Weekly Space Hangout – October 21, 2016: Dr. Voula Saridakis of @histastro & Morgan is a Tilted Sun

Host: Fraser Cain (@fcain)

Special Guest:
This week’s special guest is Dr. Voula Saridakis, a professor at Lake Forest College in Illinois specializing in the history of science and astronomy, who runsthe History of Astronomy on Twitter at @histastro

Guests:
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )
Alessondra Springmann (sondy.com / @sondy)
Nicole Gugliucci (cosmoquest.org / @noisyastronomer)

Their stories this week:

Schiaparelli /TGO
The Unexpected Detection of Dark Matter Galaxies
News from DPS:
Planet 9
Juno
Exomars
Comet 67p

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page.

A New Dwarf Planet Joins The Solar System Family

The Kuiper Belt has been an endless source of discoveries over the course of the past decade. Starting with the dwarf planet Eris, which was first observed by a Palomar Observatory survey led by Mike Brown in 2003, many interesting Kuiper Belt Objects (KBOs) have been discovered, some of which are comparable in size to Pluto.

And according to a new report from the IAU Minor Planet Center, yet another body has been discovered beyond the orbit of Pluto. Officially designated as 2014 UZ224, this body is located about 14 billion km (90 AUs, or 8.5 billion miles) from the Sun. This dwarf planet is not only the latest member of the our Solar family, it is also the second-farthest body from our Sun with a stable orbit.

The discovery was made by David Gerdes, a professor of astrophysics at the University of Michigan, and various colleagues associated with at the Dark Energy Survey (DES) – a project which relies on the Cerro Tololo Inter-American Observatory in Chile. In the past, Gerdes’ research has focused on the detection of dark energy and the expansion of the Universe.

The DECam instrument, . Credit: noao.edu
The DECam instrument, shown before it was inserted into the Blanco telescope at the Cerro Tololo Observatory. Credit: noao.edu

Towards this end, DES has spent the past five years surveying roughly one-eighth of the sky using the Dark Energy Camera (DECam), a 570-Megapixel camera mounted on the Victor M. Blanco telescope at Cerro Tololo. This instrument was commissioned by the US. Dept of Energy to conduct surveys of distant galaxies, and Dr. Gerdes had a hand in creating.

Not surprisingly, this same technology has also allowed for discoveries to be made at the edge of the Solar System. Two years ago, this is precisely what Gerdes challenged a group of undergraduate students to do (as part of a summer project). These students examined images taken by DES between 2013-2016 for indications of moving objects. Since that time, the analysis team has grown to include senior scientists, postdocs, graduate and undergraduate students.

Whereas distant stars and galaxies would appear stationary in these images, distant TNOs showed up in different places over time – hence why are called “transients”. As Dr. Gerdes explains in his 2014 UZ224 Fact Sheet, which is available through his University of Michigan homepage:

“To identify transients, we used a technique known as “difference imaging”. When we take a new image, we subtract from it an image of the same area of the sky taken on a different night. Objects that don’t change disappear in this subtraction, and we’re left with only the transients… This process yields millions of transients, but only about 0.1% of them turn out to be distant minor planets. To find them, we must “connect the dots” and determine which transients are actually the same thing in different positions on different nights. There are many dots and MANY more possible ways to connect them.”

Images of 2014 UZ224, shown on three slides obtained by the DECam. Credit: David Gerdes/DES/University of Michigan
Images of 2014 UZ224, shown on three slides obtained by the DECam. Credit: David Gerdes/DES/University of Michigan

This was a difficult process. In addition to needing thousands of computers at Fermilab to process the hundreds of terabytes of data, the team had to write special programs to do it. Gerdes and his colleagues also relied on help from Professors Masao Sako and Gary Bernstein of the University of Pennsylvania, who contributed the key breakthroughs that allowed them to perform difference imaging over the entire survey area.

In the end, dozens of new Trans-Neptunian Objects (TNOs) were discovered, one of which was 2014 UZ224. According to their observations, its diameter could be anywhere from 350 to 1200 km, and it takes 1,136 years to complete a single orbit of our Sun. For the sake of perspective, Pluto is 2370 km in diameter, and has an orbital period of 248 years.

