Interstellar Asteroid ‘Oumuamua Had a Violent Past

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) telescope in Hawaii announced the first-ever detection of an interstellar asteroid – I/2017 U1 (aka. ‘Oumuamua). Originally mistaken for a comet, follow-up observations conducted by the European Southern Observatory (ESO) and others confirmed that ‘Oumuamua was actually a rocky body that had originated outside of our Solar System.

Since that time, multiple investigations have been conducted to determine ‘Oumuamua’s structure, composition, and just how common such visitors are. At the same time, a considerable amount of attention has been dedicated to determining the asteroid’s origins. According to a new study by a team of international researchers, this asteroid had a chaotic past that causes it to tumble around chaotically.

The study, titled “The tumbling rotational state of 1I/‘Oumuamua“, recently appeared in the scientific journal Nature Astronomy. The study was led by Wesley C. Fraser, a research fellow at the University of Queens Belfast’s Astrophysics Research Center, and included members from the Academy of Sciences of the Czech Republic, the The Open University and the University of Belgrade.

As they indicate, the discovery of ‘Oumuamua has provided scientists with the first opportunity to study a planetesimal born in another planetary system. In much the same way that research into Near-Earth Asteroids, Main Belt Asteroids, or Jupiter’s Trojans can teach astronomers about the history and evolution of our Solar System, the study of a ‘Oumuamua would provide hints as to what was going on when and where it formed.

For the sake of their study, Dr. Fraser and his international team of colleagues have been measuring ‘Oumuamua brightness since it was first discovered. What they found was that ‘Oumuamua wasn’t spinning periodically (like most small asteroids and planetesimals in our Solar System), but chaotically. What this means is that the asteroid has likely been tumbling through space for billions of years, an indication of a violent past.

While it is unclear why this is, Dr. Fraser and his colleagues suspect that it might be due to an impact. In other words, when ‘Oumuamua was thrown from its own system and into interstellar space, it is possible it collided violently with another rock. As Dr. Fraser explained in a Queen’s University Belfast press release:

“Our modelling of this body suggests the tumbling will last for many billions of years to hundreds of billions of years before internal stresses cause it to rotate normally again. While we don’t know the cause of the tumbling, we predict that it was most likely sent tumbling by an impact with another planetesimal in its system, before it was ejected into interstellar space.”

These latest findings mirror what other studies have been able to determine about ‘Oumuamua based on its object changes in its brightness. For example, brightness measurements conducted by the Institute for Astronomy in Hawaii – and using data from the ESO’s Very Large Telescope (VLT) – confirmed that the asteroid was indeed interstellar in origin, and that its shape is highly elongated (i.e. very long and thin).

However, measurements of its color have produced little up until now other than confusion. This was due to the fact that the color appeared to vary between measurements. When the long face of the object is facing telescopes on Earth, it appears largely red, while the rest of the body has appeared neutral in color (like dirty snow). Based on their analysis, Dr. Fraser and his team resolved this mystery by indicating that the surface is “spotty”.

In essence, most of the surface reflects neutrally, but one of its long faces has a large red region – indicating the presence of tholins on its long surface. A common feature of bodies in the outer Solar System, tholins are organic compounds (i.e. methane and ethane) that have turned a deep shade of reddish-brown thanks to their exposure to ultra-violet radiation.

What this indicates, according to Dr. Fraser, is broad compositional variations on ‘Oumuamua, which is unusual for such a small body:

“We now know that beyond its unusual elongated shape, this space cucumber had origins around another star, has had a violent past, and tumbles chaotically because of it. Our results are really helping to paint a more complete picture of this strange interstellar interloper. It is quite unusual compared to most asteroids and comets we see in our own solar system,” comments Dr Fraser.

Oumuamua as it appeared using the William Herschel Telescope on the night of October 29. Queen’s University Belfast/William Herschel Telescope

To break it down succinctly, ‘Oumuamua may have originated closer to its parent star (hence its rocky composition) and was booted out by strong resonances. In the course of leaving its system, it collided with another asteroid, which sent it tumbling towards interstellar space. It’s current chaotic spin and its unusual color are both testaments to this turbulent past, and indicate that its home system and the Solar System have a few things in common.

