The Milky Way Could Be Spreading Life From Star to Star

Using information from Gaia's second data release, a team of scientists have made refined estimates of the Milky Way's mass. Credit: ESA/Gaia/DPAC

For almost two centuries, scientists have theorized that life may be distributed throughout the Universe by meteoroids, asteroids, planetoids, and other astronomical objects. This theory, known as Panspermia, is based on the idea that microorganisms and the chemical precursors of life are able to survive being transported from one star system to the next.

Expanding on this theory, a team of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study that considered whether panspermia could be possible on a galactic scale. According to the model they created, they determined that the entire Milky Way (and even other galaxies) could be exchanging the components necessary for life.

Continue reading “The Milky Way Could Be Spreading Life From Star to Star”

The Solar System Probably has Thousands of Captured Interstellar Asteroids

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) in Hawaii announced the first-ever detection of an interstellar asteroid, named 1I/2017 U1 (aka. ‘Oumuamua). Originally thought to be a comet, this interstellar visitor quickly became the focus of follow-up studies that sought to determine its origin, structure, composition, and rule out the possibility that it was an alien spacecraft!

While ‘Oumuamua is the first known example of an interstellar asteroid reaching our Solar System, scientists have long suspected that such visitors are a regular occurrence. Aiming to determine just how common, a team of researchers from Harvard University conducted a study to measure the capture rate of interstellar asteroids and comets, and what role they may play in the spread of life throughout the Universe.

The study, titled “Implications of Captured Interstellar Objects for Panspermia and Extraterrestrial Life“, recently appeared online and is being considered for publication in The Astrophysical Journal. The study was conducted by Manasavi Lingam, a postdoc at the Harvard Institute for Theory and Computation (ITC), and Abraham Loeb, the chairman of the ITC and a researcher at the Harvard-Smithsonian Center for Astrophysics (CfA).

For the sake of their study, Lingam and Loeb constructed a three-body gravitational model, where the physics of three bodies are used to compute their respective trajectories and interactions with one another. In Lingam and Loeb’s model, Jupiter and the Sun served as the two massive bodies while a far less massive interstellar object served as the third. As Dr. Loeb explained to Universe Today via email:

“The combined gravity of the Sun and Jupiter acts as a ‘fishing net’. We suggest a new approach to searching for life, which is to examine the interstellar objects captured by this fishing net instead of the traditional approach of looking through telescope or traveling with spacecrafts to distant environments to do the same.”

Using this model, the pair then began calculating the rate at which objects comparable in size to ‘Oumuamua would be captured by the Solar System, and how often such objects would collide with the Earth over the course of its entire history. They also considered the Alpha Centauri system as a separate case for the sake of comparison. In this binary system, Alpha Centauri A and B serve as the two massive bodies and an interstellar asteroid as the third.

As Dr. Lingam indicated:

“The frequency of these objects is determined from the number density of such objects, which has been recently updated based on the discovery of ‘Oumuamua. The size distribution of these objects is unknown (and serves as a free parameter in our model), but for the sake of obtaining quantitative results, we assumed that it was similar to that of comets within our Solar System.”

The theory of Lithopanspermia states that life can be shared between planets within a planetary system. Credit: NASA

In the end, they determined that a few thousands captured objects might be found within the Solar system at any time – the largest of which would be tens of km in radius. For the Alpha Centauri system, the results were even more interesting. Based on the likely rate of capture, and the maximum size of a captured object, they determined that even Earth-sized objects could have been captured in the course of the system’s history.

In other words, Alpha Centauri may have picked up some rogue planets over time, which would have had drastic impact on the evolution  of the system. In this vein, the authors also explored how objects like ‘Oumuamua could have played a role in the distribution of life throughout the Universe via rocky bodies. This is a variation on the theory of lithopanspermia, where microbial life is shared between planets thanks to asteroids, comets and meteors.

In this scenario, interstellar asteroids, which originate in distant star systems, would be the be carriers of microbial life from one system to another. If such asteroids collided with Earth in the past, they could be responsible for seeding our planet and leading to the emergence of life as we know it. As Lingam explained:

“These interstellar objects could either crash directly into a planet and thus seed it with life, or be captured into the planetary system and undergo further collisions within that system to yield interplanetary panspermia (the second scenario is more likely when the captured object is large, for e.g. a fraction of the Earth’s radius).”

In addition, Lingam and Loeb offered suggestions on how future visitors to our Solar System could be studied. As Lingam summarized, the key would be to look for specific kinds of spectra from objects in our Solar Systems:

“It may be possible to look for interstellar objects (captured/unbound) in our Solar system by looking at their trajectories in detail. Alternatively, since many objects within the Solar system have similar ratios of oxygen isotopes, finding objects with very different isotopic ratios could indicate their interstellar origin. The isotope ratios can be determined through high-resolution spectroscopy if and when interstellar comets approach close to the Sun.”

“The simplest way to single out the objects who originated outside the Solar System, is to examine the abundance ratio of oxygen isotopes in the water vapor that makes their cometary tails,” added Loeb. “This can be done through high resolution spectroscopy. After identifying a trapped interstellar object, we could launch a probe that will search on its surface for signatures of primitive life or artifacts of a technological civilization.”

It would be no exaggeration to say that the discovery of ‘Oumuamua has set off something of a revolution in astronomy. In addition to validating something astronomers have long suspected, it has also provided new opportunities for research and the testing of scientific theories (such as lithopanspermia).

In the future, with any luck, robotic missions will be dispatched to these bodies to conduct direct studies and maybe even sample return missions. What these reveal about our Universe, and maybe even the spread of life throughout, is sure to be very illuminating!

Further Reading: arXiv

Galactic Panspermia: Interstellar Dust Could Transport Life from Star to Star

A new study from the University of Edinburgh suggests that life could be distributed throughout the cosmos by interstellar dust. Credit: ESO/R. Fosbury (ST-ECF)

The theory of Panspermia states that life exists through the cosmos, and is distributed between planets, stars and even galaxies by asteroids, comets, meteors and planetoids. In this respect, life began on Earth about 4 billion years ago after microorganisms hitching a ride on space rocks landed on the surface. Over the years, considerable research has been devoted towards demonstrating that the various aspects of this theory work.

The latest comes from the University of Edinburgh, where Professor Arjun Berera offers another possible method for the transport of life-bearing molecules. According to his recent study, space dust that periodically comes into contact with Earth’s atmosphere could be what brought life to our world billions of years ago. If true, this same mechanism could be responsible for the distribution of life throughout the Universe.