Stephanie Hamilton, a graduate student at the University of Michigan, was personally involved with the project. Her role was to determine the size of 2014 UZ224, which was difficult from initial observations alone. As she told Universe Today via email:

“The object’s brightness in visible light alone depends both on its size and how reflective it is, so you can’t uniquely determine one of those properties without assuming a value for the other. Fortunately there’s a solution to that problem – the heat the object emits is also proportional to its size, so obtaining a thermal measurement in addition to the optical measurements means we would then be able to calculate the object’s size and albedo (reflectance) without having to assume one or the other.

“We were able to obtain an image of our object at a thermal wavelength using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. I am working on combining all of our data together to determine the size and albedo, and we expect to submit a paper on our results around mid-November or so.”

Artistic rendering shows the distant view from theoretical Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side. Credit: Caltech/R. Hurt (IPAC)
Artistic rendering shows the distant view from theoretical Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side. Credit: Caltech/R. Hurt (IPAC)

But as with all things related to “dwarf planets”, there has been some disagreement over this discovery. Given the dimensions of the object, there are some who question whether or not the label applies. But as Gerdes indicates on the Fact Sheet, this body fits most of the prerequisites:

“According to the official IAU guidelines, a dwarf planet must satisfy four criteria. It must a) orbit the sun (check!), b) not be a satellite (check!) c) not have cleared the neighborhood around its orbit (check!) and d) have enough mass to be round. It’s this last item that’s uncertain, and the only way for sure is to get a picture that’s detailed enough to actually see its shape. Nevertheless, an object over 400 km in diameter is likely to be round.”

Gerdes and his team expect to be busy, authoring the paper that will detail their findings, using the ALMA array to get more assessments of 2014 UZ224 size, and sifting through the data to look for more objects in the Kuiper Belt. This includes the fabled Planet 9, which astronomers have been seeking out for years.

Given its distance from the Sun, 2014 UZ224’s orbit would not be influenced by the presence of Planet 9, and is therefore of no help. However, Gerdes is optimistic that the evidence of this massive body is there in the data. Given time, and a lot of data-processing, they just might find it! In the meantime, this newly discovered object is likely to be the focal point of a lot of fascinating research.

“It’s an interesting object in its own right – distant objects like this are ‘cosmic leftovers’ from the primordial disk that gave birth to the solar system,” writes Gerdes. “By studying them and learning more about their distribution, orbital characteristics, sizes, and surface properties, we can learn more about the processes that gave birth to the solar system and ultimately to us.”

Further Reading: 2014 UZ224 Fact Sheet (University of Michigan)

Planet 9 Search Turning Up Wealth Of New Objects

In 2014, Scott Sheppard of the Carnegie Institution for Science and Chadwick Trujillo of Northern Arizona University proposed an interesting idea. Noting the similarities in the orbits of distant Trans-Neptunian Objects (TNOs), they postulated that a massive object was likely influencing them. This was followed in 2016 by Konstantin Batygin and Michael E. Brown of Caltech suggesting that an undiscovered planet was the culprit.

Since that time, the hunt has been on for the infamous “Planet 9” in our Solar System. And while no direct evidence has been produced, astronomers believe they are getting closer to discerning its location. In a paper that was recently accepted by The Astronomical Journal, Sheppard and Trujillo present their latest discoveries, which they claim are further constraining the location of Planet 9.

For the sake of their study, Sheppard and Trujillo relied on information obtained by the Dark Energy Camera on the Victor Blanco 4-meter telescope in Chile and the Japanese Hyper Suprime-Camera on the 8-meter Subaru Telescope in Hawaii. With the help of David Tholen from the University of Hawaii, they have been conducting the largest deep-sky survey for objects beyond Neptune and the Kuiper Belt.

