Large Amounts of Water Ice Found Underground on Mars

Global map of Water ice on Mars
New estimates of water ice on Mars suggest there may be large reservoirs of underground ice at non-polar latitudes. The map here shows "water-equivalent hydrogen". Oranges and reds on the map (values greater than 4.5 weight % water-equivalent hydrogen at the surface) point out areas where the amount of deeply buried water ice is greater than what can fit in the pore spaces of the surface rocks. Image credit: Feldman et al., 2011

[/caption]

Many models predict that water ice shouldn’t be stable on Mars today, anywhere beyond the poles, no matter how deep you bury it. And yet, a recently published study shows that large regions outside the polar areas may, in fact, contain a relative abundance of water. This is exciting, not only because water has implications for the possibility of life on Mars, but also because it can provide a valuable resource to future explorers, both as a fuel and for life support. And if this water is near the equator, that makes it much easier to get to.

Over the past 7 years, lots of spacecraft observations have given us evidence for the presence of water on Mars, either at the surface or not far below. Radar data have shown that large amounts of water ice are stored at the poles (Lots of Pure Water Ice at Mars North Pole). And pictures of gullies have hinted at reserves of water beneath the surface (NASA Says Liquid Water Made Martian Gullies). Now, a team of scientists, led by Dr. William Feldman of the Planetary Science Institute in Tucson, Arizona, have taken a new look at some of that data.

Dr. Feldman and his team used data from the Mars Odyssey Neutron Spectrometer (MONS) to estimate the amount of water ice that is present outside of the polar regions of Mars, where water ice is not expected to be found. The MONS is an instrument that counts Martian neutrons from orbit. These “neutron counts” are sensitive to the presence of hydrogen and how deep it is below the surface. Using models that take the characteristics of the Martian surface and the relationship of hydrogen to water into account, the MONS data can be used to predict the amount and depth of water and water ice in the surface. Doing just that, Dr. Feldman’s team produced a nearly global map of potential underground ice deposits.

Global map of Water ice on Mars
New estimates of water ice on Mars suggest there may be large reservoirs of underground ice at non-polar latitudes. The map here shows "water-equivalent hydrogen". Oranges and reds on the map (values greater than 4.5 weight % water-equivalent hydrogen at the surface) point out areas where the amount of deeply buried water ice is greater than what can fit in the pore spaces of the surface rocks.
Image credit: Feldman et al., 2011.

This map shows the “weight percent of water-equivalent hydrogen”, or how much of the rock’s weight comes from hydrogen that is bound up in water molecules. Since hydrogen atoms are much lighter than the other atoms that make up a rock, a small weight percent of hydrogen equals a much larger volume of water ice. In fact, Dr. Feldman’s team estimate that values of 4.5 weight % hydrogen or greater (oranges and reds on the map), mean the volume of water ice at depth is larger than what can fit into pore spaces (the spaces between the grains that make up a rock). This means that you no longer have ice in a rock; now you have rocks in ice!

Four regions containing such bulk ice stand out in the map: Promethei Terra in the lower right of the map, Arabia Terra in the upper centre, Arcadia Planitia in the upper left, and Elysium Planetia spanning from the centre right, across the Martian “date line” (180 degrees longitude), to the centre left of the map. The ice deposits here are “buried less than about 1 m below the surface,” writes Dr. Feldman. He does admit that their findings may also indicate the presence of large quantities of minerals that contain water molecules in their chemical make-up. However, their results are supported by other evidence. In the Elysium Planetia region, evidence of glacial features has been seen in high resolution stereo data from ESA’s Mars Express orbiter ( Mars Express Reveals Possible Martian Glaciers). And in the Arcadia Planitia region, buried water ice has been identified in CRISM data, where an almost pure ice layer was excavated from less than 1 meter below the surface by four recent impact events.

Ice ejecta around Martian crater
Almost pure water ice is seen in the ejecta surrounding this impact crater (8 meters in diameter), which formed in 2008. The only reason we can see ice at the surface here is because this crater is so young. As time passes, the ice will all sublimate away.
Image Credit: High Resolution Imaging Science Experiment camera, NASA/JPL-Caltech/University of Arizona.

So, if ice is unstable at today’s conditions on Mars, how can Dr. Feldman and his team account for the presence of that much ice so close to the surface? Well, the bulk ice could have been deposited some 10-20 million years ago, at a time when ice was stable at the surface. If that happened, then the ice sheet could have been preserved under a layer of cemented dust and sediment. This duricrust would have partially shielded the ice from contemporary surface temperatures and atmospheric conditions, slowing the sublimation of the ice just enough so that some of it was left for us to detect today.