Since its arrival in our system, ‘Oumuamua has set off a flurry of scientific research. All over the world, astronomers are hoping to get a glimpse of it before it leaves our Solar System, and there are even those who hope to mount a robotic mission to rendezvous with it before its beyond our reach (Project Lyra). In any event, we can expect that this interstellar visitor will be the basis of scientific revelations for years to come!

This study is the third to be published by their team, which has been monitoring ‘Oumuamua since it was first observed in October. All studies were conducted with support provided by the Science and Technology Facilities Council.

Further Reading: Queen’s University Belfast

Finally, the Missing Link in Planetary Formation!

The theory of how planets form has been something of an enduring mystery for scientists. While astronomers have a pretty good understanding of where planetary systems comes from – i.e. protoplanetary disks of dust and gas around new stars (aka. “Nebular Theory“) – a complete understanding of how these discs eventually become objects large enough to collapse under their own gravity has remained elusive.

But thanks to a new study by a team of researchers from France, Australia and the UK, it seems that the missing piece of the puzzle may finally have been found. Using a series of simulations, these researchers have shown how “dust traps” – i.e. regions where pebble-sized fragments could collect and stick together – are common enough to allow for the formation of planetesimals.

Their study, titled “Self-Induced Dust Traps: Overcoming Planet Formation Barriers“, appeared recently in the Monthly Notices of the Royal Astronomical Society. Led by Dr. Jean-Francois Gonzalez – of the Lyon Astrophysics Research Center (CRAL) in France – the team examined the troublesome middle-stage of planetary formation that has plagued scientists.

An image of a protoplanetary disk, made using results from the new model, after the formation of a spontaneous dust trap, visible as a bright dust ring. Gas is depicted in blue and dust in red. Credit: Jean-Francois Gonzalez.

Until recently, the process by which protoplanetary disks of dust and gas aggregate to form peddle-sized objects, and the process by which planetesimals (objects that are one hundred meters or more in diameter) form planetary cores, have been well understood. But the process that bridges these two – where pebbles come together to form planetesimals – has remained unknown.

Part of the problem has been the fact that the Solar System, which has been our only frame of reference for centuries, formed billions of years ago. But thanks to recent discoveries (3453 confirmed exoplanets and counting), astronomers have had lots of opportunities to study other systems that are in various stages of formation. As Dr. Gonzalez explained in a Royal Astronomical Society press release:

“Until now we have struggled to explain how pebbles can come together to form planets, and yet we’ve now discovered huge numbers of planets in orbit around other stars. That set us thinking about how to solve this mystery.”

In the past, astronomers believed that “dust traps” – which are integral to planet formation – could only exist within certain environments. In these high-pressure regions, large grains of dust are slowed down to the point where they are able to come together. These regions are extremely important since they counteract the two main obstacles to planetary formation, which are drag and high-speed collisions.

Artist’s impression of the planets in our solar system, along with the Sun (at bottom). Credit: NASA

Drag is caused by the effect gas has on dust grains, which causes them to slow down and eventually drift into the central star (where they are consumed). As for high-speed collisions, this is what causes large pebbles to smash into each other and break apart, thus reversing the aggregation process. Dust traps are therefore needed to ensure that dust grains are slowed down just enough so that they won’t annihilate each other when they collide.

To see just how common these dust traps were, Dr. Gonzalez and his colleagues conducted a series of computer simulations that took into account how dust in a protoplanetary disk could exert drag on the gas component – a process known as “aerodynamic drag back-reaction”. Whereas gas typically has an arresting influence on dust particles, in particularly dusty rings, the opposite can be true.

This effect has been largely ignored by astronomers up until recently, since its generally quite negligible. But as the team noted, it is an important factor in protoplanetary disks, which are known for being incredibly dusty environments. In this scenario, the effect of back-reaction is to slow inward-moving dust grains and push gas outwards where it forms high-pressure regions – i.e. “dust traps”.