An illustration of the orbits of the new and previously known extremely distant Solar System objects. The clustering of most of their orbits indicates that they are likely be influenced by something massive and very distant, the proposed Planet X. Credit: Robin Dienel/Carnegie Science
An illustration of the orbits of the new and previously known extremely distant Solar System objects – showing the clustering in orbits that indicates that possible presence of Planet X. Credit: Robin Dienel/Carnegie Science

This survey is intended to find more objects that show the same clustering in their orbits, thus offering greater evidence that a massive planet exists in the outer Solar System. As Sheppard explained in a recent Carnegie press release:

“Objects found far beyond Neptune hold the key to unlocking our Solar System’s origins and evolution. Though we believe there are thousands of these small objects, we haven’t found very many of them yet, because they are so far away. The smaller objects can lead us to the much bigger planet we think exists out there. The more we discover, the better we will be able to understand what is going on in the outer Solar System.”

Their most recent discovery was a small collection of more extreme objects who’s peculiar orbits differ from the extreme and inner Oort cloud objects, in terms of both their eccentricities and semi-major axes. As with discoveries made using other instruments, these appear to indicate the presence of something massive effecting their orbits.

All of these objects have been submitted to the International Astronomical Union’s (IAU) Minor Planet Center for designation. They include 2014 SR349, an extreme TNO that has similar orbital characteristics as the previously-discovered extreme bodies that led Sheppard and Trujillo to infer the existence of a massive object in the region.

Another is 2014 FE72, an object who’s orbit is so extreme that it reaches about 3000 AUs from the Sun in a massively-elongated ellipse – something which can only be explained by the influence of a strong gravitational force beyond our Solar System. And in addition to being the first object observed at such a large distance, it is also the first distant Oort Cloud object found to orbit entirely beyond Neptune.

Artist's impression of Planet Nine as an ice giant eclipsing the central Milky Way, with a star-like Sun in the distance. Neptune's orbit is shown as a small ellipse around the Sun. The sky view and appearance are based on the conjectures of its co-proposer, Mike Brown.
Artist’s impression of Planet Nine as an ice giant eclipsing the central Milky Way, with a star-like Sun in the distance. Credit: ESO/Tomruen/nagualdesign

And then there’s  2013 FT28, which is similar but also different from the other extreme objects. For instance, 2013 FT28 shows similar clustering in terms of its semi-major axis, eccentricity, inclination, and argument of perihelion angle, but is different when it comes to its longitude of perihelion. This would seem to indicates that this particular clustering trend is less strong among the extreme TNOs.

Beyond the work of Sheppard and Trujillo, nearly 10 percent of the sky has now been explored by astronomers. Relying on the most advanced telescopes, they have revealed that there are several never-before-seen objects that orbit the Sun at extreme distances.

And as more distant objects with unexplained orbital parameters emerge, their interactions seem to fit with the idea of a massive distant planet that could pay a key role in the mechanics of the outer Solar System. However, as Sheppard has indicated, there really isn’t enough evidence yet to draw any conclusions.

“Right now we are dealing with very low-number statistics, so we don’t really understand what is happening in the outer Solar System,” he said. “Greater numbers of extreme trans-Neptunian objects must be found to fully determine the structure of our outer Solar System.”

Alas, we don’t yet know if Planet 9 is out there, and it will probably be many more years before confirmation can be made. But by looking to the visible objects that present a possible sign of its path, we are slowly getting closer to it. With all the news in exoplanet hunting of late, it is interesting to see that we can still go hunting in our own backyard!

Further Reading: The Astrophysical Journal Letters

Beyond Neptune, A Chunk Of Ice Is Orbiting The Sun In The Wrong Direction

Beyond the orbit of Neptune, the farthest recognized-planet from our Sun, lies the mysteries population known as the Trans-Neptunian Object (TNOs). For years, astronomers have been discovering bodies and minor planets in this region which are influenced by Neptune’s gravity, and orbit our Sun at an average distance of 30 Astronomical Units.

In recent years, several new TNOs have been discovered that have caused us to rethink what constitutes a planet, not to mention the history of the Solar System. The most recent of these mystery objects is called “Niku”, a small chunk of ice that takes its name for the Chinese word for “rebellious”. And while many such objects exist beyond the orbit of Neptune, it is this body’s orbital properties that really make it live up to the name!

In a paper recently submitted to arXiv, the international team of astronomers that made the discovery explain how they found the TNO using the Panoramic Survey Telescope and Rapid Response System 1 Survey (Pan-STARRS 1). Measuring just 200 km (124 miles) in diameter, this object’s orbit is tilted 110° to the plane of the Solar system and orbits the Sun backwards.