Source Link: Feldman et al., 2011, JGR 116, E11009

Missions that Weren’t: One-Way Mission to the Moon

The Apollo lunar landing module as it looked in 1963. Image credit: wired.com

[/caption]

When President Kennedy promised America a lunar landing in 1961, he effectively set the Moon as the finish line in the space race. In the wake of his speech, NASA began scrambling to find a way to reach the Moon in advance of the Soviet Union, which at the time held a commanding lead in space. Apollo, already on the drawing board as an Earth orbiting program, was revised to reflect the lunar goal and Gemini was established as the interim program.

The pieces were in place; all NASA needed was a way to get to the Moon. Against this pressing background, two men proposed a desperate and direct mission to get an American on the Moon as quickly as possible. 

A schematic showing three different flight modes for Apollo lunar missions. Image credit: NASA

The proposal came from two Bell Aerosystems Company employees. John M. Cord was a Project Engineer in the Advanced Design Division and Leonard M. Seale was a psychologist in charge of the Human Factors Division. At the Institute of Aerospace Sciences in Los Angeles in 1962, the pair unveiled their “One-Way Manned Space Mission” proposal.

The plan called for a one-man spacecraft to follow a direct ascent path to the Moon. Ten feet wide and seven feet tall, the empty spacecraft weighed less than half the much smaller Mercury capsule. Inside, the astronaut would have enough water for 12 days, oxygen for 18 with a 12-day emergency reserve, a battery-powered suit and backpack, and all the tools and medical supplies he might need.

He would land on the Moon after a two-and-a-half day trip and have just under ten days to set up his habitat. As part of his payload, the astronaut would arrive with four cargo modules with pre-installed life support systems and a nuclear reactor to generate electrical power. Two mated modules would become his primary living quarters, while the others placed in caves or buried in rubble — a feature Cord and Seale assumed would dominate the lunar landscape — would provide a shelter from solar storms.

A possible configuration for a direct ascent Apollo spacecraft. Image credit: NASA

With his temporary home set up, he would wait a little over two years for another mission to come and collect him. Cord and Seale estimated that this mission could be launched as early as 1965, a year of expected minimal solar activity. Larger launch vehicles capable of sending the three-man Apollo spacecraft would be ready by 1967. The one-way spaceman would have a long but finite stay on the Moon.

This proposal was incredibly practical. Since the astronaut wouldn’t be launching from the lunar surface, he wouldn’t need to carry the necessary propellant. Since he would return to Earth in another spacecraft, his own spacecraft wouldn’t need a heavy heat shield or parachutes. The one-way mission was a light and efficient proposal.

But it was also dangerous. The proposal didn’t include any redundancies; the direct ascent path gave the astronaut no chance to abort his mission after launch. He would have to deal with any problems that arose knowing he wouldn’t be able to make a quick return home.

Luckily for the possible astronaut the proposal was never seriously considered. In July 1962, a few weeks after the one-way mission was proposed, NASA announced its selection of the more complicated but safer Lunar Orbit Rendezvous (LOR) mode for Apollo missions.

John Houbolt explains the benefits of Lunar Orbit Rendezvous over Direct Ascent. Image credit: NASA/courtesy of nasaimages.org

LRO Lets You Stand on the Rim of Aristarchus Crater

West wall of Aristarchus crater seen obliquely by the LROC NACs from an altitude of only 26 km. Scene is about 12 km wide at the base. Credit: NASA/GSFC/Arizona State University.

[/caption]

Have you ever you looked up at the bright, cavernous Aristarchus Crater on the Moon through a telescope or binoculars and wondered what it would be like to stand on the rim and peer inside? Spectacular new views from the Lunar Reconnaissance Orbiter is almost as good as being there, and a new video lets you “rappel” down and take a closer look at the west side of the crater walls.

Full panoramic view of the west wall of Aristarchus crater revealing impact melt deposits, exposures of high reflectance anorthosite, streamers of pyroclastic ash, and blocks up to 100 meters in size. Full width of panorama is about 25 km. Credit: NASA/GSFC/Arizona State University.

LRO Camera Principal Investigator Mark Robinson describes the region around the crater, known as the Aristarchus plateau, as one of the most geologically diverse places on the Moon. “A mysterious raised flat plateau, a giant rille carved by enormous outpourings of lava, fields of explosive volcanic ash, and all surrounded by massive flood basalts,” Robinson wrote on the LROC website. “A relatively recent asteroid (or comet) slammed into this geologic wonderland, blowing a giant hole in the ground revealing a cross section of over 3,000 meters (9,800 ft) of geology. No wonder planners for the Apollo missions put this plateau high on its list of targets for human exploration.”