For the sake of his study, which was recently published in Astrobiology under the title “Space Dust Collisions as a Planetary Escape Mechanism“, Prof. Berera examined the possibility that space dust could facilitate the escape of particles from Earth’s atmosphere. These include molecules that indicate the presence of life on Earth (aka. biosignatures), but also microbial life and molecules that are essential to life.

The theory of Panspermia states that life is distributed throughout the Universe by microbes traveling on objects between star system. Credit: NASA/Jenny Mottor

Fast-moving flows of interplanetary dust impact our atmosphere on a regular basis, at a rate of about 100,000 kg (110 tons) a day. This dust ranges in mass from 10-18 to 1 gram, and can reach speeds of 10 to 70 km/s (6.21 to 43.49 mps). As a result, this dust is capable of impacting Earth with enough energy to knock molecules out of the atmosphere and into space.

These molecules would consist largely of those that are present in the thermosphere. At this level, those particles would consist largely of chemically disassociated elements, such as molecular nitrogen and oxygen. But even at this high altitude, larger particles – such as those that are capable of harboring bacteria or organic molecules – have also been known to exist. As Dr. Berera states in his study:

“For particles that form the thermosphere or above or reach there from the ground, if they collide with this space dust, they can be displaced, altered in form or carried off by incoming space dust. This may have consequences for weather and wind, but most intriguing and the focus of this paper, is the possibility that such collisions can give particles in the atmosphere the necessary escape velocity and upward trajectory to escape Earth’s gravity.”

Of course, the process of molecules escaping our atmosphere presents certain difficulties. For starters, it requires that there be enough upward force that can accelerate these particles to escape velocity speeds. Second, if these particle are accelerated from too low an altitude (i.e. in the stratosphere or below), the atmospheric density will be high enough to create drag forces that will slow the upward-moving particles.

Photo of an aurora taken by astronaut Doug Wheelock from the International Space Station on July 25th, 2010. Credit: Image Science & Analysis Laboratory, NASA Johnson Space Center

In addition, as a result of their fast upward travel, these particle would undergo immense heating to the point of evaporation. So while wind, lighting, volcanoes, etc. would be capable of imparting huge forces at lower altitudes, they would not be able to accelerate intact particles to the point where they could achieve escape velocity. On the other hand, in the upper part of the mesosphere and thermosphere, particles would not suffer much drag or heating.

As such, Berera concludes that only atoms and molecules that are already found in the higher atmosphere could be propelled into space by space dust collisions. The mechanism for propelling them there would likely consist of a double state approach, whereby they are first hurled into the lower thermosphere or higher by some mechanism and then propelled even harder by fast space dust collision.

After calculating the speed at which space dust impacts our atmosphere, Berera determined that molecules that exist at an altitude of 150 km (93 mi) or higher above Earth’s surface would be knocked beyond the limit of Earth’s gravity. These molecules would then be in near-Earth space, where they could be picked up by passing objects such as comets, asteroid or other Near-Earth Objects (NEO) and carried to other planets.

Naturally, this raises another all-important question, which is whether or not these organisms could survive in space. But as Berera notes, previous studies have borne out the ability of microbes to survive in space:

“Should some microbial particles manage the perilous journey upward and out of the Earth’s gravity, the question remains how well they will survive in the harsh environment of space. Bacterial spores have been left on the exterior of the International Space Station at altitude ~400km, in a near vacuum environment of space, where there is nearly no water, considerable radiation, and with temperatures ranging from 332K on the sun side to 252K on the shadow side, and have survived 1.5 years.”

The tiny Tardigrade: Nature's toughest creature? (Image Credit: Katexic Publications, unaltered, CC2.0)
The tiny Tardigrade (aka. “water bear”), which could be the toughest creature on Earth. Credit: Katexic Publications, unaltered, CC2.0)

Another thing Berera considers is the strange case of tardigrades, the eight-legged micro-animals that are also known as “water bears”. Previous experiments have shown that this species is capable of surviving in space, being both strongly resistant to radiation and desiccation. So it is possible that such organisms, if they were knocked out of Earth’s upper atmosphere, could survive long enough to hitch a ride to another planet

In the end, these finding suggests that large asteroid impacts may not be the only mechanism responsible for life being transferred between planets, which is what proponents of Panspermia previously thought. As Berera stated in a University of Edinburgh press statement:

“The proposition that space dust collisions could propel organisms over enormous distances between planets raises some exciting prospects of how life and the atmospheres of planets originated. The streaming of fast space dust is found throughout planetary systems and could be a common factor in proliferating life.”

In addition to offering a fresh take on Panspermia, Berera’s study is also significant when it comes to the study of how life evolved on Earth. If biological molecules and bacteria have been escaping Earth’s atmosphere continuously over the course of its existence, then this would suggest that it could still be floating out in the Solar System, possibly within comets and asteroids.

These biological samples, if they could be accessed and studied, would serve as a timeline for the evolution of microbial life on Earth. It’s also possible that Earth-borne bacteria survive today on other planets, possibly on Mars or other bodies where they locked away in permafrost or ice. These colonies would basically be time capsules, containing preserved life that could date back billions of years.

Further Reading: University of Edinburgh, Astrobiology

Building Rovers That Can Detect Life and Sequence DNA on Other Worlds

An interdisciplinary team from MIT (with support from NASA) is seeking to create an instrument that can performing in-situ test for life. Credit: setg.mit.edu

In 2015, then-NASA Chief Scientist Ellen Stofan stated that, “I believe we are going to have strong indications of life beyond Earth in the next decade and definite evidence in the next 10 to 20 years.” With multiple missions scheduled to search foe evidence of life (past and present) on Mars and in the outer Solar System, this hardly seems like an unrealistic appraisal.

But of course, finding evidence of life is no easy task. In addition to concerns over contamination, there is also the and the hazards the comes with operating in extreme environments – which looking for life in the Solar System will certainly involve. All of these concerns were raised at a new FISO conference titled “Towards In-Situ Sequencing for Life Detection“, hosted by Christopher Carr of MIT.

Carr is a research scientist with MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) and a Research Fellow with the Department of Molecular Biology at Massachusetts General Hospital. For almost 20 years, he has dedicated himself to the study of life and the search for it on other planets. Hence why he is also the science principal investigator (PI) of the Search for Extra-Terrestrial Genomes (SETG) instrument.