An artist's concept of a trans-Neptunian object(TNOs). The distant sun is reduced to a bright star at a distance of over 3 billion miles. The Dark Energy Survey (DES) has now released discovery of more TNOs. (Illustration Credit: NASA)
An artist’s concept of a trans-Neptunian object(TNOs). The distant sun is reduced to a bright star at a distance of over 3 billion miles. Credit: NASA

Ordinarily, when planetary systems form, angular momentum forces everything to spin in the same direction. Hence why, when viewed from the celestial north pole, all the objects in our Solar System appear to be orbiting the Sun in a counter-clockwise direction. So when objects orbit the Sun in the opposite direction, an outside factor must be at play.

What’s more, the team compared the orbit of Niku with other high-inclination TNOs and Centaurs, and noticed that they occupy a common orbital plane and experience a clustering effect. As Dr. Matthew J. Holman – a professor at the Harvard-Smithsonian Center for Astrophysics and one of the researchers on the team – told Universe Today via email:

“The orbit of Niku is unusual in that it is nearly perpendicular to the plane of the Solar System.  More than that, it is orbiting in the opposite direction of most Solar System bodies. Furthermore, there are a few bodies that share the same or orbital plane, with some orbiting prograde and some orbiting retrograde. That was unexpected.”

One possibility, which the team has already considered, was that this mysterious orbital pattern might be evidence of the much sought-after Planet Nine. This hypothetical planet, which is believed to exist at the outer edge of our Solar System (20 times further from our Sun than Neptune), if it exists, is also thought to be 10 times the size of the Earth.

Artist's impression of Planet Nine as an ice giant eclipsing the central Milky Way, with a star-like Sun in the distance. Neptune's orbit is shown as a small ellipse around the Sun. The sky view and appearance are based on the conjectures of its co-proposer, Mike Brown.
Artist’s impression of Planet Nine as an ice giant eclipsing the central Milky Way, with a star-like Sun in the distance. Neptune’s orbit is shown as a small ellipse around the Sun. Credit: ESO/Tomruen/nagualdesign

“Planet Nine seems to be gravitationally influencing another nearby population of bodies that are also orbiting nearly perpendicular to the plane of the solar system,” said Holman, “but those objects have much larger orbits that also come closer to sun at their closest approach. The similarity (perpendicular) nature of Niku’s orbit to that of the more distant population hints at a connection.”

Establishing such a connection based on the orbits of distant objects is certainly tempting, especially since no direct evidence of Planet Nine has been obtained yet. However, upon further analysis, the team concluded that Niku is too close to the rest of the Solar System for its orbit to be effected by Planet Nine.

In addition, the orbits of the clustered objects that circle the sun backwards along the same 110-degree plane path was seen as a further indication that something else is probably at work. Then again, it may very well be that there is a giant planet out there, and that it’s influence is mitigated by other factors we are not yet aware of.

“The population of objects in Niku-like orbits is not long-term stable,” said Holman. “We hoped that adding the gravitational influence of an object like Planet Nine might stabilize their orbits, but that turned out not to be the case. We are NOT ruling out Planet Nine, but we are not finding any direct evidence for it, at least with this investigation.”

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

So for the time being, it looks like Planet Nine enthusiasts are going to have to wait for some other form of confirmation. But as Konstantin Batyagin – the Caltech astronomer who announced findings that hinted at Planet Nine earlier this year – was quoted as saying, this discovery is yet another step in the direction of a more complete understanding of the outer Solar System:

“Whenever you have some feature that you can’t explain in the outer solar system, it’s immensely exciting because it’s in some sense foreshadowing a new development. As they say in the paper, what they have right now is a hint. If this hint develops into a complete story that would be fantastic.”

Whatever the cause of Niku’s strange orbit (or those TNOs that share its orbital pattern) may be, it is clear that there is more going on in the outer Solar System than we thought. And with every new discovery, and every new object catalogued by astronomers, we are bettering our understanding of the dynamics that are at work out there.