These new amazing images were acquired on November 10, 2011 as LRO passed only 26 km (16.2 miles) above the surface, which is about two times lower than normal, due to LRO’s current elliptical orbit. The spacecraft was slewed to the west for an oblique or “sideways” look at the crater, instead of looking straight down as LRO normally does, to provide this unique perspective on Aristarchus. For a sense of scale, Robinson said that altitude is only a little over twice as high as commercial jets fly above the Earth. This crater is only one-tenth the size of Earth’s Grand Canyon, but the views from up above are similarly spectacular.

The location of Aristarchus Crater. Credit: Wikipedia

Aristarchus crater is located on the southeast edge of the Aristarchus Plateau. This yawning crater is 40 km wide and 3.5 km deep. The edges appear scalloped, almost like it crater was strip-mined. Since the crater is relatively young, Aristarchus is one of the brightest regions on the Moon. Robinson says these bright rocks may be anorthositic like the highlands, or they may be a more silicic rock like granite — or both.

“Although granites have been found in Apollo rock samples, the formation of granite on the Moon is not well understood at this time – another reason why we need to get samples from this region,” he said.

A 'straight down' view of Aristarchus, Aristarchus crater.. Small white arrows indicate approximate corners of the NAC panorama. Vertical line on right shows LRO orbit ground track Credit: NASA/GSFC/Arizona State University.

From this ‘straight down’ view, you can see the bright ejecta, contrasted by darker areas, which reflects the compositional difference between the various rocks in the region.

On the floor of Aristarchus crater is a wide variety of lunar rocks and geologic processes.

“Diverse materials such as dark, multilayered mare basalts in the walls, bright crustal rocks in the central peak, impact melt, and even regional pyroclastic materials blanketing the crater are brought to the floor and accumulated through mass wasting, creating a bountiful trove of geologic materials,” Robinson said.

Who’s ready to go exploring?!

Click here to see the full-resolution panoramic view of Aristarchus Crater.

Source: LROC

Hat tip and inspiration from Stu Atkinson

Phobos-Grunt Predicted to Fall in Afghanistan on January 14

Engineers tuck Phobos-Grunt into the rocket fairing. Credit: Roscosmos

[/caption]

According to a news report in RiaNovosti, Russia’s Phobos-Grunt spacecraft will fall January 14th, “somewhere between 30.7 degrees north and 62.3 degrees east,” placing debris near the city of Mirabad, in southwestern Afghanistan. RiaNovosti said this prediction is according to the United States Strategic Command who calculated the craft will reenter Earth’s atmosphere at 2:22 am.

Editor’s Update: In a call to USSTRATCOM to verify this information, a spokesperson said, “We are not making any statement at USSTRACOM at this time because we are not the lead for this event and cannot make an official statement for any predictions or what is releasable at this time.”

“Please note that the U.S. Strategic Command prediction had a large uncertainty associated with it, i.e., 11 days,” Nicholas L. Johnson, NASA’s Chief Scientist for Orbital Debris told Universe Today in an email. “No one is yet able to predict with confidence the day the Phobos-Grunt will reenter.”


If the probe is predicted to fall on land, this raises the possibility of recovering the Planetary Society’s Living Interplanetary Flight Experiment (LIFE), designed to investigate how life forms could spread between neighboring planets.

The Phobos-Grunt mission profile. Credit: Roscosmos

Carrying about 50 kilograms of scientific equipment, the unpiloted Phobos-Grunt probe was launched November 9th on a mission to the larger of Mars two small moons. Although the Zenit 2 rocket that launched the craft functioned flawlessly, sending Grunt into a low Earth orbit, the upper stage booster, known as Fregat, failed to boost the orbit and send it on a trajectory toward Mars. Thought to have reverted to safe mode, Phobos-Grunt has been flying straight and periodically adjusting her orbit using small thruster engines. While this maneuvering has extended the amount of time that the probe could remain in space before reentering Earth’s atmosphere, ground controllers have been struggling to establish a communication link.

For a while, space commentators considered the possibility that Grunt might be sent on an alternate mission to Earth’s Moon or an asteroid, if control could be restored after the window for a launch to Mars and Phobos was lost. During the past few weeks, the European Space Agency (ESA) started and ended efforts to communicate with the spacecraft on several occasions, but succeeded only twice. Various scenarios were imagined in which aspects of the probe’s mission could be salvaged, despite the serious malfunction that prevented the craft from leaving Earth orbit. But at this point, the only direction for the spacecraft to go is down.

