The Moon by Logan Mancuso

Astrophoto: The Moon by Logan Mancuso
The Moon. Credit: Logan Mancuso

[/caption]
Logan Mancuso captured this photo of the Moon on August 16th, 2011 at Cherry Springs State Park, Coudersport, PA. The Moon was at illuminated Fraction 0.883 – 3.5 days after full moon when imaged.

Logan also provided us with the camera and specs he used in taking the photo:

  • Telescope: LX200GPS
  • Camera: Canon EOS Rebel 1000D at prime focus, F/0.0, ISO 800, 1/30 sec.
  • Conditions: near perfect seeing and transparency, and no clouds

Want to get your astrophoto featured on Universe Today? Join our Flickr group, post in our Forum or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

NASA Nabs Grandma for Trying to Sell Moon Rock

A collection of Moon rock samples that NASA uses for eduction. A similar type sample was invovlved in the recent sting operation. Credit: NASA

[/caption]

A 74-year-old grandmother was taken into custody after a NASA sting operation to recover a small shard of a Moon rock. In an Associated Press article, Joanna Davis said the Moon rock was given to her husband by Neil Armstrong in the 1970s, and she was trying to sell the item to take care of her sick son. However, any samples from the Moon are considered government property, and so cannot be sold for profit.

But no charges have been filed and NASA is not commenting on the case.

Davis said she was frightened and bruised during the incident that occurred at a Denny’s restaurant

“They grabbed me and pulled me out of the booth,” Davis told the AP.

Reportedly Davis emailed a NASA contractor on May 10, 2011 trying to find a buyer for the rock, as well as a nickel-sized piece of the heat shield that protected the Apollo 11 space capsule as it returned to earth from the Apollo 11 mission to the moon in 1969.

Neil Armstrong has said previously in a written affidavit that he has never given Moon rocks to private citizens.

While Davis’s attorney called the incident “abhorrent behavior by the federal government to steal something from a retiree that was given to her,” according to AP, Davis apparently knew that what she was doing was against the law.

You can read more in the original AP article.

Paul Spudis’ Plan for a Sustainable and Affordable Lunar Base

Artist concept of a settlement on the Moon. Credit: NASA/Pat Rawlings

[/caption]

It’s long been a dream to have a human settlement on the Moon, but in this age of budget cuts and indecisive plans for NASA’s future, a Moon base may seem too costly and beyond our reach. However, noted lunar scientist Dr. Paul Spudis from the Lunar and Planetary Institute and a colleague, Tony Lavoie from the Marshall Space Flight Center, have come up with a plan for building a lunar settlement that is not only affordable but sustainable. It creates a Moon base along with a type of ‘transcontinental railroad’ in space which opens up cislunar space – the area between Earth and the Moon – for development.

“The ultimate goal in space is to be able to go anywhere, anytime with as much capability as we need,” Spudis told Universe Today. “This plan uses a robotic and human presence on the Moon to use the local resources to create a new spacefaring system. The key for doing this is to adopt a flexible approach that is incremental and cumulative.”

In a nutshell what Spudis proposes is to send robots to the Moon which are tele-operated from Earth to start extracting water from the polar deposits to create propellant. The propellant would be used to fuel a reusable space transportation system between the Earth and the Moon.

“The reason this is possible is because the Moon is close – it’s only three light-seconds round trip for radio signal get from Earth to the Moon back,” Spudis said, “which means you can control machines remotely with operators on the Earth actually doing the activities that an astronaut might do on the Moon.”

A lunar mining facility harvests oxygen from the resource-rich volcanic soil of the eastern Mare Serenitatis.Credit: NASA/Pat Rawlings.

The advantage here is that a large part of the needed infrastructure, such as the mining operation, the processing plants, the development of storage for the water and propellant, is created before people even arrive.

“So what we try to do is to develop an architecture that enables us to, first, do this in small, incremental steps, with each step building upon the next, and the net effect is cumulative over time,”Spudis said. “And finally we are able to bring people to the Moon when we’re ready to actually have them live there. We place an outpost — a habitat — that will be fully operational before the first humans arrive.”

The significant amount of water than has been found on the Moon at the poles makes this plan work.