Once they accounted for these effects, their simulations showed how planets form in three basic stages. In the first stage, dust grains grow in size and move inwards towards the central star. In the second, the now pebble-sized larger grains accumulate and slow down. In the third and final stage, the gas is pushed outwards by the back-reaction, creating the dust trap regions where it accumulates.

Illustration showing the stages of the formation mechanism for dust traps. Credit: © Volker Schurbert.

These traps then allow the pebbles to aggregate to form planetesimals, and eventually planet-sized worlds. With this model, astronomers now have a solid idea of how planetary formation goes from dusty disks to planetesimals coming together. In addition to resolving a key question as to how the Solar System came to be, this sort of research could prove vital in the study of exoplanets.

Ground-based and space-based observatories have already noted the presence of dark and bright rings that are forming in protoplanetary disks around distant stars – which are believed to be dust traps. These systems could provide astronomers with a chance to test this new model, as they watch planets slowly come together. As Dr. Gonzalez indicated:

“We were thrilled to discover that, with the right ingredients in place, dust traps can form spontaneously, in a wide range of environments. This is a simple and robust solution to a long standing problem in planet formation.”

Further Reading: Royal Astronomical Society, MNRAS

A Mission to a Metal World: The Psyche Mission

In their drive to set exploration goals for the future, NASA’s Discovery Program put out the call for proposals for their thirteenth Discovery mission in February 2014. After reviewing the 27 initial proposals, a panel of NASA and other scientists and engineers recently selected five semifinalists for additional research and development, one or two of which will be launching by the 2020s.

With an eye to Venus, near-Earth objects and asteroids, these missions are looking beyond Mars to address other questions about the history and formation of our Solar System. Among them is the proposed Psyche mission, a robotic spacecraft that will explore the metallic asteroid of the same name – 16 Psyche – in the hopes of shedding some light on the mysteries of planet formation.

Discovered by Italian astronomer Annibale de Gasparis on March 17th, 1852 – and named after a Greek mythological figure – Psyche is one the ten most-massive asteroids in the Asteroid Belt. It is also the most massive M-type asteroid, a special class pertaining to asteroids composed primarily of nickel and iron.

For some time, scientists have speculated that this metallic asteroid is in fact the survivor of a protoplanet. In this scenario, a violent collision with a planetesimal stripped off Psyche’s outer, rocky layers, leaving behind only the dense, metallic interior. This theory is supported by estimates of Psyche’s bulk density, spectra, and radar surface properties; all of which show it to be an object unlike any others in the Belt.

Promotional artwork for the proposed Psyche mission. Credit: Peter Rubin/JPL-CALTECH.
Promotional artwork for the proposed Psyche mission. Credit: Peter Rubin/JPL-CALTECH.

In addition, this composition of 16 Psyche is strikingly similar to that of Earth’s metal core. Given that astronomers think that larger planets like Venus, Earth and Mars formed from the collision and merger of smaller worlds, Psyche could be the remains of a protoplanet that did not get to create a larger body.

Had such a planetesimal been struck by a large enough object, it would have been able to lose its lower-mass exterior while keeping its core intact. Thus, studying this 250 km (155 mile) wide body, offers a unique opportunity to learn more about the interiors of planets and large moons, whose cores are hidden beneath many miles of rock.

Dr. Linda Elkins-Tanton of Arizona State University’s School of Earth and Space Exploration is the Principle Investigator of this mission. As she and her team stated in their mission proposal paper, which was originally submitted as part of the 45th Lunar and Planetary Science Conference (2014):

“This mission would be a journey back in time to one of the earliest periods of planetary accretion, when the first bodies were not only differentiating, but were being pulverized, shredded, and accreted by collisions. It is also an exploration, by proxy, of the interiors of terrestrial planets and satellites today: we cannot visit a metallic core any other way.

“For all of these reasons, coupled with the relative accessibility to low- cost rendezvous and orbit, Psyche is a superb target for a Discovery-class mission that would characterize its geology, shape, elemental composition, magnetic field , and mass distribution.”