In addition to equipment for making celestial and geophysical measurements and for conduct mineralogical and chemical analysis of the Phobosian regolith (crushed rock and dust), Grunt carries Yinhou-1, a Chinese probe that was to orbit Mars for two years. After releasing Yinhou-1 into Mars orbit and landing on Phobos, Grunt would have launched a return capsule, carrying a 200 gram sample of regolith back to Earth. Also traveling within the return capsule is the Planetary Society’s Living Interplanetary Flight Experiment (LIFE).

The Planetary Society’s Living Interplanetary Flight Experiment (LIFE) capsule, on board the Phobos-Grunt spacecraft. Credit:The Planetary Society

Specifically, LIFE is designed to study the effects of the interplanetary environment on various organisms during a long duration flight in space beyond the Van Allen Radiation Belts, which protect organisms in low Earth orbit from some of the most powerful components of space radiation. Although the spacecraft has not traveled outside of the belts, the organisms contained within the LIFE biomodule will have been in space for more than two months when the probe reenters the atmosphere.

The many tons of toxic fuel are expected to explode high in the atmosphere. However, since the return capsule is designed to survive the heat of reentry and make a survivable trajectory to the ground, it is quite possible that it will reach Afghanistan in one piece. Because the LIFE biomodule is designed to withstand an impact force of 4,000 Gs, it is possible that the experiment can be recovered and the biological samples studied.

To be sure, the possibility of recovering an unharmed returned capsule and LIFE depends on the willingness of the inhabitants around the landing site to allow the Russian Space Agency to pick it up. Given the proximity of the predicted landing area to a war zone and the fact that the Taliban are not known for being enthusiastic about space exploration and astrobiology, it is also possible that a landing on land could turn out no better than a landing over the deepest part of the ocean.

Source: RiaNovosti

NASA Considers Sending a Telescope to Outer Solar System

ZEBRA (Zodiacal dust, Extragalactic Background and Reionization Apparatus) is a small, passively cooled optical to near-infrared instrument package that could be added to an outer solar system probe. Credit: NASA/JPL/Caltech

[/caption]

Editors note — Science journalist and author Bruce Dorminey spoke to two NASA scientists about the possibility of mounting a telescope on a spacecraft for an outer planets mission.

Light pollution in our inner solar system, from both the nearby glow of the Sun and the hazy zodiacal glow from dust ground up in the asteroid belt, has long stymied cosmologists looking for a clearer take on the early Universe.

But a team at NASA, JPL and Caltech has been looking into the possibility of hitching an optical telescope to a survey spacecraft on a mission to the outer solar system.

Escaping our Inner Solar System’s Polluted Purple Haze

The idea is to use the optical telescope in cruise phase to get a better handle on extragalactic background light; that is, the combined optical background light from all sources in the Universe. They envision the telescope’s usefulness to kick in around 5 Astronomical Units (AU), about the distance of Jupiter’s orbit. The team then wants to correlate their data with ground-based observations.

One goal is to shed light on the early universe’s epoch of reionization. Reionization refers to the time when ultraviolet (UV) radiation from the universe’s first stars ionized the intergalactic medium (IGM) by stripping electrons from the IGM’s gaseous atoms or molecules. This period of reionization is thought to have taken place no later than 450 million years after the Big Bang.

ZEBRA, the Zodiacal dust, Extragalactic Background and Reionization Apparatus, is a NASA JPL concept that calls for a $40 million dollar telescope comprised of three optical/near-infrared instruments; consisting of a 3 cm wide-field mapper and a 15 cm high-resolution imager. However, NASA has yet to select the ZEBRA proposal for one of its missions.

But to learn more, we spoke with the ZEBRA Concept lead and instrument cosmologist Jamie Bock and astronomer Charles Beichman, both of NASA JPL and Caltech.

In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the "false dawn," this light appears in this artist's concept as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light). Credit: NASA/JPL-Caltech/R. Hurt (SSC)

Dorminey: What is zodiacal light?

Beichman: It’s a bright source of diffuse light in our own solar system from dust grains that emit because they have been heated by the sun and are radiating by themselves
or reflect sunlight. If you go out on a very clear dark moonless light, you can see the band of this light from this dust. It follows the plane of the ecliptic. That dust mostly originates from material in the asteroid belt that gets ground up into little particles after some big collision.

Charles Beichman. Credit: NASA

Dorminey: What would getting past this zodiacal dust mean for observations?

Beichman: Imagine sitting in the Los Angeles basin and you’ve got all this smog and haze and you want to measure how clear the air is out at Palm Springs. You have to be able to subtract off all the haze between here and there and there’s just no way to do it with any accuracy. You have to drive out of the basin to get out of the smog.

Dorminey: How would this help in studying this extragalactic background?