“We estimate there are many tens of billions of tons of water at both poles,” Spudis said. “What we don’t know in detail is exactly how much water is distributed what physical state it is in, and that’s one of the reasons why the first step in our plan is to send robotic prospectors up there to map the deposits and see how they vary.”

Water is an important resource for humans in space: it supports life for drinking and cooking, it can be broken down into oxygen for breathing, and by combing the oxygen and hydrogen in a fuel cell, electricity can be generated. Water is also a very good shielding material that could protect people from cosmic radiation, so the habitat could be “jacketed” with water.

But the most important use of water is being able to create a powerful chemical rocket propellant by using the oxygen and hydrogen and freezing them into a liquid.

“The Moon offers us this water not only to support human life there, but also to make rocket propellant to allow us to refuel our spacecraft both on the Moon and space above the Moon.”

In a series of 17 incremental missions, a human base would be built, made operational and occupied. It starts with setting up communication and navigation satellites around the Moon to enable precision operation for the robotic systems.

Next would sending rover to the Moon, perhaps a variant of the MER rovers that are currently exploring Mars, to prospect the best places for water at the lunar poles. The poles also provide areas of permanent sunlight to generate electrical power.

Next, larger equipment would be sent to experiment with digging up the ice deposits, melting the ice and storing the products. (See our previous article about using bulldozers on the Moon).

“Now, all those are simple conceptually, but we’ve never done them in practice,” said Spudis, “so we don’t know how difficult it is. But by sending the small robotic missions to the Moon and practicing this via remote control from Earth, we can evaluate how difficult it is — where the chokepoints are — and what are the most efficient ways to get to these deposits and to extract usable a product from them.”

The next step is to increase the magnitude of the effort by landing bigger robotic machines that can actually start making product on industrial scales so that a depot of supplies can be stockpiled on the Moon for when the first human humans to return to the Moon.

Cislunar space. Graphic courtesy Paul Spudis.

In the meantime, a constant transportation system between Earth and Moon would be created, with another system that goes between the Moon and lunar orbit, which opens up all kinds of possibilities.

“The analogy I like to make is this is very similar to the Transcontinental Railroad,” Spudis said. “We didn’t just build the Transcontinental Railroad to from the East Coast directly to the West Coast; we also built it to access all the points in between, which consequently were developed economically as well.”

By having a system where the vehicles are refueled from the resources extracted on the Moon, a system is created that routinely accesses the Moon and allows for returning to Earth, but all the other points in between can be accessed as well.

“We create a transportation system that accesses all those points between Earth and Moon. The significance of that is, much of our satellite assets reside there,” said Spudis, “ for example communication satellites and weather monitoring satellites reside in geosynchronous orbit, (about 36,000 km above the Earth’s equator) and right now we cannot reach that from low Earth orbit. If we have system that can routinely go back and forth to the Moon, we could also go to these high orbits where a lot of commercial and national security assets are.”

Spudis added that a fuel depot could go in various locations, including the L1 LaGrange point which would enable space flight beyond the Moon.

How long will this take?

“We estimate that we can create an entire turn-key lunar outpost on the Moon within about 15 to 16 years, with humans arriving about 10 years after the initial robotic missions go,” Spudis said. “The mining operation would produce about 150 tons of water per year and roughly 100 tons of propellant.

And do any new technologies or hardware have to be built?

“Not really,” said Spudis. “Effectively this plan is possible to achieve right now with existing technology. We don’t have any ‘unobtainium’ or any special magical machine that has to be built. It is all very simple outgrowths of existing equipment, and many cases you can use the heritage equipment from previous missions.”

And what about the cost?

Spudis estimates that the entire system could be established for an aggregate cost of less than $88 billion, which would be about $5 billion a year, with peak funding of $6.65 billion starting in Year 11. This total cost includes development of a Shuttle-derived 70 mT launch vehicle, two versions of a Crew Exploration Vehicles (LEO and translunar), a reusable lander, cislunar propellant depots and all robotic surface assets, as well as all of the operational costs of mission support for this architecture.

“The best part is that because we have broken our architecture into small chunks, each mission is largely self-contained and once it gets to the Moon it interacts and works with the pieces that are already there,” Spudis said.

And the budget would be flexible.