In the meantime, perhaps we’ll just need to send some additional missions out that way. We have nothing to lose but our preconceived notions! And be sure to enjoy this video about this latest find, courtesy of New Scientist:

Further Reading: arXiv

Weekly Space Hangout – May 20, 2016: Mike Brown and Konstantin Batygin

Host: Fraser Cain (@fcain)

Special Guests:
Mike Brown is the Richard and Barbara Rosenberg Professor of Planetary Astronomy at CalTech. Konstantin Batygin is Assistant Professor of Planetary Science at CalTech. They’ll be here discussing their discovery of Planet 9 and what’s been happening since that amazing announcement.

Guests:
Jolene Creighton (fromquarkstoquasars.com / @futurism)

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

How Do We Know There’s a Planet 9?

At this point, I think the astronomy textbook publishers should just give up. They’d like to tell you how many planets there are in the Solar System, they really would. But astronomers just can’t stop discovering new worlds, and messing up the numbers.

Things were simple when there were only 6 planets. The 5 visible with the unaided eye, and the Earth, of course. Then Uranus was discovered in 1781 by William Herschel, which made it 7. Then a bunch of asteroids, like Ceres, Vesta and Pallas pushed the number into the teens until astronomers realized these were probably a whole new class of objects. Back to 7.

Then Neptune in 1846 by Urbain Le Verrier and Johann Galle, which makes 8. Then Pluto in 1930 and we have our familiar 9.

But astronomy marches onward. Eris was discovered in 2005, which caused astronomers to create a whole new classification of dwarf planet, and ultimately downgrading Pluto. Back to 8.

It seriously looked like 8 was going to be the final number, and the textbook writers could return to their computers for one last update.

A predicted consequence of Planet Nine is that a second set of confined objects should also exist. These objects are forced into positions at right angles to Planet Nine and into orbits that are perpendicular to the plane of the solar system. Five known objects (blue) fit this prediction precisely. Credit: Caltech/R. Hurt (IPAC) [Diagram was created using WorldWide Telescope.]
A predicted consequence of Planet Nine is that a second set of confined objects should also exist. These objects are forced into positions at right angles to Planet Nine and into orbits that are perpendicular to the plane of the solar system. Five known objects (blue) fit this prediction precisely.
Credit: Caltech/R. Hurt (IPAC) [Diagram was created using WorldWide Telescope.]
Astronomers, however, had other plans. In 2014, Chad Trujillo and Scott Shepard were studying the motions of large objects in the Kuiper Belt and realized that a large planet in the outer Solar System must be messing with orbits in the region.

This was confirmed and fine tuned by other astronomers, which drew the attention of Mike Brown and Konstantin Batygin. The name Mike Brown might be familiar to you. Perhaps the name, Mike “Pluto Killer” Brown? Mike and his team were the ones who originally discovered Eris, leading to the demotion of Pluto.

Brown and Batygin were looking to find flaws in the research of Trujillo and Shepard, and they painstakingly analyzed the movement of various Kuiper Belt Objects. They found that six different objects all seem to follow a very similar elliptical orbit that points back to the same region in space.

All these worlds are inclined at a plane of about 30-degrees from pretty much everything else in the Solar System. In the words of Mike Brown, the odds of these orbits all occurring like this are about 1 in 100.

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

Instead of a random coincidence, Brown and Batygin think there’s a massive planet way out beyond the orbit of Pluto, about 200 times further than the distance from the Sun to the Earth. This planet would be Neptune-sized, roughly 10 times more massive than Earth.

But why haven’t they actually observed it yet? Based on their calculations, this planet should be bright enough to be visible in mid-range observatories, and definitely within the capabilities of the world’s largest telescopes, like Keck, Palomar, Gemini, and Hubble, of course.

The trick is to know precisely where to look. All of these telescopes can resolve incredibly faint objects, as long as they focus in one tiny spot. But which spot. The entire sky has a lot of tiny spots to look at.

Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign
Artist’s impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign

Based on the calculations, it appears that Planet 9 is hiding in the plane of the Milky Way, camouflaged by the dense stars of the galaxy. But astronomers will be scanning the skies, and hope a survey will pick it up, anytime now.

But wait a second, does this mean that we’re all going to die? Because I read on the internet and saw some YouTube videos that this is the planet that’s going to crash into the Earth, or flip our poles, or something.