Bock: The Extragalactic Background Light (EBL) measures the total energy density of light coming from outside our galaxy. This light gives the sum of the energy produced by stars and galaxies, and any other sources, over the history of cosmic time. The total background can be used to check if we correctly understand the formation history of galaxies. We expect a component of the background light from the first stars to have a distinct spectrum that peaks in the near-infrared; this can tell us how bright and how long the epoch was when the first stars were forming. Unfortunately, zodiacal light is much brighter than this background. But by going to the orbit of Jupiter, the zodiacal light is 30 times fainter than at Earth, and at the orbit of Saturn it is 100 times fainter.

Dorminey: Would you have to hitchhike on a NASA mission or could it be a partnership with another space agency, like ESA for instance?

Bock: We have been exploring the cheapest incremental cost approach, partnering with a NASA planetary mission. But we could partner with another space agency. The European Jupiter Icy Moons Explorer (formerly JGO) is now competing for the next L-class mission launch in the early 2020’s and is an attractive possibility for a contributed cruise-phase science instrument. Each approach comes with a different cost and partnership environment.

Dorminey: Is the prime driver for the EBL telescope to get beyond the zodiacal dust or does 5 AU also offer an observational advantage in terms of achieving faintness of magnitude?

James Bock. Credit: JPL

Bock: There is an observing advantage due to the [darker solar system] background. With such a small telescope, we are not trying to exploit this benefit but future observatories could. We will measure the zodiacal brightness to Jupiter and beyond, and this may motivate astronomical observations with telescopes in the outer solar system in the future.

Dorminey: What sort of data downlink challenges would you encounter?

Bock: The data requirements are perhaps smaller than one might first expect, because our images are obtained with long [observational] integrations at moderate spatial resolution. For the planetary proposal we studied in detail, the total data volume was 230 gigabytes, with about 65 percent of this data being returned from Jupiter and out to Saturn. The telescope pointings operate autonomously.

Dorminey: What about radiation from Jupiter interfering with the optics and CCD cameras on the telescope?

Beichman: What you’d do is stop making the EBL observations while close to Jupiter. The radiation problems are significant, so you would only do observations before and after passing Jupiter.

Panoramic view of the entire near-infrared sky reveals the distribution of galaxies beyond the Milky Way. The image is derived from the 2MASS Extended Source Catalog (XSC)--more than 1.5 million galaxies, and the Point Source Catalog (PSC)--nearly 0.5 billion Milky Way stars. Credit: Thomas Jarrett, et al/Caltech. Click image for more information.

Dorminey: What would your instruments do that NASA’s planned James Webb Space Telescope (JWST) wouldn’t?

Bock: JWST will likely detect the brightest first galaxies, and depending exactly how galaxies formed, will miss most of the total radiation due to the contribution of many faint galaxies. Measuring the extragalactic background gives the total radiation from all the galaxies and provides the total energy. Furthermore, we don’t need a large telescope; 15 cm is sufficient.

Dorminey: What about planetary science with the telescope?

Bock: Our instrument specializes in making low surface-brightness measurements. We made specific design choices to map the zodiacal dust cloud from the inner to the outer solar system. A 3-Dimensional view will let us trace the origins of interstellar dust to comets and asteroid collisions. We know there are Kuiper-belt objects beyond the orbit of Neptune, and it is likely there is dust associated with them as well.

Dorminey: How long would this telescope function?

Bock: After the prime observations complete, it would certainly be possible that the original team or an outside party could propose to operate the telescope. One exciting science case is parallax micro-lensing observations; observations that use the parallax between Earth and Saturn to study the influence of exo-planets orbiting the stars producing a micro-lensing event. Other science opportunities include maps of the Kuiper Belt in the near-infrared; stellar occultations by Kuiper Belt Objects; and mapping more EBL fields for comparison with other surveys.

Dorminey: How would the telescope’s initial observations potentially shake up theoretical cosmology?

Beichman: Whenever you do a measurement that’s a factor of a hundred times better than before, you always get a surprise.

Russian Lunar Exploration Program at Full Speed, Despite Failure of Mars Moon Probe

The Lunokhod (lunar rover) vehicle (left) and the Earth return vehicle -- both shown in launch configuration -- would comprise the Luna-Grunt mission. Credit: NPO Lavochkin/RussianSpaceWeb.com

[/caption]

Editor’s note: Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the Phobos-Grunt spacecraft, provides an update on the mission for Universe Today.

While the Russian Federal Space Agency (Roscosmos) prepares for the pending destruction of its Phobos-Grunt spacecraft, an ambitious program focusing on lunar exploration is moving to center stage. Although the Soviet Union launched three successful lunar sample return missions, the last such probe was Luna-24, in 1976.