“We can do this project at whatever speed the resources permit,” Spudis said. “So if you have a very constrained budget with very low levels of expenditure, you can go you just go much more slowly. If you have more resources available you can increase the speed and increase the rate of asset emplacement on the Moon and do more in a shorter period of time. This architecture gets us back to the Moon and creates real capability. But the free variable is schedule, not money.”

Artist concept of a Moon base. Credit: NASA/Pat Rawlings.

Returning to the Moon is important, Spudis believes, because not only can we use the resources there, but it teaches us how to be a spacefaring civilization.

“By going to the Moon we can learn how to extract what we need in space from what we find in space,” he said. “Fundamentally that is a skill that any spacefaring civilization has to master. If you can learn to do that, you’ve got a skill that will allow you to go to Mars and beyond.”

For more information see Spudis’ website, SpudisLunarResources.com More details and graphs can be found on this pdf document.

Listen to an interview of Paul Spudis on this topic for the 365 Days of Astronomy podcast.

Paul Spudis blogs at Once and Future Moon at Smithonsian Air & Space website.

Russia Eyes Caves on Moon for Setting Up a Lunar Base

Spectacular high Sun view of the Mare Tranquillitatis pit crater revealing boulders on an otherwise smooth floor. Image is 400 meters wide, north is up, NAC M126710873R [NASA/GSFC/Arizona State University].

For the time being, it appears NASA has set aside any ambitions to return to the Moon with human missions. But Russia may consider sending cosmonauts to the lunar surface to set up a colony using natural caves and possible volcanic tunnels as protection from the harsh lunar environment.

“If it turns out that the Moon has a number of caves that can provide some protection from radiation and meteor showers, it could be an even more interesting destination than previously thought,” said veteran cosmonaut Sergei Krikalev, quoted in an article by Reuters.

Krikalev served on board two different space stations and flew on the space shuttle. He now leads Russia’s Star City cosmonaut training center outside Moscow. He and Russian scientists discussed the possible Moon base a forum on the future of manned spaceflight.

The image above is from the Lunar Reconnaissance Orbiter showing a cave or pit found in the Sea of Tranquility. Scientists have estimated the depth of the pit at over 100 meters, and several other caves have been found with orbiting spacecraft. Lunar scientists are studying the images to determine if an extended lava tube system still exists beneath the surface.

See our article on Moon caves.

“This new discovery that the moon may be a rather porous body could significantly alter our approach to founding lunar bases,” said Krikalev. “There wouldn’t be any need to dig the lunar soil and build walls and ceilings. It would be enough to use an inflatable module with a hard outer shell to — roughly speaking — seal the caves.”

Reuters quoted Russian scientist Boris Kryuchkov as saying the first such lunar colonies could be built by 2030.

Sergei Krikalev works aboard the Interrnational Space Station. Credit: NASA

Krikalev has more than two years cumulative time in space His first long-duration flight to the Soviet space station Mir was in 1988, and he did back-to-back increments on Mir flight starting in May 1991 and returning to Earth in March 1992. While he was in orbit, the Soviet Union disintegrated and Mir became a Russian space station.

He became the first Russian to fly a Shuttle mission on STS-60 in February 1994. His second Shuttle flight took the Unity node to the International Space Station on STS-88 in December 1998. He was a member of the Station’s Expedition 1 crew, launching in October 2000 and returning to Earth in March 2001. He launched as commander of Expedition 11 in 2005.

Source: Reuters

America vs. Astronaut: The Case of the Lifted Lunar Camera

Apollo 14 astronaut Ed Mitchell on the Moon, February 5, 1971. Credit: NASA.

[/caption]

Imagine you’re an astronaut. You have what it takes to be selected to fly a mission to the Moon. You train, make the trip, and become one of literally a handful of humans ever to have walked on the lunar surface. And when you leave the desolate beauty of the Moon behind in your Landing Module, and are just about to re-enter the Lunar Orbiter and head for home, you see one of the cameras that you used on the surface. If you leave it where it is it’s going to be lost forever, crashing into the lunar surface with the rest of the lander. If you take it, you’ll be going against standard NASA operating procedure since you hadn’t filled out the proper paperwork beforehand for official mission items appropriated by astronauts. Leave a piece of history behind to be destroyed or salvage it as a souvenir… what do you do?

