A Concentrated Beam of Particles and Photons Could Push Us to Proxima Centauri

Getting to Proxima Centauri b will take a lot of new technologies, but there are increasingly exciting reasons to do so. Both public and private efforts have started seriously looking at ways to make it happen, but so far, there has been one significant roadblock to the journey – propulsion. To solve that problem, Christopher Limbach, now a professor at the University of Michigan, received a grant from NASA’s Institute for Advanced Concepts (NIAC) to work on a novel type of beamed propulsion that utilizes both a particle beam and a laser to overcome that technology’s biggest weakness.

Continue reading “A Concentrated Beam of Particles and Photons Could Push Us to Proxima Centauri”

Advanced Optics Could Help Us Find Earth 2.0

NASA has long been interested in building bigger and better space telescopes. Its Institute for Advanced Concepts (NIAC) has funded several methods for building and deploying novel types of telescopes for various purposes. Back in 2019, one of the projects they funded was the Dual Use Exoplanet Telescope (DUET), which would use an advanced form of optics to track down a potential Earth 2.0.

Continue reading “Advanced Optics Could Help Us Find Earth 2.0”

Slingshotting Around the Sun Would Make a Spacecraft the Faster Ever

NASA is very interested in developing a propulsion method to allow spacecraft to go faster. We’ve reported several times on different ideas to support that goal, and most of the more successful have utilized the Sun’s gravity well, typically by slingshotting around it, as is commonly done with Jupiter currently. But, there are still significant hurdles when doing so, not the least of which is the energy radiating from the Sun simply vaporizing anything that gets close enough to utilize a gravity assist. That’s the problem a project supported by NASA’s Institute for Advanced Concepts (NIAC) and run by Jason Benkoski, now of Lawrence Livermore National Laboratory, is trying to solve.

Continue reading “Slingshotting Around the Sun Would Make a Spacecraft the Faster Ever”

How a Single Atomic Sensor Can Help Track Earth’s Glaciers

Earth observations are one of the most essential functions of our current fleet of satellites. Typically, each satellite specializes in one kind of remote sensing – monitoring ocean levels, for example, or watching clouds develop and move. That is primarily due to the constraints of their sensors – particularly the radar. However, a new kind of sensor undergoing development could change the game in remote Earth sensing, and it recently received a NASA Institute for Advanced Concepts (NIAC) grant to further its development.

Continue reading “How a Single Atomic Sensor Can Help Track Earth’s Glaciers”

NASA Takes Six Advanced Tech Concepts to Phase II

From a lunar railway to a space telescope with a liquid lens, the 2024 NIAC Phase Two awardees are developing some fascinating concepts. This collage of artist concepts highlights the novel approaches proposed by the Phase Two awardees for possible future missions. Credits: NASA, From left: Edward Balaban, Mary Knapp, Mahmooda Sultana, Brianna Clements, Ethan Schaler

It’s that time again. NIAC (NASA Innovative Advanced Concepts) has announced six concepts that will receive funding and proceed to the second phase of development. This is always an interesting look at the technologies and missions that could come to fruition in the future.

Continue reading “NASA Takes Six Advanced Tech Concepts to Phase II”

Thermal Modeling of a Pulsed Plasma Rocket Shows It Should Be Possible To Create One

We’ve reported on a technology called pulsed plasma rockets (PPRs) here at UT a few times. Several research groups have worked on variations of them. They are so popular partly because of their extremely high specific impulse and thrust levels, and they seemingly solve the trade-off between those two all-important variables in space exploration propulsion systems. Essentially, they are an extremely efficient propulsion methodology that, if scaled up, would allow payloads to reach other planets in weeks rather than months or years. However, some inherent dangers still need to be worked out, and overcoming some of those dangers was the purpose of a NASA Institute for Advanced Concepts (NIAC) project back in 2020. 

Continue reading “Thermal Modeling of a Pulsed Plasma Rocket Shows It Should Be Possible To Create One”

NASA Invests in New Nuclear Rocket Concept for the Future of Space Exploration and Astrophysics

Graphic depiction of Thin Film Isotope Nuclear Engine Rocket (TFINER). Credit: James Bickford

In the coming years, NASA plans to send several astrobiology missions to Venus and Mars to search for evidence of extraterrestrial life. These will occur alongside crewed missions to the Moon (for the first time since the Apollo Era) and the first crewed missions to Mars. Beyond the inner Solar System, there are ambitious plans to send robotic missions to Europa, Titan, and other “Ocean Worlds” that could host exotic life. To accomplish these objectives, NASA is investing in some interesting new technologies through the NASA Innovative Advanced Concepts (NIAC) program.

This year’s selection includes solar-powered aircraft, bioreactors, lightsails, hibernation technology, astrobiology experiments, and nuclear propulsion technology. This includes a concept for a Thin Film Isotope Nuclear Engine Rocket (TFINER), a proposal by senior technical staff member James Bickford and his colleagues at the Charles Stark Draper Laboratory – a Massachusetts-based independent technology developer. This proposal relies on the decay of radioactive isotopes to generate propulsion and was recently selected by the NIAC for Phase I development.

Continue reading “NASA Invests in New Nuclear Rocket Concept for the Future of Space Exploration and Astrophysics”

NASA Selects Bold Proposal to “Swarm” Proxima Centauri with Tiny Probes

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

Humans have dreamed about traveling to other star systems and setting foot on alien worlds for generations. To put it mildly, interstellar exploration is a very daunting task. As we explored in a previous post, it would take between 1000 and 81,000 years for a spacecraft to reach Alpha Centauri (of which Proxima Centauri is considered a companion) using conventional propulsion (or those that are feasible using current technology). On top of that, there are numerous risks when traveling through the interstellar medium (ISM), not all of which are well-understood.

Under the circumstances, gram-scale spacecraft that rely on directed-energy propulsion (aka. lasers) appear to be the only viable option for reaching neighboring stars in this century. Proposed concepts include the Swarming Proxima Centauri, a collaborative effort between Space Initiatives Inc. and the Initiative for Interstellar Studies (i4is) led by Space Initiative’s chief scientist Marshall Eubanks. The concept was recently selected for Phase I development as part of this year’s NASA Innovative Advanced Concepts (NIAC) program.

Continue reading “NASA Selects Bold Proposal to “Swarm” Proxima Centauri with Tiny Probes”

Lost In Space? Just Use Relativity

One of the hardest things for many people to conceptualize when talking about how fast something is going is that they must ask, “Compared to what?” All motion only makes sense from a frame of reference, and many spacecraft traveling in the depths of the void lack any regular reference from which to understand how fast they’re going. There have been several different techniques to try to solve this problem, but one of the ones that have been in development the longest is StarNAV – a way to navigate in space using only the stars.

Continue reading “Lost In Space? Just Use Relativity”

A Swarm Of Swimming Microbots Could Be Deployed To Europa’s Ocean

Europa and other ocean worlds in our solar system have recently attracted much attention. They are thought to be some of the most likely places in our solar system for life to have developed off Earth, given the presence of liquid water under their ice sheathes and our understanding of liquid water as one of the necessities for the development of life. Various missions are planned to these ocean worlds, but many suffer from numerous design constraints. Requirements to break through kilometers of ice on a world far from the Sun will do that to any mission. These design constraints sometimes make it difficult for the missions to achieve one of their most important functions – the search for life. But a team of engineers from NASA’s Jet Propulsion Laboratory think they have a solution – send forth a swarm of swimming microbots to scour the ocean beneath a main “mothership” bot.

Continue reading “A Swarm Of Swimming Microbots Could Be Deployed To Europa’s Ocean”