Scheduled for launch in 2014 or 2015, Luna-Glob (Russian for lunar sphere) consists of two craft: Luna-Glob 1 and Luna-Glob 2 (also called Luna-Resource). In addition to carrying out various studies while orbiting the Moon, Luna-Glob 1 is to carry four probes known as penetrators. Built by Japan, the penetrators will be launched from lunar orbit, then slam into the lunar surface and take seismographic readings. Since similar readings were taken in the landing regions of NASA’s Apollo missions (after used stages of the vehicles were crashed on the Moon deliberately to shake it up), two of the penetrators will be aimed near the Apollo 11 and Apollo 12 landing sites. It is hoped that comparison of results with the seismic data that were collected in the 1970s from these and the other sites will answer questions regarding the Moon’s origins.

Artist concept of Russia's Luna-Glob mission which is scheduled to launch in 2014. Credit: NASA

Previously, I’ve used the term Luna-Grunt in reference to a re-purposed Phobos-Grunt, sent to orbit Earth’s own Moon, if control is restored but too late to send it to the Martian moon Phobos. But Grunt is the Russian word for “ground,” or “soil.” Just as Phobos-Grunt was designed to analyze and return Phobosian regolith (not actually soil, but crushed rock and dust on the surface of a celestial body), Russia’s Luna-Grunt program will study lunar regolith. Currently, two Luna-Grunt spacecraft are planned, each featuring an orbiter and a lander. While the first Luna-Grunt lander, scheduled for a 2014 launch, will carry a rover loaded with instruments for regolith analysis, the second lander will feature an ascent stage with a sample return capsule. Designed to return to Earth, the Luna-Grunt capsule will be similar to return capsule of Phobos-Grunt, but will carry five times the amount of regolith (1 kilogram for Luna-Grunt vs. 200 grams for Phobos-Grunt).

Scheduled for launch in 2013 or 2014, Luna-Resource (Luna-Glob 2) will be a joint mission between Roscosmos and the Indian Space Research Agency. Like Luna-Glob 1 and Luna-Grunt 1, the main components will be a lunar orbiter and roving vehicle. Called, Chandrayaan-2, the rover will travel near one of the lunar poles for about a year. Luna-Resource is expected to provide valuable information concerning solar wind on the lunar surface. Like the other missions, it also carries instruments for analysis of the lunar regolith. Included in the analysis will be a search for water, which is thought to be present, particular in the Moon’s polar regions.

While the lunar missions to be launched during the next half decade will be unpiloted, statements by various Russian scientists and cosmonauts in recent months suggest that Roscosmos is interested in Earth’s companion as a location for a lunar base, or even a colony .

Russian Space Program Prepares for Phobos-Grunt Re-Entry

Configuration of the Phobos-Grunt spacecraft. Credit: NPO Lavochkin
Configuration of the Phobos-Grunt spacecraft. Credit: NPO Lavochkin

Editor’s note: Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the Phobos-Grunt spacecraft, provides an update on the mission for Universe Today.

As last-ditch efforts to recover control of the unpiloted Phobos-Grunt spacecraft continue, officials, engineers, and scientists at the Russian Federal Space Agency (Roscosmos) have shifted their focus to the issue of reentry. Launched November 9 by a Zenit-2 rocket on a mission to return a sample from Phobos, the larger of Mars’ two small moons, the spacecraft reached low Earth orbit. However, since the engine of the upper stage that was to propel it on a trajectory to Mars failed to ignite, the spacecraft continues to orbit Earth in a low orbit. Despite some limited success in communicating with Phobos-Grunt by way of tracking stations that the European Space Agency (ESA) operates in Perth, Australia, and Masplalomas, Canary Islands, the spacecraft remains stranded in an orbit whose decay will take the craft into the atmosphere sometime in early January.
Continue reading “Russian Space Program Prepares for Phobos-Grunt Re-Entry”

A Day in the Sun: Will It Make a Difference for Russia’s Phobos-Grunt?

Phobos-Grunt
An artists concept of the Phobos-Grunt Mission. Credit: Roscosmos

[/caption]

Editor’s note: Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the Phobos-Grunt spacecraft, provides an update on the mission for Universe Today.

It has been trapped in low Earth orbit for more than a month. So low is the orbit that it moves too fast to be contacted – unless controllers on the ground just happen to beam a signal at some unlikely angle. So short does its battery power last that it must be in sunlight while also in position to receive signals. Then, it must still have power to send telemetry back to the ground.

Even with these obstacles, Russia’s Phobos- Grunt probe did manage to communicate with the European Space Agency’s (ESA) antenna in Perth, Australia twice a couple of weeks ago, indicating that some of its systems were functioning. But subsequent attempts at communication have failed, despite the addition of ESA’s Canary Islands antenna at Maspalomas to the worldwide effort to reestablish control over the spacecraft.