Apollo 14 astronaut Edgar Mitchell decided to bring the camera back, and now, 40 years later, his decision is going to land him in court.

Last June, the U.S. government brought a case against the 81-year-old moonwalker after he offered the 16-millimeter Data Acquisition Camera (DAC) up for sale at New York’s Bonhams auction house as part of their May “Space History Sale”. While it was common for Apollo astronauts to be able to keep various pieces of equipment and space suits as mementos after their missions, certain paperwork had to be filled out beforehand… it’s just the NASA way.

The late Donald “Deke” Slayton, head of the astronaut corps in 1971, mentioned this during an interview with the Tuscon Daily Citizen in 1972.

“They give me a list of things they’re going to bring back,” Slayton said. “I give it to the program office and they bring ’em back.”

This Data Acquisition Camera (DAC) was one of two 16mm cameras on the Apollo 14 lunar module "Antares" when it landed on the moon on Feb, 5, 1971. Credit: Bonhams.

The DAC, it seems, was not on any lists handed in by Mitchell. Yet it was never intended to be on the ride back to Earth, either. Rather its destination was to be in the bottom of a crater made by the landing module when it crashed back onto the Moon.

Must have seemed a rather wasteful end for a historic – and valuable – piece of equipment. Were it to go to auction it could have fetched between $60,000 to $80,000.

“We had an agreement with NASA management, that small items that didn’t exceed our weight limitations, we could bring back.”

– Edgar Mitchell to WPTV

Regardless of its value – sentimental or otherwise – NASA’s lawyer claims that Mitchell was contacted several times about returning the camera but never responded. Mitchell’s attorney, on the other hand, argues that too many years have passed for NASA to now claim the camera as stolen property.

When it was brought before a Florida district court judge to have the case dismissed, however, the judge had no option but to side with the government.

“‘It is well settled that the United States is not bound by state statutes of limitation or subject to the defense of laches in enforcing its rights,'” quoted Judge Daniel Hurley of an appeals court ruling. “Defendant’s allegations that NASA intended the camera to be destroyed after the mission or that it routinely awarded used mission equipment to astronauts do not preclude as a matter of law Plaintiff’s contrary allegation that Defendant impermissibly converted the camera.”

Bottom line: the case goes in front of a jury in October 2012.

Read more about this on collectSPACE.com.

Astronomy Cast Ep. 234: Lunar Phases

The Moon is a stark reminder that we actually live in a Universe filled with stars and planets and moons. The changing phases of the Moon show us the relative positions of the Earth, the Sun and the Moon as they interact with one another. Let’s learn about the different phases, the geometry of the whole system, and some of the interesting science wrapped up with our fascination of our only natural satellite.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Lunar Phases” on the Astronomy Cast website.

Why is Tonight’s Full Moon the Smallest of the Year?

Moon at Perigee and Apogee. Credit NASA

[/caption]
Think we can only see half of the Moon’s surface from Earth? Not always.

Over the course of the year, observers on Earth can view a bit less and a bit more than half of the lunar surface. Additionally, the Moon appears smaller in the sky during some months compared to other times of the year.

Due to the processes at work, tonight’s full Moon is an opposite of the “Supermoon” that made headlines earlier this year.

What causes our Moon to change apparent size throughout the year, and how do we notice this phenomenon?

While it would be difficult to judge the apparent size of the full Moon each month with our eyes, the phenomenon of Lunar librations is readily apparent in the animation below.

There are three forces at work that help produce the “dancing” effect as shown in the video above.

There are three types of lunar libration:

First, the Moon doesn’t orbit Earth in a perfectly circular orbit. An eccentric orbit will cause our Moon to lead and lag in its orbital position while its rotational speed stays the same. This causes a libration in longitude.

Secondly, the Moon’s rotational axis is slightly inclined to its orbital plane, with respect to Earth. The Moon’s orbit is also inclined with respect to the ecliptic, allowing the Moon to be illuminated from above and sometimes from below. The illumination from above and below allows some of the lunar surface beyond the poles to be visible from Earth.