Nope, we’re safe. Like I just said, the best astronomers with the most powerful telescopes in the world and space haven’t been able to turn anything up. While the conspiracy theorists have been threatening up with certain death from Planet X for decades now – supposedly, it’ll arrive any day now.

But it won’t. Assuming it does exist, Planet 9 has been orbiting the Sun for billions of years, way way out beyond the orbit of Pluto. It’s not coming towards us, it’s not throwing objects at us, and it’s definitely not going to usher in the Age of Aquarius.

Once again, we get to watch science in the making. Astronomers are gathering evidence that Planet 9 exists based on its gravitational influence. And if we’re lucky, the actual planet will turn up in the next few years. Then we’ll have 9 planets in the Solar System again.

Kuiper Belt Objects Point The Way To Planet 9

Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign

On January 20th, 2016, researchers Konstantin Batygin and Michael E. Brown of Caltech announced that they had found evidence that hinted at the existence of a massive planet at the edge of the Solar System. Based on mathematical modeling and computer simulations, they predicted that this planet would be a super-Earth, two to four times Earth’s size and 10 times as massive. They also estimated that, given its distance and highly elliptical orbit, it would take 10,000 – 20,000 years to orbit the Sun.

Since that time, many researchers have responded with their own studies about the possible existence of this mysterious “Planet 9”. One of the latest comes from the University of Arizona, where a research team from the Lunar and Planetary Laboratory have indicated that the extreme eccentricity of distant Kuiper Belt Objects (KBOs) might indicate that they crossed paths with a massive planet in the past.

For some time now, it has been understood that there are a few known KBOs who’s dynamics are different than those of other belt objects. Whereas most are significantly controlled by the gravity of the gas giants planets in their current orbits (particularly Neptune), certain members of the scattered disk population of the Kuiper Belt have unusually closely-spaced orbits.

The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta), including Sedna (dark magenta), all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Another population of Kuiper belt objects (cyan) are forced into orbits that are perpendicular to the plane of the solar system and clustered in orientation. Batygin and Brown show that a planet with 10 times the mass of the earth in a distant eccentric orbit (orange) anti-aligned with the magenta orbits and perpendicular to the cyan orbits is required to maintain this configuration. Credit: Caltech/R. Hurt (IPAC)
The orbits of Neptune (magenta), Sedna (dark magenta), a series of Kuiper belt objects (cyan), and the hypothetical Planet 9 (orange). Credit: Caltech/R. Hurt (IPAC)

When Batygin and Brown first announced their findings back in January, they indicated that these objects instead appeared to be highly clustered with respect to their perihelion positions and orbital planes. What’s more, their calculation showed that the odds of this being a chance occurrence were extremely low (they calculated a probability of 0.007%).

Instead, they theorized that it was a distant eccentric planet that was responsible for maintaining the orbits of these KBOs. In order to do this, the planet in question would have to be over ten times as massive as Earth, and have an orbit that lay roughly on the same plane (but with a perihelion oriented 180° away from those of the KBOs).

Such a planet not only offered an explanation for the presence of high-perihelion Sedna-like objects – i.e. planetoids that have extremely eccentric orbits around the Sun. It would also help to explain where distant and highly inclined objects in the outer Solar System come from, since their origins have been unclear up until this point.

In a paper titled “Coralling a distant planet with extreme resonant Kuiper belt objects“, the University of Arizona research team – which included Professor Renu Malhotra, Dr. Kathryn Volk, and Xianyu Wang – looked at things from another angle. If in fact Planet 9 were crossing paths with certain high-eccentricity KBOs, they reasoned, it was a good bet that its orbit was in resonance with these objects.

Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA
Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA

To break it down, small bodies are ejected  from the Solar System all the time due to encounters with larger objects that perturb their orbits. In order to avoid being ejected, smaller bodies need to be protected by orbital resonances. While the smaller and larger objects may pass within each others’ orbital path, they are never close enough that they would able to exert a significant influence on each other.

This is how Pluto has remained a part of the Solar System, despite having an eccentric orbit that periodically cross Neptune’s path. Though Neptune and Pluto cross each others orbit, they are never close enough to each other that Neptune’s influence would force Pluto out of our Solar System. Using this same reasoning, they hypothesized that the KBOs examined by Batygin and Brown might be in an orbital resonance with the Planet 9.

