The Early Universe Was All About Galactic Hook Ups

Artist's illustration of the Andromeda galaxy and the Milky Way, the two largest galaxies in the Local Group. Credit: NASA

In about 4 billion years, scientists estimate that the Andromeda and the Milky Way galaxies are expected to collide, based on data from the Hubble Space Telescope. And when they merge, they will give rise to a super-galaxy that some are already calling Milkomeda or Milkdromeda (I know, awful isn’t it?) While this may sound like a cataclysmic event, these sorts of galactic collisions are quite common on a cosmic timescale.

As an international group of researchers from Japan and California have found, galactic “hookups” were quite common during the early universe. Using data from the Hubble Space Telescope and the Subaru Telescope at in Mauna Kea, Hawaii, they have discovered that 1.2 billion years after the Big Bang, galactic clumps grew to become large galaxies by merging. As part of the Hubble Space Telescope (HST) “Cosmic Evolution Survey (COSMOS)”, this information could tell us a great about the formation of the early universe.

Continue reading “The Early Universe Was All About Galactic Hook Ups”

Messier 4 (M4) – The NGC 6121 Globular Cluster

This M4 globular cluster, as imaged by the Wide Field Imager at ESO’s La Silla Observatory. Credit: ESO

During the late 18th century, Charles Messier began to notice that a series of “nebulous” objects in the night sky that he originally mistook for comets. In time, he would notice that they were in fact something significantly different. With the hope of preventing other astronomers from making the same mistake, he began compiling a list of these in what would come to be known as the Messier Catalog.

Consisting of 100 objects, the catalog became an important milestone in both astronomy and the research of Deep Sky objects. Among the many famous objects in this catalog is the M4 loose globular cluster (aka. NGC 6121). Located in the Scorpius (Scorpio) Constellation, this great cluster of ancient stars is one of the closest Messier Objects of its kind to Earth.

Continue reading “Messier 4 (M4) – The NGC 6121 Globular Cluster”

The Andromeda Constellation

A photo of the constellation Andromeda with all Bayer-designated stars marked and the IAU figure drawn in. Credit: Roberto Mura/Wikipedia Commons

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of the then-known 48 constellations. His treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come. Thanks to the development of modern telescopes and astronomy, this list was amended by the early 20th century to include the 88 constellation that are recognized by the International Astronomical Union (IAU) today.

Of these, Andromeda is one of the oldest and most widely recognized. Located north of the celestial equator, this constellation is part of the family of Perseus, Cassiopeia, and Cepheus. Like many constellation that have come down to us from classical antiquity, the Andromeda constellation has deep roots, which may go all the way back to ancient Babylonian astronomy.

Continue reading “The Andromeda Constellation”

The Sun

This image from the Solar and Heliospheric Observatory (SOHO) Extreme ultraviolet Imaging Telescope (EIT) image shows large magnetically active regions and a pair of curving erupting prominences on June 28, 2000 during the current solar cycle 23 maximum. Prominences are huge clouds of relatively cool dense plasma suspended in the Sun's hot, thin corona. Magnetically active regions cause the principal total solar irradiance variations during each solar cycle. The hottest areas appear almost white, while the darker red areas indicate cooler temperatures. Credit: NASA & European Space Agency (ESA)
The Sun. Credit: NASA & European Space Agency (ESA)

The Sun is the center of the Solar System and the source of all life and energy here on Earth. It accounts for more than 99.86% of the mass of the Solar System and it’s gravity dominates all the planets and objects that orbit it. Since the beginning of history, human beings have understood the Sun’s importance to our world, it’s seasons, the diurnal cycle, and the life-cycle of plants.

Because of this, the Sun has been at the center of many ancient culture’s mythologies and systems of worship. From the Aztecs, Mayans and Incas to the ancient Sumerians, Egyptians, Greeks, Romans and Druids, the Sun was a central deity because it was seen as the bringer of all light and life. In time, our understanding of the Sun has changed and become increasingly empirical. But that has done nothing to diminish it’s significance.