Last but not least, there is a small daily oscillation due to Earth’s rotation. This oscillation changes the perspective at which an observer views the Moon. Imagine a straight line connecting the center of Earth with the center of the Moon. Over time an observer would be on one side of this imaginary line and then the other, which would allow the observer to look first around one side of the Moon and then around the other. This is because an observer on Earth is on the surface and not at the center of Earth.

A slight bit of Lunar trivia: Lunar librations helped notable British astronomer Patrick Moore investigate the edge regions where librations provided extra coverage. Moore’s investigations lead him to discover a large circular feature, which he named “Mare Oriental”. Once studies of the Lunar farside were performed from space, it was discovered that Mare Oriental was a lava filled impact crater.

LROC “Treasure Map” Reveals Titanium Deposits

LROC WAC mosaic showing boundary between Mare Serenitatis and Mare Tranquillitatis. The relative blue colour of the Tranquillitatis mare is due to higher abundances of the titanium bearing mineral ilmenite. Image Credit: NASA/GSFC/Arizona State University

[/caption]
At a joint meeting of the European Planetary Science Congress and the American Astronomical Society’s Division for Planetary Sciences, Mark Robinson and Brett Denevi have unveiled a map of the Moon combining observations in visible and ultraviolet wavelengths showing areas rich in Titanium ores. This discovery not only provides a potential source of a valuable metal, but also provides valuable information which will help scientists better understand lunar formation and composition of the Moon’s interior.

How did Robinson and Denevi create this map, and what can other scientists learn from this new data?

“Looking up at the Moon, its surface appears painted with shades of grey – at least to the human eye. But with the right instruments, the Moon can appear colourful,” said Robinson, (Arizona State University). “The maria appear reddish in some places and blue in others. Although subtle, these colour variations tell us important things about the chemistry and evolution of the lunar surface. They indicate the titanium and iron abundance, as well as the maturity of a lunar soil.”

Robinson and the LROC team previously used similar methods with Hubble Space Telescope images to map titanium abundances near the Apollo 17 landing site, which had varying titanium levels. When Robinson compared the Apollo data with the HST images, it was revealed that titanium levels corresponded to the ratio of ultraviolet to visible light reflected by the lunar surface.

“Our challenge was to find out whether the technique would work across broad areas, or whether there was something special about the Apollo 17 area,” said Robinson. Using nearly 4000 images from the LRO Wide-Area Camera (WAC), Robinson’s team created a mosaic image, which was then studied using the techniques developed with the Hubble imagery. The research used the same ultraviolet to visible light ratio to deduce titanium abundance, which was verified by surface samples gathered by Apollo and Luna missions.

“We still don’t really understand why we find much higher abundances of titanium on the Moon compared to similar types of rocks on Earth. What the lunar titanium-richness does tell us is that the interior of the Moon had less oxygen when it was formed, knowledge that geochemists value for understanding the evolution of the Moon,” added Robinson.

On our Moon, titanium is found in a mineral known as ilmenite, which contains iron, titanium and oxygen. In theory, Lunar miners could process ilmenite to separate the iron, titanium and oxygen. Aside from the elements present in ilmenite, Apollo data shows that minerals containing titanium can retaining particles from the solar wind, such as helium and hydrogen. Future inhabitants of the Moon would find helium and hydrogen, along with oxygen and iron to be vital resources.

“The new map is a valuable tool for lunar exploration planning. Astronauts will want to visit places with both high scientific value and a high potential for resources that can be used to support exploration activities. Areas with high titanium provide both – a pathway to understanding the interior of the Moon and potential mining resources,” said Denevi (John Hopkins University).

The new maps also provide insight into how lunar surface materials are altered by the impact of charged particles from the solar wind and high-velocity micrometeorite impacts. Over time, lunar rock is pulverized into a fine powder by micrometeorite impacts, and charged particles alter the chemical composition and color of the surface.Recently exposed materials, such as ejecta from impacts appear bluer and have higher reflectivity than older Lunar regolith (soil). Younger material is estimated to take about half a billion years to fully “weather” to the point where it would blend in with older material.

“One of the exciting discoveries we’ve made is that the effects of weathering show up much more quickly in ultraviolet than in visible or infrared wavelengths. In the LROC ultraviolet mosaics, even craters that we thought were very young appear relatively mature. Only small, very recently formed craters show up as fresh regolith exposed on the surface,” said Robinson.