This artist’s rendering shows NASA’s Europa mission spacecraft, which will search for life on Europa beginning sometime in the 2020s. Credit: NASA/JPL-Caltech

Led by Dr. Maria T. Zuber – the E. A. Griswold Professor of Geophysics at MIT and the head of EAPS – the inter-disciplinary group behind SETG includes researchers and scientists from MIT, Caltech, Brown University, arvard, and Claremont Biosolutions. With support from NASA, the SETG team has been working towards the development of a system that can test for life in-situ.

Introducing the search for extra-terrestrial life, Carr described the basic approach as follows:

“We could look for life as we don’t know it. But I think it’s important to start from life as we know it – to extract both properties of life and features of life, and consider whether we should be looking for life as we know it as well, in the context of searching for life beyond Earth.”

Towards this end, the SETG team seeks to leverage recent developments in in-situ biological testing to create an instrument that can be used by robotic missions. These developments include the creation of portable DNA/RNA testing devices like the MinION, as well as the Biomolecule Sequencer investigation. Performed by astronaut Kate Rubin in 2016, this was first-ever DNA sequencing to take place aboard the International Space Station.

Building on these, and the upcoming Genes in Space program – which will allow ISS crews to sequence and research DNA samples on site – the SETG team is looking to create an instrument that can isolate, detect, and classify any DNA or RNA-based organisms in extra-terrestrial environments. In the process, it will allow scientists to test the hypothesis that life on Mars and other locations in the Solar System (if it exists) is related to life on Earth.

The theory of Lithopanspermia states that life can be shared between planets within a planetary system. Credit: NASA

To break this hypothesis down, it is a widely accepted theory that the synthesis of complex organics – which includes nucleobases and ribose precursors – occurred early in the history of the Solar System and took place within the Solar nebula from which the planets all formed. These organics may have then been delivered by comets and meteorites to multiple potentially-habitable zones during the Late Heavy Bombardment period.

Known as lithopansermia, this theory is a slight twist on the idea that life is distributed throughout the cosmos by comets, asteroids and planetoids (aka. panspermia). In the case of Earth and Mars, evidence that life might be related is based in part on meteorite samples that are known to have come to Earth from the Red Planet. These were themselves the product of asteroids striking Mars and kicking up ejecta that was eventually captured by Earth.

By investigating locations like Mars, Europa and Enceladus, scientists will also be able to engage in a more direct approach when it comes to searching for life. As Carr explained:

“There’s a couple main approaches. We can take an indirect approach, looking at some of the recently identified exoplanets. And the hope is that with the James Webb Space Telescope and other ground-based telescopes and space-based telescopes, that we will be in a position to begin imaging the atmospheres of exoplanets in much greater detail than characterization of those exoplanets has [allowed for] to date. And that will give us high-end, it will give the ability to look at many different potential worlds. But it’s not going to allow us to go there. And we will only have indirect evidence through, for example, atmospheric spectra.”

Enceladus in all its glory. NASA has announced that Enceladus, Saturn’s icy moon, has hydrogen in its oceans. Image: NASA/JPL/Space Science Institute

Mars, Europa and Enceladus present a direct opportunity to find life since all have demonstrated conditions that are (or were) conducive to life. Whereas there is ample evidence that Mars once had liquid water on its surface, Europa and Enceladus both have subsurface oceans and have shown evidence of being geologically active. Hence, any mission to these worlds would be tasked with looking in the right locations to spot evidence of life.

On Mars, Carr notes, this will come down to looking in places there there is a water-cycle, and will likely involve some a little spelunking:

“I think our best bet is to access the subsurface. And this is very hard. We need to drill, or otherwise access regions below the reach of space radiation which could destroy organic materiel. And one possibility is to go to fresh impact craters. These impact craters could expose material that wasn’t radiation-processed. And maybe a region where we might want to go would be somewhere where a fresh impact crater could connect to a deeper subsurface network – where we could get access to material perhaps coming out of the subsurface. I think that is probably our best bet for finding life on Mars today at the moment. And one place we could look would be within caves; for example, a lava tube or some other kind of cave system that could offer UV-radiation shielding and maybe also provide some access to deeper regions within the Martian surface.”

As for “ocean worlds” like Enceladus, looking for signs of life would likely involve exploring around its southern polar region where tall plumes of water have been observed and studied in the past. On Europa, it would likely involve seeking out “chaos regions”, the spots where there may be interactions between the surface ice and the interior ocean.

Exploring Europa’s “chaos terrain”, where the is interaction between the interior ocean and the surface ice, could yield evidence of biological organisms. Credit: NASA/JPL-Caltech

Exploring these environments naturally presents some serious engineering challenges. For starters, it would require the extensive planetary protections to ensure that contamination was prevented. These protections would also be necessary to ensure that false positives were avoided. Nothing worse than discovering a strain of DNA on another astronomical body, only to realize that it was actually a skin flake that fell into the scanner before launch!

And then there are the difficulties posed by operating a robotic mission in an extreme environment. On Mars, there is always the issue of solar radiation and dust storms. But on Europa, there is the added danger posed by Jupiter’s intense magnetic environment. Exploring water plumes coming from Enceladus is also very challenging for an orbiter that would most likely be speeding past the planet at the time.

But given the potential for scientific breakthroughs, such a mission it is well worth the aches and pains. Not only would it allow astronomers to test theories about the evolution and distribution of life in our Solar System, it could also facilitate the development of crucial space exploration technologies, and result in some serious commercial applications.

Looking to the future, advances in synthetic biology are expected to lead to new treatments for diseases and the ability to 3-D print biological tissues (aka. “bioprinting”). It will also help ensure human health in space by addressing bone density loss, muscle atrophy, and diminished organ and immune-function. And then there’s the ability to grow organisms specially-designed for life on other planets (can you say terraforming?)

Exogenesis
Is life in our Solar System, and the Universe for that matter, universal in nature? Credit: NASA/Jenny Mottor

On top of all that, the ability to conduct in-situ searches for life on other Solar planets also presents scientists with the opportunity to answer a burning question, one which they’ve struggled with for decades. In short, is carbon-based life universal? So far, any and all attempts to answer this question have been largely theoretical and have involved the “low hanging fruit variety” – where we have looked for signs of life as we know it, using mainly indirect methods.

By finding examples that come from environments other than Earth, we would be taking some crucial steps towards preparing ourselves for the kinds of “close encounters” that could be happening down the road.

Further Reading: SETG, FISO

TRAPPIST-1 System Ideal For Life Swapping

Artist's impression of rocky exoplanets orbiting Gliese 832, a red dwarf star just 16 light-years from Earth. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

Back in February of 2017, NASA announced the discovery of a seven-planet system orbiting a nearby star. This system, known as TRAPPIST-1, is of particular interest to astronomers because of the nature and orbits of the planets. Not only are all seven planets terrestrial in nature (i.e. rocky), but three of the seven have been confirmed to be within the star’s habitable zone (aka. “Goldilocks Zone”).