Continue reading “The Sun”

One of the Milky Way’s Arms Might Encircle the Entire Galaxy

Artist's conception of the Milky Way galaxy as seen from far Galactic North (in Coma Berenices) Credit: NASA/JPL-Caltech/R. Hurt

Given that our Solar System sits inside the Milky Way Galaxy, getting a clear picture of what it looks like as a whole can be quite tricky. In fact, it was not until 1852 that astronomer Stephen Alexander first postulated that the galaxy was spiral in shape. And since that time, numerous discoveries have come along that have altered how we picture it.

For decades astronomers have thought the Milky Way consists of four arms — made up of stars and clouds of star-forming gas — that extend outwards in a spiral fashion. Then in 2008, data from the Spitzer Space Telescope seemed to indicate that our Milky Way has just two arms, but a larger central bar. But now, according to a team of astronomers from China, one of our galaxy’s arms may stretch farther than previously thought, reaching all the way around the galaxy.

This arm is known as Scutum–Centaurus, which emanates from one end of the Milky Way bar, passes between us and Galactic Center, and extends to the other side of the galaxy. For many decades, it was believed that was where this arm terminated.

However, back in 2011, astronomers Thomas Dame and Patrick Thaddeus from the Harvard–Smithsonian Center for Astrophysics spotted what appeared to be an extension of this arm on the other side of the galaxy.

Star-forming region in interstellar space.  Image credit: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration
Star-forming region in interstellar space. Image credit: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration

But according to astronomer Yan Sun and colleagues from the Purple Mountain Observatory in Nanjing, China, the Scutum–Centaurus Arm may extend even farther than that. Using a novel approach to study gas clouds located between 46,000 to 67,000 light-years beyond the center of our galaxy, they detected 48 new clouds of interstellar gas, as well as 24 previously-observed ones.

For the sake of their study, Sun and his colleagues relied on radio telescope data provided by the Milky Way Imaging Scroll Painting project, which scans interstellar dust clouds for radio waves emitted by carbon monoxide gas. Next to hydrogen, this gas is the most abundant element to be found in interstellar space – but is easier for radio telescopes to detect.

Combining this information with data obtained by the Canadian Galactic Plane Survey (which looks for hydrogen gas), they concluded that these 72 clouds line up along a spiral-arm segment that is 30,000 light-years in length. What’s more, they claim in their report that: “The new arm appears to be the extension of the distant arm recently discovered by Dame & Thaddeus (2011) as well as the Scutum-Centaurus Arm into the outer second quadrant.”

Ilustration of our galaxy, showing our Sun (red dot) and the possible extension of the Scutum-Centaurus Arm. CREDIT: Modified from "A Possible Extension of the Scutum-Centaurus Arm into the Outer Second Quadrant" by Yan Sun et al., in The Astrophysical Journal Letters, Vol. 798, January 2015; Robert Hurt. NASA/JPL-Caltech/SSC (background spiral).
Illustration of our galaxy showing the possible extension of the Scutum-Centaurus Arm. CREDIT: Yan Sun/The Astrophysical Journal Letters, Vol. 798/Robert Hurt. NASA/JPL-Caltech/SSC

This would mean the arm is not only the single largest in our galaxy, but is also the only one to effectively reach 360° around the Milky Way. Such a find would be unprecedented given the fact that nothing of the sort has been observed with other spiral galaxies in our local universe.

Thomas Dame, one of the astronomers who discovered the possible extension of the Scutum-Centaurus Arm in 2011, was quoted by Scientific American as saying: “It’s rare. I bet that you would have to look through dozens of face-on spiral galaxy images to find one where you could convince yourself you could track one arm 360 degrees around.”

Naturally, the prospect presents some problems. For one, there is an apparent gap between the segment that Dame and Thaddeus discovered in 2011 and the start of the one discovered by the Chinese team –  a 40,000 light-year gap to be exact. This could mean that the clouds that Sun and his colleagues discovered may not be part of the Scutum-Centaurus Arm after all, but an entirely new spiral-arm segment.

If this is true, than it would mean that our Galaxy has several “outer” arm segments. On the other hand, additional research may close that gap (so to speak) and prove that the Milky Way is as beautiful when seen afar as any of the spirals we often observe from the comfort of our own Solar System.

Further Reading: arXiv Astrophysics, The Astrophysical Letters

What is the Milky Way?