The huge metal asteroid Psyche may have a strong remnant magnetic field. Credit: Damir Gamulin/Ben Weiss
The huge metal asteroid Psyche may have a strong remnant magnetic field. Credit: Damir Gamulin/Ben Weiss

A robotic mission to Pysche would also help astronomers learn more about metal worlds, a type of solar system object that scientists know very little about. But perhaps the greatest reason to study 16 Psyche is the fact that it is unique. So far, this body is the only metallic core-like body that has been discovered in the Solar System.

The proposed spacecraft would orbit Psyche for six months, studying its topography, surface features, gravity, magnetism, and other characteristics. The mission would also be cost-effective and quick to launch, since it is largely based on technology that went into the making of NASA’s Dawn probe. Currently in orbit around Ceres, the Dawn mission has demonstrated the effectiveness of many new technologies, not the least of which was the xenon ion thruster.

The Psyche orbiter mission was selected as one of the Discovery Program’s five semifinalists on September 30th, 2015. Each proposal has received $3 million for year-long studies to lay out detailed mission plans and reduce risks. One or two finalist will be selected to receive the program’s budget of $450 million (minus the cost of a launch vehicle and mission operations) and will launch in 2020 at the earliest.

“Marstinis” Could Help Explain Why the Red Planet is So Small

Proof of Life on Mars


Mars is a small planet. In fact, for scientists who do solar system modeling, the planet is too small. “This is an outstanding problem in terrestrial planet formation,” said Dr. David Minton from the Southwest Research Institute. “Everyone who does simulations of how you form terrestrial planets always ends up with a Mars that is 5-10 times bigger than it is in real life.” Minton has been working alongside colleague Dr. Hal Levison to create new simulations that explain the small size of Mars by including the effect of what is known as planetesimal-driven migration, and additionally, small objects that Minton calls “Marstinis” could stir or shake up our ideas about the early solar system and the Late Heavy Bombardment.

Planetary scientists agree that the terrestrial planets formed very quickly within the first 50-100 million years of the solar system’s history and our Moon formed from an impact between a Mars-sized object and the proto-Earth at some point during that time. Much later was the Late Heavy Bombardment, the time period where a large number of impact craters formed on the Moon within a time span of only seventy million years — and by inference Earth, Mercury, Venus, and Mars were likely pummeled as well.

Most planetary formation theories can’t account for this intense period of bombardment so late in the solar system’s history, but Levison was part of a team that in 2005 proposed the Nice Model, which suggested how the Late Heavy Bombardment was triggered when the giant planets — which formed in a more compact configuration – rapidly migrated away from each other (and their orbital separations all increased), and a disk of small “planetesimals” that lay outside the orbits of the planets was destabilized, causing a sudden massive delivery of these planetesimals – asteroids and comets — to the inner solar system.

But, according to the model, planetesimals likely also caused the migration of the planets, too. The planets formed from a giant disk of gas, dust, rocky debris and ice surrounding the early Sun. Debris coalesced to form bigger planet-sized objects, and simulations shows that bigger planet-sized object embedded in a disk of smaller objects will migrate as a result of angular momentum and energy conservation as the planets scatter the planetesimals they encounter.

Artists concept of planetesimals and Jupiter.

“Perturbations from small rocky or icy objects surrounding a larger object can cause the larger object to ‘scoot’ along the disk,” Minton told Universe Today. “Every time these little planetesimals encounter the bigger object, they actually cause a little nudge in the position of the bigger object. It turns out if you work out the math, if there is any sort of slight imbalance to the number of objects encountering on the sunward side versus encountering on the anti-sunward side, you can actually cause a net movement of the big body, and it actually happens pretty quickly.”

Minton and Levison have been applying the same physics of planetesimal-driven migration to the formation of the terrestrial planets.

“In the case of Mars, imagine these planetary embryos located in the Earth-Venus zone,” Minton said. “Then you have a one little embryo growing to become Mars-sized, and it would start migrating because of planetesimal-driven migration, and it scoots away from the other guys. So it has left the pack, and as it moves through the disk, it gets stranded away from where all the action is going on.”