But beyond the chance that some of these planets could be inhabited, there is also the possibility that their proximity to each other could allow for life to be transferred between them. That is the possibility that a team of scientists from the University of Chicago sought to address in a new study. In the end, they concluded that bacteria and single-celled organisms could be hopping from planet to planet.

Continue reading “TRAPPIST-1 System Ideal For Life Swapping”

Weekly Space Hangout – April 14, 2017: Brad Peterson and LUVOIR

Host: Fraser Cain (@fcain)

Special Guest:
This week’s special guest is Brad Peterson. Brad is a returning guest, and since his last appearance, he has been asked by NASA to serve as a community co-chair, with Debra Fischer of Yale, for the Science and Technology Definition Team for the Large Ultraviolet, Optical, and Infrared Surveyor (LUVOIR).

Brad has carried out research on active galactic nuclei for his entire career. He has been developing the technique of reverberation mapping for over 25 years. He is currently on appointment at STScI as Distinguished Visiting Astronomer, after retiring from the faculty of The Ohio State University in 2015 with 35 years of service, the last nine as chair of the Department of Astronomy. He is also a member of the NASA Advisory Council, for which he chairs the Science Committee. He was recently named chair-elect for the Astronomy Section of the AAAS.

Guests:

Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg ChartYourWorld.org)

Their stories this week:

Updates on ocean worlds

A half-trillion dollar trip to Mars?

Could an asteroid strike be the source of RNA?

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

Announcements:
On Friday, May 12, the WSH will welcome authors Michael Summers and James Trefil to the show to discuss their new book, Exoplanets: Diamond Worlds, Super Earths, Pulsar Planets and the New Search for Life Beyond Our Solar System. In anticipation of their appearance, the WSH Crew is pleased to offer our viewers a chance to win one of two hard cover copies of Exoplanets. Two winners will be drawn live by @fraser during our show on May 12th. To enter for a chance to win a copy of Exoplanets, send an email to: [email protected] with the Subject: Exoplanets. Be sure to include your name and email address in the body of your message so that we can contact the winners afterward. All entries must be electronically postmarked by 23:59 EST on May 10, 2017, in order to be eligible. No purchase necessary. Two winners will be selected at random from all eligible entries. Good luck!

If you’d like to join Fraser and Paul Matt Sutter on their tour to Iceland in February 2018, you can find the information at astrotouring.com.

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<

Is There Life on Mars?

Is There Life on Mars?
Is There Life on Mars?


Perhaps the most important question we can possible ask is, “are we alone in the Universe?”.

And so far, the answer has been, “I don’t know”. I mean, it’s a huge Universe, with hundreds of billions of stars in the Milky Way, and now we learn there are trillions of galaxies in the Universe.

Is there life closer to home? What about in the Solar System? There are a few existing places we could look for life close to home. Really any place in the Solar System where there’s liquid water. Wherever we find water on Earth, we find life, so it make sense to search for places with liquid water in the Solar System.

I know, I know, life could take all kinds of wonderful forms. Enlightened beings of pure energy, living among us right now. Or maybe space whales on Titan that swim through lakes of ammonia. Beep boop silicon robot lifeforms that calculate the wasted potential of our lives.

Sure, we could search for those things, and we will. Later. We haven’t even got this basic problem done yet. Earth water life? Check! Other water life? No idea.

It turns out, water’s everywhere in the Solar System. In comets and asteroids, on the icy moons of Jupiter and Saturn, especially Europa or Enceladus. Or you could look for life on Mars.

Sloping buttes and layered outcrops within the "Murray formation" layer of lower Mount Sharp. Credit: NASA
Sloping buttes and layered outcrops within the “Murray formation” layer of lower Mount Sharp. Credit: NASA

Mars is similar to Earth in many ways, however, it’s smaller, has less gravity, a thinner atmosphere. And unfortunately, it’s bone dry. There are vast polar caps of water ice, but they’re frozen solid. There appears to be briny liquid water underneath the surface, and it occasionally spurts out onto the surface. Because it’s close and relatively easy to explore, it’s been the place scientists have gone looking for past or current life.

Researchers tried to answer the question with NASA’s twin Viking Landers, which touched down in 1976. The landers were both equipped with three biology experiments. The researchers weren’t kidding around, they were going to nail this question: is there life on Mars?

In the first experiment, they took soil samples from Mars, mixed in a liquid solution with organic and inorganic compounds, and then measured what chemicals were released. In a second experiment, they put Earth organic compounds into Martian soil, and saw carbon dioxide released. In the third experiment, they heated Martian soil and saw organic material come out of the soil.

The landing site of Viking 1 on Mars in 1977, with trenches dug in the soil for the biology experiments. Credit: NASA/JPL
The landing site of Viking 1 on Mars in 1977, with trenches dug in the soil for the biology experiments. Credit: NASA/JPL

Three experiments, and stuff happened in all three. Stuff! Pretty exciting, right? Unfortunately, there were equally plausible non-biological explanations for each of the results. The astrobiology community wasn’t convinced, and they still fight in brutal cage matches to this day. It was ambitious, but inconclusive. The worst kind of conclusive.

Researchers found more inconclusive evidence in 1994. Ugh, there’s that word again. They were studying a meteorite that fell in Antarctica, but came from Mars, based on gas samples taken from inside the rock.

They thought they found evidence of fossilized bacterial life inside the meteorite. But again, there were too many explanations for how the life could have gotten in there from here on Earth. Life found a way… to burrow into a rock from Mars.

NASA learned a powerful lesson from this experience. If they were going to prove life on Mars, they had to go about it carefully and conclusively, building up evidence that had no controversy.

Greetings from Mars! I’m Spirit and I was the first of two twin robots to land on Mars. Unlike my twin, Opportunity, I’m known as the hill-climbing robot. Artist Concept, Mars Exploration Rovers. NASA/JPL-Caltech
Artist Concept, Mars Exploration Rovers. NASA/JPL-Caltech

The Spirit and Opportunity Rovers were an example of building up this case cautiously. They were sent to Mars in 2004 to find evidence of water. Not water today, but water in the ancient past. Old water Over the course of several years of exploration, both rovers turned up multiple lines of evidence there was water on the surface of Mars in the ancient past.