Artist's conception of the Milky Way galaxy. Credit: Nick Risinger
Artist's conception of the Milky Way galaxy. Credit: Nick Risinger

When you look up at the night sky, assuming conditions are just right, you might just catch a glimpse of a faint, white band reaching across the heavens. This band, upon closer observation, looks speckled and dusty, filled with a million tiny points of light and halos of glowing matter. What you are seeing is the Milky Way, something that astronomers and stargazers alike have been staring up at since the beginning of time.

But just what is the Milky Way? Well, simply put, it is the name of the barred spiral galaxy in which our solar system is located. The Earth orbits the Sun in the Solar System, and the Solar System is embedded within this vast galaxy of stars. It is just one of hundreds of billions of galaxies in the Universe, and ours is called the Milky Way because the disk of the galaxy appears to be spanning the night sky like a hazy band of glowing white light. Continue reading “What is the Milky Way?”

Astronomers Find a “Spine” Along Spiral Arms of the Milky Way

Researchers have identified the first "bone" of the Milky Way - a long tendril of dust and gas that appears dark in this infrared image from the Spitzer Space Telescope. Running horizontally along this image, the "bone" is more than 300 light-years long but only 1 or 2 light-years wide. It contains about 100,000 suns' worth of material. Credit: NASA/JPL/SSC

Astronomers have found what may be considered a piece of a galactic skeleton; a dark structure of gas and dust that might provide a backbone on which one of the spiral arms extend from the central bar of the Milky Way galaxy.

“This ‘bone’ is likely made from high density gas — the type that forms stars — and while the feature that we see is a sinuous distinction you get from dust, there is a huge amount of gas,” said Alyssa Goodman of the Harvard-Smithsonian Center for Astrophysics (CfA) at a press conference at the American Astronomical Society meeting in Long Beach, California today. “But we just don’t know yet what it is.”

A flipped image of IC342, in which a 'backbone' structure can be seen in the spiral arms. Credit: Jarret et al. 2012; WISE Enhanced Resolution Galaxy Atlas.
A flipped image of IC342, in which a 'backbone' structure can be seen in the spiral arms. Credit: Jarret et al. 2012; WISE Enhanced Resolution Galaxy Atlas.

While this is the first time such a structure has been seen in our own galaxy, other spiral galaxies seemingly display internal “endoskeletons.” Observations, especially at infrared wavelengths of light, have found long skinny features jutting between galaxies’ spiral arms. These relatively straight structures are much less massive than the curving spiral arms.

Goodman said that since we view the Milky Way from the inside, its exact structure is difficult to determine, but it is thought to have a central bar and two major spiral arms that wrap around its disk.

A team of astronomers first spotted the galactic bone while studying a dust cloud nicknamed “Nessie,” since its shape is reminiscent of the Loch Ness monster. The central part of the “Nessie” bone was discovered in Spitzer Space Telescope data in 2010 by James Jackson (Boston University). With further analysis, Goodman’s team determined the dark cloud goes way beyond the original section that was first found, and is as much as eight times longer than Jackson’s original sighting.

Radio emissions from molecular gas show that the feature is not a chance projection of material on the sky, but instead a real feature. Not only is “Nessie” in the galactic plane, but also it extends much longer than anyone anticipated. This slender bone of the Milky Way is more than 300 light-years long but only 1 or 2 light-years wide. It contains about 100,000 suns’ worth of material, and now looks more like a cosmic snake.

“This bone is much more like a fibula – the long skinny bone in your leg – than it is like the tibia, or big thick leg bone,” Goodman said.

It lies along the plane of the Milky Way, and since our vantage point is just above the the plane, Goodman and her team are hopeful that the skeleton may be able to be mapped.

“It’s possible that the ‘Nessie’ bone lies within a spiral arm, or that it is part of a web connecting bolder spiral features. Our hope is that we and other astronomers will find more of these features, and use them to map the skeleton of the Milky Way in 3-D,” she said.

The team’s paper is not quite finished yet, but it is online on the new open source scientific collaboration site, Authorea.

For more information, visit http://milkywaybones.org.

Source: CfA, AAS

The Milky Way Galactic Disk – Forever Blowing Bubbles

Ten Milky Way Project images most-favourited by volunteers, in no particular order. Coordinates are image centres, image sizes are indicated by the zoom level (zoom).

