), JADES-GS-z12-0 (middle), and JADES-GS-z11-0 (bottom) were originally identified as galaxies by the JWST Advanced Deep Extragalactic Survey (JADES) team. Recently, a team of researchers have hypothesized these candidates could be “dark stars,” which are theoretical objects far more massive and brighter than our sun, and allegedly powered by demolishing particles of dark matter. (Credit: NASA/European Space Agency)

A recent study published in the Proceedings of the National Academy of Sciences (PNAS) examines what are known as dark stars, which are estimated to be much larger than our Sun, are hypothesized to have existed in the early universe, and are allegedly powered by the demolition of dark matter particles. This study was conducted using spectroscopic analysis from NASA’s James Webb Space Telescope (JWST), and more specifically, the JWST Advanced Deep Extragalactic Survey (JADES), and holds the potential to help astronomers better understand dark stars and the purpose of dark matter, the latter of which continues to be an enigma for the scientific community, as well as how it could have contributed to the early universe.

Continue reading “Have We Seen the First Glimpse of Supermassive Dark Stars?”

More Evidence of Massive First Generation Stars

Artist's rendition of massive, luminous first-generation stars in the Universe. When they died, their supernova explosions produced dust. Credit: NAOC
Artist's rendition of massive, luminous first-generation stars in the Universe. When they died, their supernova explosions produced dust. Credit: NAOC

A few days ago I wrote about the search for Population III stars. These stars were the first stars of the universe. Giant beasts hundreds of times more massive than the Sun, composed only of hydrogen and helium. These massive stars would have been very short-lived, exploding as brilliant supernovae in less than a million years. But Population III stars were so massive, their supernovae were uniquely different from the ones we see today, so our best way to find evidence of them is to look for their supernova remnants. And a recent study published in Nature may have found some.

Continue reading “More Evidence of Massive First Generation Stars”

Has JWST Finally Found the First Stars in the Universe?

Artist's view of several Population III stars. Credit: NASA/WMAP Science Team

In astronomy, elements other than hydrogen and helium are called metals. While that might make your high-school chemistry teacher cringe, it makes sense for astronomers. The two lightest elements were the first to appear in the universe. They are the atomic remnants of the big bang and make up more than 99% of atoms in the universe. All the other elements, from carbon to iron to gold, were created through astrophysical processes. Things like nuclear fusion in stellar cores, supernova explosions, and collisions of white dwarfs and neutron stars.

Continue reading “Has JWST Finally Found the First Stars in the Universe?”

Here's How You Could Get Impossibly Large Galaxies in the Early Universe

The galaxy cluster SMACS0723, with the five galaxies selected for closer study. Credit: NASA, ESA, CSA, STScI / Giménez-Arteaga et al. (2023), Peter Laursen (Cosmic Dawn Center).

One of the most interesting (and confounding) discoveries made by the James Webb Space Telescope (JWST) is the existence of “impossibly large galaxies.” As noted in a previous article, these galaxies existed during the “Cosmic Dawn,” the period that coincided with the end of the “Cosmic Dark Age” (roughly 1 billion years after the Big Bang). This period is believed to hold the answers to many cosmological mysteries, not the least of which is what the earliest galaxies in the Universe looked like. But after Webb obtained images of these primordial galaxies, astronomers noticed something perplexing.

The galaxies were much larger than what the most widely accepted cosmological model predicts! Since then, astronomers and astrophysicists have been racking their brains to explain how these galaxies could have formed. Recently, a team of astrophysicists from The Hebrew University of Jerusalem Jerusalem published a theoretical model that addresses the mystery of these massive galaxies. According to their findings, the prevalence of special conditions in these galaxies (at the time) allowed highly-efficient rates of star formation without interference from other stars.

Continue reading “Here's How You Could Get Impossibly Large Galaxies in the Early Universe”

Can JWST see Galaxies Made of Primordial Stars?