They found concretions, tiny pebbles containing iron-rich hematite that forms on Earth in water. They found the mineral gypsum; again, something that’s deposited by water on Earth.

Opportunity's Approach to 'Homestake'. This view from the front hazard-avoidance camera on NASA's Mars Exploration Rover Opportunity shows the rover's arm's shadow falling near a bright mineral vein informally named Homestake. The vein is about the width of a thumb and about 18 inches (45 centimeters) long. Opportunity examined it in November 2011 and found it to be rich in calcium and sulfur, possibly the calcium-sulfate mineral gypsum. Opportunity took this image on Sol 2763 on Mars (Nov. 7, 2011). Credit: NASA/JPL-Caltech
A bright mineral vein informally named Homestake. The vein is about the width of a thumb and about 18 inches (45 centimeters) long. Opportunity examined it in November 2011 (Sol 2763) and found it to be rich in calcium and sulfur, possibly the calcium-sulfate mineral gypsum. Credit: NASA/JPL-Caltech

NASA’s Curiosity Rover took this analysis to the next level, arriving in 2012 and searching for evidence that water was on Mars for vast periods of time; long enough for Martian life to evolve.

Once again, Curiosity found multiple lines of evidence that water acted on the surface of Mars. It found an ancient streambed near its landing site, and drilled into rock that showed the region was habitable for long periods of time.

In 2014, NASA turned the focus of its rovers from looking for evidence of water to searching for past evidence of life.

Curiosity found one of the most interesting targets: a strange strange rock formations while it was passing through an ancient riverbed on Mars. While it was examining the Gillespie Lake outcrop in Yellowknife Bay, it photographed sedimentary rock that looks very similar to deposits we see here on Earth. They’re caused by the fossilized mats of bacteria colonies that lived billions of years ago.

A bright and interestingly shaped tiny pebble shows up among the soil on a rock, called "Gillespie Lake," which was imaged by Curiosity's Mars Hand Lens Imager on Dec. 19, 2012, the 132nd sol, or Martian day of Curiosity's mission on Mars. Credit: NASA / JPL-Caltech / MSSS.
A bright and interestingly shaped tiny pebble shows up among the soil on a rock, called “Gillespie Lake,” which was imaged by Curiosity’s Mars Hand Lens Imager on Dec. 19, 2012, the 132nd sol, or Martian day of Curiosity’s mission on Mars. Credit: NASA / JPL-Caltech / MSSS.

Not life today, but life when Mars was warmer and wetter. Still, fossilized life on Mars is better than no life at all. But there might still be life on Mars, right now, today. The best evidence is not on its surface, but in its atmosphere. Several spacecraft have detected trace amounts of methane in the Martian atmosphere.

Methane is a chemical that breaks down quickly in sunlight. If you farted on Mars, the methane from your farts would dissipate in a few hundred years. If spacecraft have detected this methane in the atmosphere, that means there’s some source replenishing those sneaky squeakers. It could be volcanic activity, but it might also be life. There could be microbes hanging on, in the last few places with liquid water, producing methane as a byproduct.

The European ExoMars orbiter just arrived at Mars, and its main job is sniff the Martian atmosphere and get to the bottom of this question.

Are there trace elements mixed in with the methane that means its volcanic in origin? Or did life create it? And if there’s life, where is it located? ExoMars should help us target a location for future study.

The European/Russian ExoMars Trace Gas Orbiter (TGO) will launch in 2016 and sniff the Martian atmosphere for signs of methane which could originate for either biological or geological mechanisms. Credit: ESA
The European/Russian ExoMars Trace Gas Orbiter (TGO) will sniff the Martian atmosphere for signs of methane which could originate for either biological or geological mechanisms. Credit: ESA

NASA is following up Curiosity with a twin rover designed to search for life. The Mars 2020 Rover will be a mobile astrobiology laboratory, capable of scooping up material from the surface of Mars and digesting it, scientifically speaking. It’ll search for the chemicals and structures produced by past life on Mars. It’ll also collect samples for a future sample return mission.

Even if we do discover if there’s life on Mars, it’s entirely possible that we and Martian life are actually related by a common ancestor, that split off billions of years ago. In fact, some astrobiologists think that Mars is a better place for life to have gotten started.

Not the dry husk of a Red Planet that we know today, but a much wetter, warmer version that we now know existed billions of years ago. When the surface of Mars was warm enough for liquid water to form oceans, lakes and rivers. And we now know it was like this for millions of years.

A conception of an ancient and/or future Mars, flush with oceans, clouds and life. Credit: Kevin Gill.
A conception of an ancient Mars, flush with oceans, clouds and life. Credit: Kevin Gill.

While Earth was still reeling from an early impact by the massive planet that crashed into it, forming the Moon, life on Mars could have gotten started early.

But how could we actually be related? The idea of Panspermia says that life could travel naturally from world to world in the Solar System, purely through the asteroid strikes that were regularly pounding everything in the early days.

Imagine an asteroid smashing into a world like Mars. In the lower gravity of Mars, debris from the impact could be launched into an escape trajectory, free to travel through the Solar System.

We know that bacteria can survive almost indefinitely, freeze dried, and protected from radiation within chunks of space rock. So it’s possible they could make the journey from Mars to Earth, crossing the orbit of our planet.

Even more amazingly, the meteorites that enter the Earth’s atmosphere would protect some of the bacterial inhabitants inside. As the Earth’s atmosphere is thick enough to slow down the descent of the space rocks, the tiny bacterialnauts could survive the entire journey from Mars, through space, to Earth.

In February 2013, asteroid DA 2014 safely passed by the Earth. There are several proposals abounding about bringing asteroids closer to our planet to better examine their structure. Credit: NASA/JPL-Caltech
Credit: NASA/JPL-Caltech

If we do find life on Mars, how will we know it’s actually related to us? If Martian life has the similar DNA structure to Earth life, it’s probably related. In fact, we could probably trace the life back to determine the common ancestor, and even figure out when the tiny lifeforms make the journey.

If we do find life on Mars, which is related to us, that just means that life got around the Solar System. It doesn’t help us answer the bigger question about whether there’s life in the larger Universe. In fact, until we actually get a probe out to nearby stars, or receive signals from them, we might never know.

An even more amazing possibility is that it’s not related. That life on Mars arose completely independently. One clue that scientists will be looking for is the way the Martian life’s instructions are encoded. Here on Earth, all life follows “left-handed chirality” for the amino acid building blocks that make up DNA and RNA. But if right-handed amino acids are being used by Martian life, that would mean a completely independent origin of life.