So Mars’ growth got stalled at its current size because it migrated away from the planet-building materials.

Minton said their simulations of this work really well.

“We’ve been doing a lot of math and the migration is pretty rapid,” he said, “and Mars could migrate through the disk before any other Mars-sized planet could form. In an early solar system where you have a Mars stranded off at the edge of the disk at 1.5 AU, which is where it is right now and all the other action going on in the Earth-Venus zone, then Earth and Venus were able to grow to the size they are now, where they are both roughly the same size and mass and Mars is stranded on its own.”

And with Mars there is a twist of Marstinis, which could offer an alternate explanation for the Late Heavy Bombardment.

The migrating Mars could have picked up planetesimals in its resonance, where two or more orbiting bodies exert a gravitational influence on each other.

“It is not at all obvious why that is,” Minton said, “but the same thing is thought to have happened in the outer solar system which is what gave Pluto its orbit. We think Pluto was actually picked up in the 3:2 resonance with Neptune when Neptune migrated out, and that’s why Pluto and the other “Plutinos” are living in these resonances with Neptune.”

The Plutinos are other Kuiper Belt objects near Pluto. That resonance means Pluto and the Plutinos go around the Sun three times for every 2 times Neptune does. There are also Two-tinos, which are caught in a 1:2 resonance with Neptune – and which are found towards the outer edge of the Kuiper belt. The new simulations show that these lines of resonances are almost like a snowplow, and as Neptune migrated out it picked up all these little icy bodies, Pluto and the Plutinos.

A graphic of the solar system in its current configuration; Mars is small. Credit: NASA

This also could have happened to Mars, and as Mars migrated through the disk it would have also picked up little objects.

“I’ve decided to calls these Marstinis, to keep in the Plutino and Two-tino, theme,” Minton said with a grin. “I don’t know if that will stick or not.”

But the interesting thing about the Marstinis, Minton said, is that a 3:2 resonance with Mars is actually a very unstable zone.

“There is actually a resonance there with Saturn that only existed in the time of the Late Heavy Bombardment,” he said, “so before that, Saturn — we think — was in a different position, so this particular resonance was in a different position. So it was only after the giant planets migrated to their current location that this resonance location became unstable. So we think that these Marstinis would have been stable and in that interim period between the end of planet formation and the Late Heavy Bombardment, all of a sudden this region became unstable when the planets shifted positions to their current locations.”

So could the Marstinis be responsible for the Late Heavy Bombardment?

“These Marstinis were pushed out from the planet forming regions out to the asteroid belt,” Minton said, “then all of a sudden the planets migrated and this whole region became unstable and so they all could have gone flinging into the inner solar system and end up hitting the Moon.”

Questions abound about the Late Heavy Bombardment.

There are a couple of other arguments, too where the Marstinis fit the profile of what hit the Moon during the Late Heavy Bombardment.

“We have reasons to think that the objects that hit the Moon during the Late Heavy Bombardment were sort of like asteroids but not exactly like the asteroids we have now,” Minton said. “So, there are some chemical arguments you can make, also you can make some arguments from the impact probabilities that may not have been enough mass in the asteroid belt to supply all the asteroids and impacts we see on the Moon.”
But there are other outstanding issues such as how long the Late Heavy Bombardment lasted, when it started, were comets ever important in the bombardment history of the Moon or was it all asteroids? Minton said further exploration of the Moon would answer many of these questions.

“These are all things that we really need to go to the Moon to find out and there is almost nowhere else you can go to do it. It really is one of the best places to go to understand all the solar system history.

Minton will present his findings at the upcoming Lunar and Planetary Science Conference in March, 2011.

You can listen to an interview I did with Minton about planetesimal-driven migration for the NASA Lunar Science Institute podcast (also available on the 365 Days of Astronomy.)



Protoplanets are small celestial objects that are the size of a moon or a bit bigger. They are small planets, like an even smaller version of a dwarf planet. Astronomers believe that these objects form during the creation of a solar system.