Tracking of Grunt’s orbit has shown that its high point (apogee) and low point (perigee) continue to decrease, measuring about 289 kilometers and 203 kilometers in altitude, respectively, the last time I checked. Stories out of Russia in recent days describe how electrical cables found to be malfunctioning weeks before the launch were cut and connections re-soldered in a hurry to have the craft ready. Add to this the fact that the major sources on developments with the Grunt mission since its November 9 launch – Ria Novosti, the Russian Space Web, and ESA operations – all expect the craft to reenter Earth’s atmosphere in early January.

Taking all of this into account, it seems unlikely that Phobos-Grunt will ever respond to a signal again and say, “privyet’, much less turn on its engines and warp out of orbit. But there is an opportunity coming, a period when the odds that are stacked against the spacecraft may improve just a little.

Beginning Tuesday, December 13 at 17:00 universal time (UT) to Wednesday December 14, 23:00, Phobos-Grunt will be in sunlight throughout its entire orbit. It is not completely clear whether or not ESA will attempt to contact the probe during this period from Perth, or Maspalomas. Although attempts from Maspalomas were made throughout last week, the same attempts were scheduled to end on Friday, December 9. On the other hand, in a letter informing scientists participating in the mission that failure was the outcome, Phobos-Grunt science director, Lev Zelenyi, wrote: “Lavochkin Association specialists will continue their attempts to establish connection with the spacecraft and send commands until the very end of its existence.” Thus, despite the fact that the Russian Grunt team now is focused on the issue of reentry, we should not be surprised if they ask ESA to make one more attempt on Tuesday.

Will the greater than usual amount of sunlight allow the spacecraft’s communication system to work better than it usually does when it travels over tracking stations? Maybe yes, and maybe no. We should not get our hopes up that the craft will actually do anything but fall to Earth, and we’ve already discussed the possibility of the craft’s return capsule coming back in one piece.

But let us allow Phobos-Grunt its day in the Sun.

Mars Orbiters Will Attempt to Take Pictures of the Curiosity Rover as It Lands

Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera captured this image of Phoenix hanging from its parachute as it descended to the Martian surface. Credit: NASA/JPL/University of Arizona.

[/caption]

Remember this amazing image from 2008? The HiRISE (High Resolution Imaging Science Experiment) camera on the Mars Reconnaissance Orbiter captured the Phoenix lander descending on a parachute to land on Mars’ north polar region. MRO will attempt a repeat performance in August of 2012 when the Mars Science Laboratory rover “Curiosity” will be landing in Gale Crater on Mars. Capturing this event would be epic, especially with MSL’s unique “skycrane” landing system.

“Yes, MRO is planning to image the descent of MSL with both HiRISE and CTX (Context Camera),” Alfred McEwen, HiRISE principal investigator told Universe Today. “For Phoenix we got a bit lucky with HiRISE in terms of the geometry, giving us a high probability of success. It may not work out so well for MSL. What I’d really like is to capture the rover hanging from the skycrane, but the timing may be difficult.”

Again, the word here is epic.

So, how challenging is it for a spacecraft orbiting Mars to try and track another spacecraft coming in?

“If we were not to do anything, the Mars’ orbiting spacecraft may be on the other side of the planet,” said MSL navigation team chief Tomas Martin-Mur, during an interview with UT. “So as soon as we launch, we tell the other spacecraft where we are going to be by the time of entry so they can change their orbits over time, so they will be flying overhead as MSL approaches the planet.”

The orbiters – which also includes NASA’s Mars Odyssey and ESA’s Mars Express – will have to do special maneuvers to be aligned in just the right place – nearby to MSL’s point of entry into Mars’ atmosphere — and they may even have to change the plane of their orbit.

This artist's concept shows the sky crane maneuver during the descent of NASA's Curiosity rover to the Martian surface. Credit: NASA/JPL-Caltech.

“The other thing that we’ll need them to do is to point their UHF antennas towards MSL,” Martin-Mur said. “Normally their antennas will be pointed to take pictures, but they will have to go to a special attitude to point to MSL. This will enable them to try — like they did with Phoenix — to take a picture of the spacecraft as it is coming down to the planet. We are hoping to see the parachute deployed and maybe more.”

“That was a great picture for Phoenix, and we will attempt to repeat that,” Martin-Mur added.

While Odyssey and Mars Express’ cameras may not have the resolving power to capture such an image, MRO’s powerful HiRISE camera does. However it has a narrower field of view, so as much skill and planning as this requires, the team will need a little luck, too. But there’s also the CTX.

“CTX has a much larger field of view and will likely capture it,” McEwen said, “but at 20X lower resolution than HiRISE, which should still be good enough to detect the parachute.”