Of course, if the life doesn’t use amino acids or DNA at all, then all bets are off. It’ll be truly alien, using a chemistry that we don’t understand at all.

There are many who believe that Mars isn’t the best place in the Solar System to search for life, that there are other places, like Europa or Enceladus, where there’s a vast amount of liquid water to be explored.

But Mars is close, it’s got a surface you can land on. We know there’s liquid water beneath the surface, and there was water there for a long time in the past. We’ve got the rovers, orbiters and landers on the planet and in the works to get to the bottom of this question. It’s an exciting time to be part of this search.

More Evidence That Comets May Have Brought Life to Earth

Halleys Comet, as seen in May 1986. Credit and copyright: Bob King.

The idea of panspermia — that life on Earth originated from comets or asteroids bombarding our planet — is not new. But new research may have given the theory a boost. Scientists from Japan say their experiments show that early comet impacts could have caused amino acids to change into peptides, becoming the first building blocks of life. Not only would this help explain the genesis of life on Earth, but it could also have implications for life on other worlds.

Dr. Haruna Sugahara, from the Japan Agency for Marine-Earth Science and Technology in Yokahama, and Dr. Koichi Mimura, from Nagoya University said they conducted “shock experiments on frozen mixtures of amino acid, water ice and silicate (forsterite) at cryogenic condition (77 K),” according to their paper. “In the experiments, the frozen amino acid mixture was sealed into a capsule … a vertical propellant gun was used to [simulate] impact shock.”

They analyzed the post-impact mixture with gas chromatography, and found that some of the amino acids had joined into short peptides of up to 3 units long (tripeptides).

Based on the experimental data, the researchers were able to estimate that the amount of peptides produced would be around the same as had been thought to be produced by normal terrestrial processes (such as lighting storms or hydration and dehydration cycles).

Artists concept of the stardust spacecraft flying throug the gas and dust from comet Wild 2. Credit: NASA/JPL
Artists concept of the stardust spacecraft flying throug the gas and dust from comet Wild 2. Credit: NASA/JPL
“This finding indicates that comet impacts almost certainly played an important role in delivering the seeds of life to the early Earth,” said Sugahara. “It also opens the likelihood that we will have seen similar chemical evolution in other extraterrestrial bodies, starting with cometary-derived peptides.”

The earliest known fossils on Earth are from about 3.5 billion years ago and there is evidence that biological activity took place even earlier. But there’s evidence that early Earth had little water and carbon-based molecules on the Earth’s surface, so how could these building blocks of life delivered to the Earth’s surface so quickly? This was also about the time of the Late Heavy Bombardment, and so the obvious answer could be the collision of comets and asteroids with the Earth, since these objects contain abundant supplies of both water and carbon-based molecules.

A view of NASA's Deep Impact probe colliding with comet Tempel 1, captured by the Deep Impact flyby spacecraft's high-resolution instrument.
A view of NASA’s Deep Impact probe colliding with comet Tempel 1, captured by the Deep Impact flyby spacecraft’s high-resolution instrument.

Space missions to comets are helping to confirm this possibility. The 2004 Stardust mission found the amino acid when it collected particles from Comet Wild 2. When NASA’s Deep Impact spacecraft crashed into Comet Tempel 1 in 2005, it discovered a mixture of organic and clay particles inside the comet. One theory about the origins of life is that clay particles act as a catalyst, allowing simple organic molecules to get arranged into more and more complex structures.

The news from the current Rosetta mission to comet 67P/Churyumov-Gerasimenko also indicates that comets are a rich source of materials, and more discoveries are likely to be forthcoming from that mission.

Jets of gas and dust are blasting from the active neck of comet 67P/Churyumov-Gerasimenko in this photo mosaic assembled from four images taken on 26 September 2014 by the European Space Agency’s Rosetta spacecraft at a distance of 26.3 kilometers (16 miles) from the center of the comet. Credit: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Jets of gas and dust are blasting from the active neck of comet 67P/Churyumov-Gerasimenko in this photo mosaic assembled from four images taken on 26 September 2014 by the European Space Agency’s Rosetta spacecraft at a distance of 26.3 kilometers (16 miles) from the center of the comet. Credit: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer/kenkremer.com

“Two key parts to this story are how complex molecules are initially generated on comets and then how they survive/evolve when the comet hits a planet like the Earth,” said Professor Mark Burchell from the University of Kent in the UK, commenting on the new research from Japan. “Both of these steps can involve shocks which deliver energy to the icy body… building on earlier work, Dr. Sugahara and Dr. Mimura have shown how amino acids on icy bodies can be turned into short peptide sequences, another key step along the path to life.”

“Comet impacts are normally associated with mass extinction on Earth, but this works shows that they probably helped kick-start the whole process of life in the first place,” said Sugahara. “The production of short peptides is the key step in the chemical evolution of complex molecules. Once the process is kick-started, then much less energy is needed to make longer chain peptides in a terrestrial, aquatic environment.”

The scientists also indicated that similar “kickstarting” could have happened in other places in our Solar System, such as on the icy moons Europa and Enceladus, as they likely underwent a similar comet bombardment.

Sugahara and Mimura presented their findings at the Goldschmidt geochemistry conference in Prague, going on this week.

Planets Could Travel Along with Rogue ‘Hypervelocity’ Stars, Spreading Life Throughout the Universe

An artist's conception of a hypervelocity star that has escaped the Milky Way. Credit: NASA

Back in 1988, astronomer Jack Hills predicted a type of “rogue”star might exist that is not bound to any particular galaxy. These stars, he reasoned, were periodically ejected from their host galaxy by some sort of mechanism to begin traveling through interstellar space.

Since that time, astronomers have made numerous discoveries that indicate these rogue, traveling stars indeed do exist, and far from being an occasional phenomenon, they are actually quite common. What’s more, some of these stars were found to be traveling at extremely high speeds, leading to the designation of hypervelocity stars (HVS).

And now, in a series of papers that published in arXiv Astrophysics, two Harvard researchers have argued that some of these stars may be traveling close to the speed of light. Known as semi-relativistic hypervelocity stars (SHS), these fast-movers are apparently caused by galactic mergers, where the gravitational effect is so strong that it fling stars out of a galaxy entirely. These stars, the researchers say, may have the potential to spread life throughout the Universe.

This finding comes on the heels of two other major announcements. The first occurred in early November when a paper published in the Astrophysical Journal reported that as many as 200 billion rogue stars have been detected in a cluster of galaxies some 4 billion light years away. These observations were made by the Hubble Space Telescope’s Frontier Fields program, which made ultra-deep multiwavelength observations of the Abell 2744 galaxy cluster.