The distance of first generation stars. Credit: STScI

All stars are composed of mostly hydrogen and helium, but most stars also have measurable amounts of heavier elements, which astronomers lump into the category of “metals.” Our Sun has more metals than most stars because the nebula from which it formed was the remnant debris of earlier stars. These were in turn children of even earlier stars, and so on. Generally, each new generation of stars has a bit more metal than the last. The very first stars, those born from the primordial hydrogen and helium of the cosmos, had almost no metal in them. We’ve never seen one of these primordial stars, but with the power of the Webb and a bit of luck, we might catch a glimpse of them soon.

Continue reading “Can JWST see Galaxies Made of Primordial Stars?”

Did Supermassive Black Holes Collapse Directly out of Giant Clouds of gas? It Could Depend on Magnetic Fields

This artist’s impression shows a possible seed for the formation of a supermassive black hole. Credit: NASA/CXC/M. Weiss

Roughly half a century ago, astronomers realized that the powerful radio source coming from the center of our galaxy (Sagittarius A*) was a “monster” black hole. Since then, they have found that supermassive black holes (SMBHs) reside at the center of most massive galaxies. This leads to what is known as Active Galactic Nuclei (AGN) or quasars, where the central region of a galaxy is so energetic that it outshines all of the stars in its galactic disk. In all that time, astronomers have puzzled over how these behemoths (which play a crucial role in galactic evolution) originated.

Astronomers suspect that the seeds that formed SMBHs were created from giant clouds of dust that collapsed without first becoming stars – aka. Direct Collapse Black Holes (DCBHs). However, the role of magnetic fields in the formation of DCBHs has remained unclear since none of the previous studies have been able to simulate the full accretion periods. To investigate this, an international team of astronomers ran a series of 3D cosmological magneto-hydrodynamic (MHD) simulations that accounted for DCBH formation and showed that magnetic fields grow with the accretion disks and stabilize them over time.

Continue reading “Did Supermassive Black Holes Collapse Directly out of Giant Clouds of gas? It Could Depend on Magnetic Fields”

What Telescope Will Be Needed to See the First Stars in the Universe? The Ultimately Large Telescope

New results from the NASA/ESA Hubble Space Telescope suggest the formation of the first stars and galaxies in the early Universe took place sooner than previously thought. A European team of astronomers have found no evidence of the first generation of stars, known as Population III stars, when the Universe was less than one billion years old. This artist’s impression presents the early Universe. Image Credit: ESA/Hubble, M. Kornmesser.

The oldest stars in the Universe are cloaked in darkness. Their redshift is so high, we can only wonder about them. The James Webb Space Telescope will be our most effective telescope for observing the very early Universe, and should observe out to z = 15. But even it has limitations.

To observe the Universe’s very first stars, we need a bigger telescope. The Ultimately Large Telescope.

Continue reading “What Telescope Will Be Needed to See the First Stars in the Universe? The Ultimately Large Telescope”

The First Stars Formed Very Quickly

Credit: Max Planck Institute for Astronomy

Ever since astronomers realized that the Universe is in a constant state of expansion and that a massive explosion likely started it all 13.8 billion years ago (the Big Bang), there have been unresolved questions about when and how the first stars formed. Based on data gathered by NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) and similar missions, this is believed to have happened about 100 million years after the Big Bang.

Much of the details of how this complex process worked have remained a mystery. However, new evidence gathered by a team led by researchers from the Max Planck Institute for Astronomy indicates that the first stars must have formed rather quickly. Using data from the Magellan Telescopes at Las Campanas Observatory, the team observed a cloud of gas where star formation was taking place just 850 million years after the Big Bang.

Continue reading “The First Stars Formed Very Quickly”

Traces of One of the Oldest Stars in the Universe Found Inside Another Star

Accroding to new research, the Milky Way may still bear the marks of "ancient impacts". Credit: NASA/Serge Brunier

Despite all we know about the formation and evolution of the Universe, the very early days are still kind of mysterious. With our knowledge of physics we can shed some light on the nature of the earliest stars, even though they’re almost certainly long gone.

Now a new discovery is confirming what scientists think they know about the early Universe, by shedding light on a star that’s still shining.

Continue reading “Traces of One of the Oldest Stars in the Universe Found Inside Another Star”