[/caption]

Score another one for citizen science! In a study released just days ago, a new catalog containing over five thousand infrared bubble entries was added through the “Milky Way Project” website. The work was done independently by at least five participants who measured parameters for position, radius, thickness, eccentricity and position angle. Not only did their work focus on these areas, but the non-professionals were responsible for recovering the locations of at least 86% of additional bubble and HII catalogs. Cool stuff? You bet. Almost one third of the Milky Way Project’s studied bubbles are located at the edge of an even larger bubble – or have more lodged inside. This opens the door to further understanding the dynamics of triggered star formation!

Just what is the Milky Way Project? Thanks to the Galaxy Zoo and Zooniverse, scientists have been able to enlist the help of an extensive community of volunteers able to tackle and analyze huge amounts of data – data that contains information which computer algorithms might miss. In this case it’s visually searching through the Galactic plane for whole or broken ring-shaped structures in images done by Spitzer’s Galactic Legacy Infrared Survey Extraordinaire (GLIMPSE) project. Here the bubbles overlap and the structures are so complex that only humans can sort them out for now.

Screenshot of the Milky Way Project user interface.
Screenshot of the Milky Way Project user interface.
“The MWP is the ninth online citizen science project created using the Zooniverse Application Programming Interface
(API) tool set. The Zooniverse API is the core software supporting the activities of all Zooniverse citizen science projects.” says R. J. Simpson (et al). “Built originally for Galaxy Zoo 2, the software is now being used by 11 different projects. The Zooniverse API is designed primarily as a tool for serving up a large collection of `assets’ (for example, images or video) to an interface, and collecting back user-generated interactions with these assets.”

Through the interface, users mark the location of bubbles and other areas of significance such as small bubbles, green knots, dark nebulae, star clusters, galaxies, fuzzy red objects or simply unknowns. During this phase, the citizen scientist can make as many annotations as he or she wants before they submit their findings and receive a new assignment. Each annotated image is then stored in a database as a classification and the user can access their image again in an area of the website known as “My Galaxy”. However, images may only be classified once.

Example of raw user drawings and reduced, cleaned result using a sample MWP image. A GLIMPSE-only colour sam- ple is included to illustrate the dierences in the appearance of images inspected by CP06 and the MWP users.
When identifying galactic bubbles, the user creates a circle around the area which can be scaled to size and stretched into an elliptical configuration. Initially as the object is identified and marked, the user can control the position and size of the bubble. Once annotated the parameters can be edited, such as the ellipticity, annular thickness and rotation. The program even allows for regions where no obvious emission is present, such as a broken or partial bubble. This allows the user to match the bubbles they find in individual images to achieve an accurate representation You can even mark a favorite or interesting configuration as well!

“In order to assist in the data-reduction process, users are given scores according to how experienced they are at drawing bubbles. We treat the first 10 bubbles a user draws as practice drawings and these are not included in the final reduction. Users begin with a score of 0 and are given scores according to the number of precision bubbles they have drawn.” explains the team. “Precision bubbles are those drawn using the full tool set, meaning they have to have adjusted the ellipticity, the thickness and the rotation. This is done to ensure that users’ scores reflect their ability to draw bubbles well. While only precision bubbles are used to score volunteers, all bubbles drawn as included in the data reduction. The scores are used as weights when averaging the bubble drawings to produce the catalogue.”

Now it’s time to combine all that data. As of October of last year, the program has created a database of 520,120 user-drawn bubbles. The information is then sorted out and processed – with many inclusions left for further investigation. However, not all bubbles make the cut. When it comes to this project, only bubbles that have been identified fifty times or more are included into the catalog. What remains is a “clean bubble” – one that has been verified by at least five users and picked out at least 10% of the time by the volunteers when displayed.

“It is not known how many bubbles exist in the Galaxy, hence it is impossible to quantify the completeness of the MWP catalogue. There will be bubbles that are either not visible in the data used on the MWP, or that are not seen as bubbles.” says the team. “Distant bubbles may be obscured by foreground extinction. Faint bubbles may be masked by bright Galactic background emission or confused with brighter nebular structures. Fragmented or highly distorted bubbles present at high inclination angles may not appear as bubbles to the observer.”