This was followed by a study published in Science, where an international team of astronomers claimed that as many as half the stars in the entire universe live outside of galaxies.

Using ESO's Very Large Telescope, astronomers have recorded a massive star moving at more than 2.6 million kilometres per hour. Stars are not born with such large velocities. Its position in the sky leads to the suggestion that the star was kicked out from the Large Magellanic Cloud, providing indirect evidence for a massive black hole in the Milky Way's closest neighbour. Credit: ESO
Image of a moving star captured by the ESO Very Large Telescope, believed to have been ejected from the Large Magellanic Cloud. Credit: ESO

However, the recent observations made by Abraham Loeb and James Guillochon of Harvard University are arguably the most significant yet concerning these rogue celestial bodies. According to their research papers, these stars may also play a role in spreading life beyond the boundaries of their host galaxies.

In their first paper, the researchers trace these stars to galaxy mergers, which presumably lead to the formation of massive black hole binaries in their centers. According to their calculations, these supermassive black holes (SMBH) will occasionally slingshot stars to semi-relativistic speeds.

“We predict the existence of a new population of stars coasting through the Universe at nearly the speed of light,” Loeb told Universe Today via email. “The stars are ejected by slingshots made of pairs of massive black holes which form during mergers of galaxies.”

These findings have further reinforced that massive compact bodies, widely known as a supermassive black holes (SMBH), exist at the center of galaxies. Here, the fastest known stars exist, orbiting the SMBH and accelerating up to speeds of 10,000 km per second (3 percent the speed of light).

According to Leob and Guillochon, however, those that are ejected as a result of galactic mergers are accelerated to anywhere from one-tenth to one-third the speed of light (roughly 30,000 – 100,000 km per second).

Image of a hypervelocity star found in data from the Sloan Digital Sky Survey. Credit: Vanderbilt University
Image of a hypervelocity star found in data from the Sloan Digital Sky Survey. Credit: Vanderbilt University

Observing these semi-relativistic stars could tell us much about the distant cosmos, according to the Harvard researchers. Compared to conventional research, which relied on subatomic particles like photons, neutrinos, and cosmic rays from distant galaxies, studying ejected stars offers numerous advantages.

“Traditionally, cosmologists used light to study the Universe but objects moving less than the speed of light offer new possibilities,” said Loeb. “For example, stars moving at different speeds allow us to probe a distant source galaxy at different look-back times (since they must have been ejected at different times in order to reach us today), in difference from photons that give us just one snapshot of the galaxy.”

In their second paper, the researchers calculate that there are roughly a trillion of these stars out there to be studied. And given that these stars were detected thanks to the Spitzer Space Telescope, it is likely that future generations will be able to study them using more advanced equipment.

All-sky infrared surveys could locate thousands of these stars speeding through the cosmos. And spectrographic analysis could tell us much about the galaxies they came from.

But how could these fast moving stars be capable of spreading life throughout the cosmos?

Could an alien spore really travel light years between different star systems? Well, as long as your theory doesn't require it to still be alive when it arrives - sure it can.
The Theory of Panspermia argues that life is distributed throughout the universe by celestial objects. Credit: NASA/Jenny Mottar

“Tightly bound planets can join the stars for the ride,” said Loeb. “The fastest stars traverse billions of light years through the universe, offering a thrilling cosmic journey for extra-terrestrial civilizations. In the past, astronomers considered the possibility of transferring life between planets within the solar system and maybe through our Milky Way galaxy. But this newly predicted population of stars can transport life between galaxies across the entire universe.”

The possibility that traveling stars and planets could have been responsible for the spread of life throughout the universe is likely to have implications as a potential addition to the Theory of Panspermia, which states that life exists throughout the universe and is spread by meteorites, comets, asteroids.

But Loeb told Universe Today that a traveling planetary system could have potential uses for our species someday.

“Our descendants might contemplate boarding a related planetary system once the Milky Way will merge with its sister galaxy, Andromeda, in a few billion years,” he said.

Further Reading: arxiv.org/1411.5022, arxiv.org/1411.5030

Are We Martians? Chemist’s New Claim Sparks Debate

Are Earthlings really Martians ? Did life arise on Mars first and then journey on meteors to our planet and populate Earth billions of years ago? Earth and Mars are compared in size as they look today.

Are Earthlings really Martians ?
Did life arise on Mars first and then journey on rocks to our planet and populate Earth billions of years ago? Earth and Mars are compared in size as they look today. NASA’s upcoming MAVEN Mars orbiter is aimed at answering key questions related to the habitability of Mars, its ancient atmosphere and where did all the water go.
Story updated[/caption]

Are Earthlings really Martians?

That’s the controversial theory proposed today (Aug. 29) by respected American chemist Professor Steven Benner during a presentation at the annual Goldschmidt Conference of geochemists being held in Florence, Italy. It’s based on new evidence uncovered by his research team and is sure to spark heated debate on the origin of life question.

Benner said the new scientific evidence “supports the long-debated theory that life on Earth may have started on Mars,” in a statement. Universe Today contacted Benner for further details and enlightenment.

“We have chemistry that (at least at the level of hypothesis) makes RNA prebiotically,” Benner told Universe Today. “AND IF you think that life began with RNA, THEN you place life’s origins on Mars.” Benner said he has experimental data as well.

First- How did ancient Mars life, if it ever even existed, reach Earth?

On rocks violently flung up from the Red Planet’s surface during mammoth collisions with asteroids or comets that then traveled millions of miles (kilometers) across interplanetary space to Earth – melting, heating and exploding violently before the remnants crashed into the solid or liquid surface.

An asteroid impacts ancient Mars and send rocks hurtling to space - some reach Earth
An asteroid impacts ancient Mars and send rocks hurtling to space – some reach Earth. Did they transport Mars life to Earth? Or minerals that could catalyze the origin of life on Earth?

“The evidence seems to be building that we are actually all Martians; that life started on Mars and came to Earth on a rock,” says Benner, of The Westheimer Institute of Science and Technology in Florida. That theory is generally known as panspermia.

To date, about 120 Martian meteorites have been discovered on Earth.

And Benner explained that one needs to distinguish between habitability and the origin of life.

“The distinction is being made between habitability (where can life live) and origins (where might life have originated).”

NASA’s new Curiosity Mars rover was expressly dispatched to search for environmental conditions favorable to life and has already discovered a habitable zone on the Red Planet’s surface rocks barely half a year after touchdown inside Gale Crater.