As Dr.  Malhotra, Volk and Wang told Universe Today via email:

“The extreme Kuiper belt objects we investigate in our paper are distinct from the others because they all have very distant, very elliptical orbits, but their closest approach to the Sun isn’t really close enough for them to meaningfully interact with Neptune. So we have these six observed objects whose orbits are currently fairly unaffected by the known planets in our Solar System. But if there’s another, as yet unobserved planet located a few hundred AU from the Sun, these six objects would be affected by that planet.”

After examining the orbital periods of these six KBOs – Sedna, 2010 GB174, 2004 VN112, 2012 VP113, and 2013 GP136 – they concluded that a hypothetical planet with an orbital period of about 17,117 years (or a semimajor axis of about 665 AU), would have the necessary period ratios with these four objects. This would fall within the parameters estimated by Batygin and Brown for the planet’s orbital period (10,000 – 20,000 years).

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

Their analysis also offered suggestions as to what kind of resonance the planet has with the KBOs in question. Whereas Sedna’s orbital period would have a 3:2 resonance with the planet, 2010 GB174 would be in a 5:2 resonance, 2994 VN112 in a 3:1, 2004 VP113 in 4:1, and 2013 GP136 in 9:1. These sort of resonances are simply not likely without the presence of a larger planet.

“For a resonance to be dynamically meaningful in the outer Solar System, you need one of the objects to have enough mass to have a reasonably strong gravitational effect on the other,” said the research team. “The extreme Kuiper belt objects aren’t really massive enough to be in resonances with each other, but the fact that their orbital periods fall along simple ratios might mean that they each are in resonance with a massive, unseen object.”

But what is perhaps most exciting is that their findings could help to narrow the range of Planet 9’s possible location. Since each orbital resonance provides a geometric relationship between the bodies involved, the resonant configurations of these KBOs can help point astronomers to the right spot in our Solar System to find it.

But of course, Malhotra and her colleagues freely admit that several unknowns remain, and further observation and study is necessary before Planet 9 can be confirmed:

“There are a lot of uncertainties here. The orbits of these extreme Kuiper belt objects are not very well known because they move very slowly on the sky and we’ve only observed very small portions of their orbital motion. So their orbital periods might differ from the current estimates, which could make some of them not resonant with the hypothetical planet. It could also just be chance that the orbital periods of the objects are related; we haven’t observed very many of these types of objects, so we have a limited set of data to work with.”

Based on a careful study of Saturn's orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to "possible" and "probable" zones. Source: CNRS, Cote d'Azur and Paris observatories. Credit:
Estimates of Planet Nine’s “possible” and “probable” zones. by French scientists based on a careful study of Saturn’s orbit and using mathematical models. Source: CNRS, Cote d’Azur and Paris observatories. Credit: Bob King

Ultimately, astronomers and the rest of us will simply have to wait on further observations and calculations. But in the meantime, I think we can all agree that the possibility of a 9th Planet is certainly an intriguing one! For those who grew up thinking that the Solar System had nine planets, these past few years (where Pluto was demoted and that number fell to eight) have been hard to swallow.

But with the possible confirmation of this Super-Earth at the outer edge of the Solar System, that number could be pushed back up to nine soon enough!

Further Reading: arXiv.org

Weekly Space Hangout – Jan. 22, 2016: Dr. Stuart Robbins

Host: Fraser Cain (@fcain)

Special Guest: Dr. Stuart Robbins, Research Scientist at Southwest Research Institute (SwRI); Mars Impact Craters, Science Lead on Moon Mappers and Mercury Mappers.

Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Kimberly Cartier (@AstroKimCartier )
Dave Dickinson (@astroguyz / www.astroguyz.com)
Jolene Creighton (@futurism / fromquarkstoquasars.com)
Pamela Gay (cosmoquest.org / @cosmoquestx / @starstryder)
Brian Koberlein (@briankoberlein / briankoberlein.com)
Continue reading “Weekly Space Hangout – Jan. 22, 2016: Dr. Stuart Robbins”