Error measurements for MWP bubble MWP1G309059+01661. This bubble has a hit rate of 0.437, and a dispersion of 1.61'. Top gures show reduced and raw bubble drawings. Bottom figures show dispersions in measurements of position and size.
But don’t let it burst your bubble. This citizen science approach is an excellent idea from the the standpoint of observer objectivity and the final, reduced catalogue contains 5,106 visually identified bubbles. Of these, they are divided into a catalogue of 3,744 large bubbles identified by users as ellipses, and a catalogue of 1,362 small bubbles annotated by users at the highest zoom level images in the MWP.

And that’s not all… “In addition to the reduced bubble catalogue, a crowd sourced `heat map’ of bubble drawings has also been produced. The MWP `heat maps’ allow the bubble drawings to be explored without them needing to be reduced to elliptical annuli. Rather, the `heat maps’ allow contours of overlapping classifications to be drawn over regions of the Galactic plane reflecting levels of agreement between independent classifiers. In most cases the structures outlined in these maps are photo-dissociation regions traced by 8 um emission, but more fundamentally they are regions that multiple volunteers agree reflect the rims of bubbles.”

Yep. They are bubbles alright. Bubble produced around huge stars when an HII region is hollowed out by thermal overpressure, stellar winds, radiation pressure or a combination of them all. This impacts the surrounding, cold interstellar medium and creates a visible shell – or bubble. These regions serve as perfect observation points “to test theories of sequential, massive star formation triggered by massive star winds and radiation pressure” and to keep us forever fascinated…

And forever studying bubbles.

Original Story Source: The Milky Way Project First Data Release: A Bubblier Galactic Disk. For Further Reading: The Milky Way Project Zooniverse Blog.

A New Look at the Milky Way’s Central Bar

The BRAVA fields are shown in this image montage. For reference, the center of the Milky Way is at coordinates L= 0, B=0. The regions observed are marked with colored circles. This montage includes the southern Milky Way all the way to the horizon, as seen from CTIO. The telescope in silhouette is the CTIO Blanco 4-m. (Just peaking over the horizon on the left is the Large Magellanic Cloud, the nearest external galaxy to our own.) Image Credit: D. Talent, K. Don, P. Marenfeld & NOAO/AURA/NSF and the BRAVA Project

[/caption]You may have heard about the restaurant at the end of the Universe, but have you heard of the bar in the middle of the Milky Way?

Nearly 80 years ago, astronomers determined that our home, the Milky Way Galaxy, is a large spiral galaxy. Despite being stuck inside and not being able to see what the entire the structure looks like — as we can with the Pinwheel Galaxy, or our nearest neighbor, the Andromeda Galaxy — researchers have suspected our galaxy is actually a “barred” spiral galaxy. Barred spiral galaxies feature an elongated stellar structure , or bar, in the middle which in our case is hidden by dust and gas. There are many galaxies in the Universe that are barred spirals, and yet, there are numerous galaxies which do not feature a central bar.

How do these central bars form, and why are they only present in some, but not all spiral galaxies?

A research team led by Dr. R. Michael Rich (UCLA), dubbed BRAVA (Bulge Radial Velocity Assay), measured the velocity of many old, red stars near the center of our galaxy. By studying the spectra (combined light) of the M class giant stars, the team was able to calculate the velocity of each star along our line of sight. During a four-year time span, the spectra for nearly 10,000 stars was acquired with the CTIO Blanco 4-meter telescope located in Chile’s Atacama desert.

Analyzing the velocities of stars in their study, the team was able to confirm that the Milky Way’s central bulge does contain a massive bar, with one end nearly pointed right at our solar system. One other discovery made by the team is that while our galaxy rotates like a wheel, the BRAVA study found that the rotation of the central bar is more like that of a roll of paper towels in a dispenser. The team’s discoveries provide vital clues to help explain the formation of the Milky Way’s central region.

BRAVA data. Image Credit: D. Talent, K. Don, P. Marenfeld & NOAO/AURA/NSF and the BRAVA Project

The spectra data set was compared to a computer simulation created by Dr. Juntai Shen (Shanghai Observatory) showing how the bar formed from a pre-existing disk of stars. The team’s data fits the model quite well, suggesting that before the central bar existed, there was a massive disk of stars. The conclusion reached by the team is in stark contrast to the commonly accepted model of formation of our galaxy’s central region – a model that predicts the Milky Way’s central region formed from an early chaotic merger of gas clouds. The “take-away” point from the team’s conclusions is that gas did play some role in the formation of our galaxy’s central region, which organized into a massive rotating disk, and then turned into a bar due to the gravitational interactions of the stars.