So it seems there’s always something new to be learned from our Moon. Coincidentally, tomorrow (October 8th) is International Observe the Moon Night, so make sure you grab your binoculars or telescope tomorrow night and do some lunar observations! Be sure to check out our previous coverage of International Observe the Moon Night by our Senior Editor, Nancy Atkinson at: http://www.universetoday.com/89522/need-an-excuse-to-gaze-at-the-moon-international-observe-the-moon-night-is-coming/

If you’d like to learn more about the Lunar Reconnaissance Orbiter Camera, visit: http://lroc.sese.asu.edu/

Source: Europlanet Research Infrastructure / Division for Planetary Sciences of the American Astronomical Society Joint Press Release

Need an Excuse to Gaze at the Moon? International Observe the Moon Night is Coming!

This photo of the Moon was taken on October 2, 2011 in Angera, Lombardy, IT. Credit: Milo. Click image to see on Flickr.
This photo of the Moon was taken on October 2, 2011 in Angera, Lombardy, IT. Credit: Milo.

[/caption]

Most of us space-minded folks don’t need an excuse to gaze upon the brightest object in the night sky – our own Moon. But just in case you need a reason or are hoping to convince some friends or family to take a look with you, there’s a special event coming up that encourages more people to take the time to take a gander at our closest and constant companion in space. Saturday, October 8, 2011 is the second annual International Observe the Moon Night (InOMN). Across the country and around the world, astronomy clubs, museums, observatories, parks, and schools will hold special events to introduce the public to the Moon. There will be telescopes to look through, activities to join, and presentations from experts in lunar science will be streamed to participating event locations.

“There will hundreds of events world-wide that will share the excitement of lunar science and explorations” said Brian Day, from the NASA Lunar Science Institute, who is one of the organizers of the event.

This photo of the Moon was taken on October 4, 2011. Credit: Amar Mainkar. Click to see the image on Flickr.

In a podcast for 365 Days of Astronomy and NLSI, Day said that right now an especially exciting time to engage the public in the Moon. (Listen to the podcast here.) A new generation of robotic probes has brought about a revolution in our understanding of our nearest neighbor in space. Our long-held view of a non-changing and dry Moon is now being replaced with an appreciation for the Moon as a dynamic body with significant deposits of water ice, a fascinating history, and a thin atmosphere that may play a role in a potential lunar water cycle. “It is indeed a New Moon!” Day said.

There’s excitement on the amateur front, as well. “Recent developments in technology have allowed amateur astronomers to image the Moon in detail that previously was only attainable from orbiting spacecraft,” Day said. “The work that they are doing and the imagery they are getting is just fantastic So, this is a great time to appreciate what is happening with the Moon on both the amateur and professional communities.”

(Thanks to amateur astronomers who have uploaded images to Universe Today’s Flickr group — the images included in this article are courtesy of Milo, Amar Mainkar and Marcopic3000.)

The overall goal for InOMN is to engage lunar science and education communities, amateur astronomers, space enthusiasts, and the general public in what has become an annual lunar observation campaign.

“The Moon will be at a favorable phase, and we are going to be able to see some really magnificent features,” Day said, “so it is a good time to show up at an International Observe the Moon Night event and take a look at what is happening in the sky.”

This image of the Moon was taken on Oct. 5, 2011. Credit: Marcopic3000. Click on image to see it on Flickr.

This year’s InOMN may provide a bit of an extra show in Europe and Northern Asia, as it is occurring on the night of the maximum of the Draconid meteor shower.

For more information and to find an InOMN event near you or to learn how to conduct your own InOMN event, visit http://www.observethemoonnight.org. The website includes information on events around the world, activities and downloadable information to allow you to host your own event, and much more.

Want to get your astrophoto featured on Universe Today? Join our Flickr group, post in our Forum or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Student Alert: GRAIL Naming Contest – Essay Deadline November 11

NASA announces student Essay Naming Contest for the twin GRAIL Lunar spaceships. The essay writing contest is open to students in Grades K - 12 at schools in the United States. Submission Deadline is November 11, 2011. GRAIL A & B are twin science robots that will explore the gravity field of the moon like never before.