The most popular theory of how a solar system is formed says that a giant cloud of molecular dust collapsed, forming one or more stars. Then a cloud of gas forms around the new star. As a result of gravity and other forces, the dust and other particles in this cloud collide and stick together forming larger masses. While some of these objects break apart on impact, a number of them continue to grow. Once they reach a certain size – around a kilometer  – these objects are large enough to attract particles and other small objects with their gravity. They continue to get larger until they form protoplanets. Some protoplanets continue colliding and growing until they form planets while others stay that size.

As the protoplanets grew to become planets, parts of them melted due to radioactivity, gravitational influences, and collisions. Where the objects had melted, the composition of the planets changed. Heavier elements sank, forming the cores of the planets, and lighter objects rose to the surface. This process is called planetary differentiation and explains why planets have heavy cores. Astronomers have discovered that even some asteroids have differentiated, so their cores are heavier than their surfaces.  

Protoplanets used to be highly radioactive due to how they were formed. However, over thousands of years, the radioactivity of these objects has greatly decreased because of radioactive decay. Astronomers are still discovering new protoplanets, and most likely, they will discover many more. With better technology, astronomers are now able to find protoplanets in other star systems. Last year, scientists discovered a protoplanet HL Tau b that will probably turn into an actual planet one day. Astronomers say that will not happen for about a million years though because the protoplanet’s star is also very young. In its final form, HL Tau b will look like Jupiter – a gas giant around the same size as that massive planet. It is hard to believe that thousands of years ago our planets were objects about the size of a moon, which were slowly evolving and growing. Astronomers continue to study protoplanets, the same way they study planetesimals, to find out more about how the Solar System was formed.

Universe Today has articles on Earth-sized planets and planetesimals.

You will also want to check out a new protoplanet and forming gas giants.

Astronomy Cast has an episode on how old the universe is.

When is an Asteroid Not an Asteroid?
From Planetesimals to Terrestrial Planets: Habitable Planet Formation in Binary Star Systems


A planetesimal is an object formed from dust, rock, and other materials. The word has its roots in the concept infinitesimal, which indicates an object too small to see or measure. Planetesimals can be anywhere in size from several meters to hundreds of kilometers. The term refers to small celestial bodies formed during the creation of planets. One way to think of them is as small planets, but they are much more than that.

The planetesimal theory was suggested by the Russian astronomer Viktor Safronov. The planetesimal theory is a theory on how planets form. According to the planetesimal hypothesis, when a planetary system is forming, there is a protoplanetary disk with materials from the nebulae from which the system came. This material is gradually pulled together by gravity to form small chunks. These chunks get larger and larger until they form planetesimals. Many of the objects break apart when they collide, but some continue to grow. Some of these planetesimals go on to become planets and moons.  Since the gas giants are balls of gas with liquid cores, it may seem impossible that an asteroid-like object formed them. The planetesimals formed the core of these gaseous planets, which turned molten when it enough heat was created.

Other planetesimals turn into comets, Kuiper Belt Objects (KBOs), and trojan asteroids. There is some debate as to whether KBOs and asteroids can be called planetesimals. This is one reason why nomenclature of celestial objects is so difficult. The planetesimal theory is not universally accepted though. Like many theories, there are some observations that cannot be explained, but the planetesimal theory is still very popular.

Many people think that around 3.8 billion years ago, many of the planetesimals were thrown into far away regions, such as the Oort cloud or the Kuiper Belt. Other objects collided with other objects after being affected by gas giants. Phobos and Deimos are believed to be planetesimals that were captured by Mars’ gravity and became satellites. Many of Jupiter’s moons are believed to be planetesimals as well.

Planetesimals are very valuable to scientists because they can provide information about the creation of our Solar System. The exterior of planetesimals have been bombarded with solar radiation, which can change their chemistry, for billions of years. Inside though, there is material that has been untouched since the object was first formed. Using this material, astronomers hope to learn about the condition of the nebulae from which our Solar System was formed.

Universe Today has a number of articles to check out including formation of Mercury and hunting for meteors on Earth.

Check out NASA’s Solar System exploration page and NASA’s articles on formation of planetesimals in a nebula.

Astronomy Cast has an episode on how old the universe is.