Here’s a preview of what MSL will be going through during the perilous entry descent and landing:

Learn more about the navigation for MSL, currently traveling on its way to Mars, in our previous interview with Tomas Martin-Mur.

Not Giving Up Yet: ESA Resumes Effort to Communicate with Phobos-Grunt

Artist concept of Russia’s Phobos-Grunt spacecraft. Credit Roscosmos.

[/caption]

Editor’s note: Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the Phobos-Grunt spacecraft, provides an update on the mission for Universe Today.

Russia’s Phobos-Grunt spacecraft is in no better position than it was a month ago, when it reached low Earth orbit on November 9 yet failed to ignite the upper stage engine that was to propel it to Phobos, the larger of Mars’ two small moons. Indeed, with an orbit measuring 204.823 kilometers at perigee (the low point) and 294.567 kilometers at apogee as of today, the spacecraft is well on its well to a fiery reentry through Earth’s atmosphere in early January if it cannot be rescued in the intervening time. But the Russian space agency, Roscosmos, is not ready to give up on the probe yet, and have asked ESA to resume trying to contact Phobos-Grunt.

Despite success in contacting Grunt and getting it to send telemetry two weeks ago using a modified antenna in Perth Australia, subsequent attempts to command the spacecraft to boost her orbit failed.

Then last week, after modifying another antenna, this one in Maspalomas on the Canary Islands, the European Space Agency (ESA) announced that efforts to track and communicate with the spacecraft would end. As a result, any remaining hope that the craft might at least be boosted to a more stable orbit to allow for diagnoses and eventual repair faded away.

Maspalomas station hosts a 15-metre antenna with reception in S- and X-Band and transmission in S-band. It is located on the campus of the Instituto Nacional de Tecnica Aerospacial (INTA), in the southern part of the Canary Islands' Gran Canaria, at Montaña Blanca.Credit: ESA

But, in response to requests from the Russian Space Agency (Roscosmos), ESA now has decided to renew tracking and communications efforts from the Maspalomas station. Located off of the northwest coast of Africa, Maspalomas is well-situated with respect to Phobos-Grunt’s course around Earth. Since fewer communication attempts have been made from Maspalomas as compared with Perth, ESA and Roscosmos may be thinking that not all potential tricks to get the geometry right have been exhausted. Thus, new attempts to hail the unpiloted science probe began on Monday and will continue through Friday, December 9th. Presumably, ESA would continue to support the mission beyond Friday, if anything happens suggesting that Phobos-Grunt has received the instructions and is capable of responding, even in part.

Designed to land on the surface of Phobos, the Grunt spacecraft carries about 50 kilograms of scientific equipment built to make celestial and geophysical measurements, and to conduct mineralogical and chemical analysis of the regolith (crushed rock and dust) of the tiny moon. The chemical analysis that is to be conducted includes a search for organic matter, the building material for life. Studies to be conducted on the Phobosian surface potentially could elucidate the origins of Phobos and the other Martian moon, Deimos. Additionally, the presence of organic matter on Phobos would suggest that the surface of Mars itself contains organics. Despite findings by NASA’s Viking landing crafts in the 1970s suggesting that the surface of Mars lacks organic material, studies by more recent probes suggest that compounds known as perchlorates –detected by Viking but dismissed as contaminants from Earth– may have been native to Mars. This issue will be investigated further when NASA’s Curiosity rover arrives on the Red Planet several months from now.

The Planetary Society’s Living Interplanetary Flight Experiment (LIFE) capsule, on board the Phobos-Grunt spacecraft. Credit:The Planetary Society

Grunt also carries Yinhou-1, a Chinese probe that is to orbit Mars for 2 years. After releasing Yinhou-1 into Mars orbit and landing on Phobos, Grunt is designed to launch a return capsule, carrying a 200 gram sample of regolith back to Earth. Also traveling within the return capsule is the Planetary Society’s Living Interplanetary Flight Experiment (LIFE), designed to investigate how readily living forms could spread between neighboring planets.

Although prospects for this ambitious mission still look bleak, Alexander Zakharov of Russia’s Space Research Institute, who was instrumental in getting the LIFE experiment onto the Grunt mission, has suggested that a new Grunt mission might be launched, presumably on time for the next launch window to Mars, which opens in approximately 26 months.

Meanwhile, today, NASA’s space debris chief said that Phobos-Grunt would pose no threat to Earth when it reenters the atmosphere.

Although the window for a trip to Mars is about to close, should control over Phobos-Grunt be restored, it might be kept in a higher orbit for two years, or sent to an alternate destination, such as Earth’s own Moon, or an asteroid.