[/caption]

Student Alert ! – Here’s your once in a lifetime chance to name Two NASA robots speeding at this moment to the Moon on a super science mission to map the lunar gravity field. They were successfully launched from the Earth to the Moon on September 10, 2011. Right now the robots are called GRAIL A and GRAIL B. But, they need real names that inspire. And they need those names real soon. The goal is to “capture the spirit and excitement of lunar exploration”, says NASA – the US Space Agency.

NASA needs your help and has just announced an essay writing contest open to students in Grades K – 12 at schools in the United States. The deadline to submit your essay is November 11, 2011. GRAIL stands for “Gravity Recovery And Interior Laboratory.”

The rules state you need to pick two names and explain your choices in 500 words or less in English. Your essay can be any length up to 500 words – even as short as a paragraph. But, DO NOT write more than 500 words or your entry will be automatically disqualified.

Learn more about the GRAIL Essay Naming Contest here:

Read all the Official Contest Rules here:

Download the Naming Contest Submission Form here:

Students: NASA Wants You to Name that GRAIL !
Write an Essay and name these twin Lunar mapping satellites. NASA’s twin GRAIL A & B science probes are now streaking to the Moon and arrive on New Year’s Day 2012. This picture shows how they looked, mounted side by side, during launch preparations prior to blasting off for the Moon on Sept. 10, 2011 from Florida. Credit: Ken Kremer

The GRAIL A and B lunar spaceships are twins – just like those other awe inspiring robots “Spirit” and “Opportunity” , which were named by a 10 year old girl student and quickly became famous worldwide and forever because of their exciting science missions of Exploration and Discovery.They arrive in Lunar Orbit on New Year’s Day 2012.

Blastoff of twin GRAIL A and B lunar gravity mapping spacecraft on a Delta II Heavy rocket on Sept. 10 from Pad 17B Cape Canaveral Air Force Station in Florida at 9:08 a.m. EDT. Credit: Ken Kremer

And there is another way that students can get involved in NASA’s GRAIL mission.

GRAIL A & B are both equipped with four student-run MoonKAM cameras. Students can suggest targets for the cameras. Then the cameras will take close-up views of the lunar surface, taking tens of thousands of images and sending them back to Earth.

“Over 1100 middle schools have signed up to participate in the MoonKAM education and public outreach program to take images and engage in exploration,” said Prof. Maria Zuber of MIT.

Prof. Zuber is the top scientist on the mission and she was very excited to announce the GRAIL Essay Naming contest right after the twin spaceships blasted off to the Moon on Sep 10, 2011 from Cape Canaveral in Florida.

What is the purpose of GRAIL ?

“GRAIL simply put, is a ‘Journey to the Center of the Moon’,” says Dr. Ed Weiler, NASA Associate Administrator of the Science Mission Directorate in Washington, DC.

“It will probe the interior of the moon and map its gravity field by 100 to 1000 times better than ever before. We will learn more about the interior of the moon with GRAIL than all previous lunar missions combined. Precisely knowing what the gravity fields are will be critical in helping to land future human and robotic spacecraft. The moon is not very uniform. So it’s a dicey thing to fly orbits around the moon.”

“There have been many missions that have gone to the moon, orbited the moon, landed on the moon, brought back samples of the moon,” said Zuber. “But the missing piece of the puzzle in trying to understand the moon is what the deep interior is like.”

So, what are you waiting for.

Start thinking and writing. Students – You can be space explorers too !

Read Ken’s continuing features about GRAIL
GRAIL Lunar Blastoff Gallery
GRAIL Twins Awesome Launch Videos – A Journey to the Center of the Moon
NASA launches Twin Lunar Probes to Unravel Moons Core
GRAIL Unveiled for Lunar Science Trek — Launch Reset to Sept. 10
Last Delta II Rocket to Launch Extraordinary Journey to the Center of the Moon on Sept. 8
NASAs Lunar Mapping Duo Encapsulated and Ready for Sept. 8 Liftoff
GRAIL Lunar Twins Mated to Delta Rocket at Launch Pad
GRAIL Twins ready for NASA Science Expedition to the Moon: Photo Gallery