One other benefit to the team’s research is that stellar spectra data will allow the team to analyze the chemical composition of the stars. All stars are composed of mostly hydrogen and helium, but the tiny amounts of other elements (astronomers refer to anything past helium as “metals”) provides insight into the conditions present during a star’s formation.

The BRAVA team found that stars closest to the plane of the Milky Way Galaxy have fewer “metals” than stars further from its galactic plane. The team’s conclusion does confirm standard views of stellar formation, yet the BRAVA data covers a significant area of the galactic bulge that can be chemically analyzed. If researchers map the metal content of stars throughout the Milky Way, a clear picture of stellar formation and evolution emerges, similar to how mapping CO2 concentrations in the Antarctic ice shelf can reveal the past weather patterns here on Earth.

If you’d like to read the full paper, a pre-print version is available at: http://arxiv.org/abs/1112.1955

Source: National Optical Astronomy Observatory press release

The Hercules Satellite – A Galactic Transitional Fossil

Smaller satellite galaxies caught by a spiral galaxy are distorted into elongated structures consisting of stars, which are known as tidal streams, as shown in this artist's impression. Credit: Jon Lomberg

[/caption]

On Friday, I wrote about the population of the thick disk and how surveys are revealing that this portion of our galaxy is largely made of stars stolen from cannibalized dwarf galaxies. This fits in well with many other pieces of evidence to build up the general picture of galactic formation that suggests galaxies form through the combination of many small additions as opposed to a single, gigantic collapse. While many streams of what is, presumably, tidally shredded galaxies span the outskirts of the Milky Way, and other objects exist that are still fully formed galaxies, few objects have yet been identified as a satellite that is undergoing the process of tidal disruption.

A new study, to be published in the October issue of the Astrophysical Journal suggests that the Hercules satellite galaxy may be one of the first of this intermediary forms discovered.

In the past decade, numerous minor stellar systems have been discovered in the halo of our Milky Way galaxy. The properties of these systems have suggested to astronomers that they are faint galaxies in their own right. Although many have elongated and elliptical shapes (averaging an ellipticity of 0.47; 0.15 higher than that of brighter dwarf galaxies that orbit further out), simulations have suggested that even these stretched dwarfs are still able to remain largely cohesive. In general, the galaxy will remain intact until it is stretched to an ellipticity of 0.7.  At this point, a minor galaxy will lose ~90% of its member stars and dissolve into a stellar stream.

In 2008, Munoz et al. reported the first Milky Way satellite that was clearly over this limit. The Ursa Major I satellite was shown to have an ellipticity of 0.8. Munoz suggested that this, as well as the Hercules and Ursa Major II dwarfs were undergoing tidal break up.

The new paper, by Nicolas Martin and Shoko Jin, further analyzes this proposition for the Hercules satellite by going further and examining the orbital characteristics to ensure that their passage would continue to distort the galaxy sufficiently. The system already contains an ellipticity of 0.68, which puts it just under the theoretical limit.

The team looked to see just how closely the satellite would pass to our own galactic center. The closer it passed, the more disruption it would feel. By projecting the orbit, they estimated the galaxy would come within ~6 kiloparsecs of the galactic center which is about 40% of the radius of the galaxy overall. While this may not seem especially close Martin and Jin report that they cannot conclude that it will be insufficient. They state that disruption would be dependent on “the properties of the stellar system at that time of its journey in the Milky Way potential and, as such, out of reach to the current observer.”

However, there were some telling signs that the dwarf may already be shedding stars. Along the major axis of the galaxy, deep imaging has revealed a smaller number of stars that does not appear to be bound to the galaxy itself. Photometry of these stars has shown that their distribution on a color-magnitude diagram is strikingly similar to that of the Hercules galaxy itself.

At this point, we cannot fully determine if the Hercules galaxy is doomed to become another stellar stream around the Milky Way, but if it is not truly in the process of breaking up, it seems to be on the very edge.