Furthermore, NASA’s next Mars orbiter- named MAVEN – launches later this year and seeks to determine when Mars lost its atmosphere and water- key questions in the Origin of Life debate.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo

Of course the proposed chemistry leading to life is exceedingly complex and life has never been created from non-life in the lab.

The key new points here are that Benner believes the origin of life involves “deserts” and oxidized forms of the elements Boron (B) and Molybdenum (Mo), namely “borate and molybdate,” Benner told me.

“Life originated some 4 billion years ago ± 0.5 billon,” Benner stated.

He says that there are two paradoxes which make it difficult for scientists to understand how life could have started on Earth – involving organic tars and water.

Life as we know it is based on organic molecules, the chemistry of carbon and its compounds.

But just discovering the presence of organic compounds is not the equivalent of finding life. Nor is it sufficient for the creation of life.

And simply mixing organic compounds aimlessly in the lab and heating them leads to globs of useless tars, as every organic chemist and lab student knows.

Benner dubs that the ‘tar paradox’.

Although Curiosity has not yet discovered organic molecules on Mars, she is now speeding towards a towering 3 mile (5 km) high Martian mountain known as Mount Sharp.

Curiosity Spies Mount Sharp - her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability of the Red Planet over billions of years.  This mosaic was assembled from over 3 dozen Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer
Curiosity Spies Mount Sharp – her primary destination
Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability of the Red Planet over billions of years. This mosaic was assembled from over 3 dozen Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer-kenkremer.com

Upon arrival sometime next spring or summer, scientists will target the state of the art robot to investigate the lower sedimentary layers of Mount Sharp in search of clues to habitability and preserved organics that could shed light on the origin of life question and the presence of borates and molybdates.

It’s clear that many different catalysts were required for the origin of life. How much and their identity is a big part of Benner’s research focus.

“Certain elements seem able to control the propensity of organic materials to turn into tar, particularly boron and molybdenum, so we believe that minerals containing both were fundamental to life first starting,” says Benner in a statement. “Analysis of a Martian meteorite recently showed that there was boron on Mars; we now believe that the oxidized form of molybdenum was there too.”

The second paradox relates to water. He says that there was too much water covering the early Earth’s surface, thereby causing a struggle for life to survive. Not exactly the conventional wisdom.

“Not only would this have prevented sufficient concentrations of boron forming – it’s currently only found in very dry places like Death Valley – but water is corrosive to RNA, which scientists believe was the first genetic molecule to appear. Although there was water on Mars, it covered much smaller areas than on early Earth.”

Parts of ancient Mars were covered by oceans, lakes and streams of liquid water in this artists concept, unlike the arid and bone dry Martian surface of today. Subsurface water ice is what remains of Martian water.
Parts of ancient Mars were covered by oceans, lakes and streams of liquid water in this artists concept, unlike the arid and bone dry Martian surface of today. Subsurface water ice is what remains of Martian water.

I asked Benner to add some context on the beneficial effects of deserts and oxidized boron and molybdenum.

“We have chemistry that (at least at the level of hypothesis) makes RNA prebiotically,” Benner explained to Universe Today.

“We require mineral species like borate (to capture organic species before they devolve to tar), molybdate (to arrange that material to give ribose), and deserts (to dry things out, to avoid the water problem).”

“Various geologists will not let us have these [borates and molybdates] on early Earth, but they will let us have them on Mars.”

“So IF you believe what the geologists are telling you about the structure of early Earth, AND you think that you need our chemistry to get RNA, AND IF you think that life began with RNA, THEN you place life’s origins on Mars,” Benner elaborated.

“The assembly of RNA building blocks is thermodynamically disfavored in water. We want a desert to get rid of the water intermittently.”

I asked Benner whether his lab has run experiments in support of his hypothesis and how much borate and molybdate are required.

“Yes, we have run many lab experiments. The borate is stoichiometric [meaning roughly equivalent to organics on a molar basis]; The molybdate is catalytic,” Benner responded.

“And borate has now been found in meteorites from Mars, that was reported about three months ago.

At his talk, Benner outlined some of the chemical reactions involved.

Although some scientists have invoked water, minerals and organics brought to ancient Earth by comets as a potential pathway to the origin of life, Benner thinks differently about the role of comets.

“Not comets, because comets do not have deserts, borate and molybdate,” Benner told Universe Today.

The solar panels on the MAVEN spacecraft are deployed as part of environmental testing procedures at Lockheed Martin Space Systems in Littleton, Colorado, before shipment to Florida 0on Aug. 2 and blastoff for Mars on Nov. 18, 213. Credit: Lockheed Martin
MAVEN is NASA’s next Mars orbiter and seeks to determine when Mars lost its atmosphere and water- key questions in the Origin of Life debate. MAVEN is slated to blastoff for Mars on Nov. 18, 2013. It is shown here with solar panels deployed as part of environmental testing procedures at Lockheed Martin Space Systems in Waterton, Colorado, before shipment to Florida in early August. Credit: Lockheed Martin

Benner has developed a logic tree outlining his proposal that life on Earth may have started on Mars.

“It explains how you get to the conclusion that life originated on Mars. As you can see from the tree, you can escape that conclusion by diverging from the logic path.”

Finally, Benner is not one who blindly accepts controversial proposals himself.

He was an early skeptic of the claims concerning arsenic based life announced a few years back at a NASA sponsored press conference, and also of the claims of Mars life discovered in the famous Mars meteorite known as ALH 84001.

“I am afraid that what we thought were fossils in ALH 84001 are not.”

The debate on whether Earthlings are really Martians will continue as science research progresses and until definitive proof is discovered and accepted by a consensus of the science community of Earthlings – whatever our origin.

On Nov. 18, NASA will launch its next mission to Mars – the MAVEN orbiter. Its aimed at studying the upper Martian atmosphere for the first time.

“MAVENS’s goal is determining the composition of the ancient Martian atmosphere and when it was lost, where did all the water go and how and when was it lost,” said Bruce Jakosky to Universe Today at a MAVEN conference at the University of Colorado- Boulder. Jakosky, of CU-Boulder, is the MAVEN Principal Investigator.

MAVEN will shed light on the habitability of Mars billions of years ago and provide insight on the origin of life questions and chemistry raised by Benner and others.

Ken Kremer

…………….
Learn more about Mars, the Origin of Life, LADEE, Cygnus, Antares, MAVEN, Orion, Mars rovers and more at Ken’s upcoming presentations

Sep 5/6/16/17: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 9: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM