Are Aliens Communicating with Neutrino Beams?

It is no easy thing to search for signs of intelligent life beyond our Solar System. In addition to the incredible distances involved and the fact that we really only have indirect methods at our disposal, there is also the small problem of not knowing exactly what to look for. If intelligent life does exist beyond our Solar System, would they even communicate as we do, using radio transmitters and similar forms of technology?

Such has been the preoccupation of groups like the Search for Extra Terrestrial Intelligence (SETI) Institute and, more recently, organizations like Messaging Extraterrestrial Intelligence (METI) International. A non-profit dedicated to communicating with extra-terrestrial intelligence (ETI), the organization recently suggested that looking for neutrinos and other exotic particles could help us find signals as well.

First, some clarification should be made as to what SETI and METI are all about it and what sets them apart. The term METI was coined by Russian scientist Alexander Zaitsev, who sought to draw a distinction between SETI and METI. As he explained in a 2006 paper on the subject:

“The science known as SETI deals with searching for messages from aliens. METI science deals with the creation of messages to aliens. Thus, SETI and METI proponents have quite different perspectives. SETI scientists are in a position to address only the local question “does Active SETI make sense?” In other words, would it be reasonable, for SETI success, to transmit with the object of attracting ETI’s attention? In contrast to Active SETI, METI pursues not a local and lucrative impulse, but a more global and unselfish one – to overcome the Great Silence in the Universe, bringing to our extraterrestrial neighbors the long-expected annunciation ‘You are not alone!'”

One of the 42 dishes in the Allen Telescope Array that searches for signals from space. Credit: Seth Shostak/SETI Institute.

In short, METI looks for ways in which we might be able to contact aliens instead of waiting to hear from them. However, this does not mean that organizations like METI International are without ideas on how me might better listen to our (potential) alien neighbors. After all, communication goes beyond mere messages, and also requires that a medium exist with which to convey the message.

Such is the recommendation put forth by Dr. Morris Jones, a space analyst and writer who serves on the METI advisory council. In a recent article published on METI International’s website, he addressed the two main challenges when it comes to looking for ETI. On the one hand, you have the need for multiple methodologies to increase the odds of finding something. But as he indicates, there’s also the problem of knowing what to look for:

“We are not really sure of how extraterrestrials would communicate with us. Would they use radio waves, lasers, or something more exotic? Perhaps the universe is awash in extraterrestrial signals that we cannot even receive. SETI and METI practitioners spend a lot of time wondering how a message would be encoded in terms of language and content. It’s also important to consider the medium of transmission.”

In the past, says Jones, SETI searches were based on radio astronomy because that was the only practical means of doing so. Since then, efforts have expanded to include optical telescopes and the search for laser signals. This is due to the fact that in the past few decades, human beings have developed the technology to use laser for the sake of communications.

An artist’s illustration of a light-sail powered by a radio beam (red) generated on the surface of a planet. Could the part of the beam that misses the sail be our mysterious Fast Radio Bursts? Image Credit: M. Weiss/CfA

In a 2016 SETI paper, Dr. Philip Lubin of the University of California, Santa Barbara, explained how the development of directed-energy propulsion could help us search for evidence of aliens. As one of the scientific minds behind Breakthrough Starshot – a laser-driven lightsail that would be fast enough to make the trip to Alpha Centauri in just 20 years – he believes it’s a safe bet that ETI could be using similar technology to travel or communicate.

In addition, Dr. Avi Loeb from the Harvard-Smithsonian Center for Astrophysics (also one of the minds behind Starshot) has also suggested that fast-radio bursts (FRBs) could be evidence of alien activity. FRBs have been a subject of fascination to scientists since they were first detected in 2007 (the “Lorimer Burst“), and could also be a sign of alien communications or a means of propulsion.

Another means involves searching for artefacts – i.e. looking for evidence of physical infrastructure in other star systems. Case in point, since 2015, astronomers have been seeking to determine what is responsible for the periodic dimming of KIC 8462852 (aka. Tabby’s Star). Whereas most studies have sought to explain this in terms of natural causes, others have suggested it could be evidence of an alien megastructure.

To this array of search methods, Dr. Jones offers a few other possibilities. One way is to look for neutrinos, a type of subatomic particle that is produced by the decay of radioactive elements and interacts with matter very weakly. This allows them to pass through solid matter and also makes them very difficult to detect. Neutrinos are produced in large quantities by our Sun and astronomical sources, but they can also be produced artificially by nuclear reactors.

Ever since it was first announced in 2015, there has been speculation as to what could account for the dimming of KIC 8462852. Credit: SentientDevelopments.com

These, claims Jones, could be used for the sake of communications. The only problem is that looking for them would require some specialized equipment. Currently, all means of detecting neutrinos involve expensive facilities that have to be built either underground or in extremely isolated locations to ensure that they are not subject to any kind of electromagnetic interference.

These include the Super-Kamiokande facility, the world’s largest neutrino detector which is located under Mt. Ikeno in Japan. There’s also the IceCube Neutrino Observatory, located at the Amundsen–Scott South Pole Station in Antarctica and operated by the University of Wisconsin–Madison; and the Sudbury Neutrino Observatory, located in a former mine complex near Sudbury, Ontario, and operated by SNOLAB.

Another possibility is searching for evidence of communications that rely on gravitational waves. Predicted by Einstein’s Theory of General Relativity, the first detection of these mysterious waves was first made in February 2016. And in the coming years and decades, it is expected that gravitational wave observatories will be established so the presence of these “ripples” in spacetime can be visualized.

However, compared to neutrinos, Jones admits that this seems like a long shot. “It’s hard to conceive with our current grasp of physics,” he writes. “They are extremely difficult to generate at a detectable level. You would need abilities similar to those of superheroes, and be able to smash neutron stars and black holes together at will. There are probably easier ways to get a message across the stars.”

Breakthrough Listen will monitor the 1 million closest stars to Earth over a ten year period. Credit: Breakthrough Initiatives

Beyond these, there is the even more exotic possibility of “Zeta Rays”, which Dr. Jones is not prepared to rule out. Basically, “Zeta Rays” is a term used by physicists to describe physics that go beyond the Standard Model. As scientists are currently looking for evidence of new particles with the Large Hadron Collider and other particle accelerators, it stands to reason that anything they discover will be the added to the SETI and METI search manifest.

But could such physics entail new forms of communication? Hard to say, but definitely worth considering. After all, the physics that power our current technology certainly existed before we did. Or as Jones put it:,

“Is it possible to transmit with something better than we already have? Until we know a lot more physics, we just won’t know. Humanity in the twenty-first century could be like an isolated tribe in the Amazon jungle a century ago, unaware that the air around them was filled with radio signals. SETI uses the science and technology provided to us by other disciplines. Thus, we must wait until physics itself makes some more major breakthroughs. Only then can we consider such exotic methods of searching. We think a lot about the message. But we should also think about the medium.”

Other projects that are dedicated to METI include Breakthrough Listen, a ten-year initiative launched by Breakthrough Initiatives to conduct the largest survey to date for extraterrestrial communications – encompassing the 1,000,000 closest stars and 100 closest galaxies. Back in April of 2017, the scientists behind this project shared their analysis of the first year of Listen data. No definitive results have been announced yet, but they are just getting started!

Ever since Drake proposed his famous equation, human beings have eagerly sought to find evidence of extra-terrestrial intelligence. Unfortunately, all of our efforts have been haunted by Fermi’s equally-famous paradox! But of course, as space exploration goes, we’ve really only begun to scratch the surface of our Universe. And the only way we can ever expect to find evidence of intelligent life out there is to keep looking.

And with greater knowledge and increasingly sophisticated methods at our disposal, we can be sure that if intelligent life is out there somewhere, we will find it eventually. One can always hope, right? And be sure to check out this video of Dr. Jones 2014 presentation at the SETI Institute, titled “A Journalistic Perspective on SETI-Related Message Composition“:

Further Reading: METI

Going Viral: Why Alien Signals Get Everyone Excited

So, that ‘strong’ signal from aliens everyone was so excited about this week? Turns out, it was probably something from Earth, maybe a satellite passing overhead or another object of “terrestrial origin,” the Russian researchers have concluded.

Yeah. Dang.

“This supports our initial assumption that the signal was made by human intelligence, not extraterrestrial intelligence,” said Doug Vakoch, President of METI International (Messaging Extraterrestrial Intelligence), a group doing follow-up observations of the star system HD 164595, where the signal was thought to maybe, perhaps originate.

When the news broke of the possible alien signal, SETI scientists were quick to temper the excitement with measured skepticism, saying more often than not, these signals end up being “natural radio transients” (stellar flare, active galactic nucleus, microlensing of a background source, etc.) or interference of a terrestrial nature (a passing satellite or a microwave oven, for example.)

But still, people were excited and the news went viral. Crazy viral.

“Being no stranger to how the media can hype SETI stories, I can sympathize with those at the center of the latest dustup,” said astronomer and SETI researcher Jason Wright from Penn State University. “It’s understandable that many content outlets, seeking ‘clickbait’ headlines, would spin this particular story in the most intriguing, exciting way, and once that happens a ‘bidding war’ of hype can make the story spin out of control.”

But is it all about clickbait? Since I’m part of the media (and admittedly was initially very excited about this story,) I’d like to think that the excitement and viral-tendencies of news about possible alien signals say more about humanity’s fervent hope that we aren’t alone in the cosmos, rather than who can get the most pageviews.

And I do know that researchers who dedicate their careers to the search for alien signals and Earth-like planets aren’t doing so just so they can keep telling us to not get excited. They, too, are hoping for that chance, that very remote possibility, that we’ve got company in our big and magnificent Universe.

“You can’t always be cynical,” said SETI senior astronomer Seth Shostak. “If a signal is looking promising, we are going to check it out.”

And that’s the thing, say the researchers. They get signals like this all the time.

“This is the sort of thing SETI researchers do all the time, because by the nature of the search, radio SETI experiments come across strong signals all the time,” Vakoch said via email. “At the end of the day, these need to be confirmed as coming from distant locations in space, and if we can’t, we need to consider them spurious. The unusual feature of HD 164595 is that this process of checking is being followed by the media.”

And while scientists were surprised (and maybe annoyed) at the amount of attention the ‘alien signal’ news got this week, there is an upside.

“The silver living here is that those who read the more responsible stories carefully will learn a lot about how SETI works,” Wright told Universe Today, “that communication SETI researchers see “one-off” signals all the time from both astronomical and terrestrial sources, in addition to perhaps the occasional instrumental glitch. Searches using arrays (like the ATA) have an automatic check against many of these, but in any event no one will be popping the champaign until a signal repeats enough for an independent telescope and instrument to detect it, and its intelligent origin is clear.”

“The public is getting an inside view of the usual process of following up interesting SETI candidates,” said Vakoch. “This helps the public understand the standard process of doing SETI: we find interesting signals, and then we see if we can verify them. If not, we move on.”

Vakoch and Wright said that the confirmation process, however, involves a lot of steps, and it’s not always easy or quick to follow-up. So, most of the time, determining the source of the signal takes time.

“Unlike Hollywood movies, where you get a quick “yes or no” about a possible signal from aliens,” Vakoch explained, “the real SETI confirmation process takes some time. It’s easy to think that all we need to do is get on the phone with an astronomer at another location, and we’re all set. But even when colleagues at other facilities are willing to observe, they may face technical limitations.”

The Allen Telescope Array (ATA).  Credit: Seth Shostak / SETI Institute
The Allen Telescope Array (ATA). Credit: Seth Shostak / SETI Institute

Typical radio SETI searches look for narrowband signals, and most observatories aren’t set up to detect such signals on short notice. And even though radio observatories can make observations even when it’s cloudy, there can be other types of local interference at certain radio frequencies.

“If you need to do a real-time follow-up of a promising SETI signal, you might face significant roadblocks to a ready confirmation – even if the signal is really there,” Vakoch said.

Another upside of the recent media attention is that SETI researchers can let everyone know they aren’t getting much funding for this type of research, and the search could really use a lot more eyes and ears on the Universe, as Jill Tartar tweeted:

“It’s all the more evident that we need to replicate these innovative optical SETI systems over and over,”Vakoch said, “so we can have a global network of modest-sized observatories ready for follow-up of promising SETI signals. Developing such a network is one of METI International’s top priorities as an organization.”

(You can support SETI here and find out more about METI and optical SETI here.)

Wright said while the public interest in SETI is great, sometimes the media (or the tin foil hat crowd or conspiracy theorists) can blow things out of proportion.

“This can make it hard for anyone doing SETI to talk about their work, because any mention of ‘strange’ or ‘candidate’ signals has the potential to enter that echo chamber,” he said.

Which can go viral.

But if anyone is worried that SETI researchers are keeping secrets or not telling the whole story, I can personally vouch that during this week, absolutely every SETI researcher I contacted answered all my questions in an extremely timely manner (and provided even more information than I was expecting) plus, other researchers contacted me, asking to be able to explain the signal and the process of how SETI works.

“Nothing would make us more excited than to verify it,” said Bill Diamond, president and CEO of SETI, “But we have to observe it and look at the data.”

Further reading:

Statement from Russian researchers about followup observations revealing the signal to be ‘terrestrial in origin’

TASS news story about signal

“Let’s Be Careful About This SETI Signal” by Franck Marchis

“No, we almost certainly did not detect an alien signal from a nearby star” by Phil Plait

SETI is Hopeful Yet Skeptical that Russians Found Aliens by Dean Takahashi

“That Alien Signal? Observations Are Coming Up Empty” by Nadia Drake

Aliens? “Strong” Signal Detected From Sun-Like Star Being Verified By SETI

We’re not saying its aliens, but this could be the most enticing SETI-related signal from space since the famous “Wow! Signal” in 1977.

Over the weekend, interstellar expert Paul Gilster broke the news that “a strong signal” was detected by Russian radio astronomers from the region around the star HD 164595. This signal has attracted enough attention that two prominent SETI observatories are quickly making follow-up observations. Alan Boyle reports in Geekwire that the Allen Telescope Array in California has already been observing the star system and the Boquete Optical SETI Observatory in Panama will make an attempt this evening, if the weather is clear.

Doug Vakoch, the President of METI International (Messaging Extraterrestrial Intelligence) told Universe Today via email that the Allen Telescope Array has already completed its initial reconnaissance of HD 164595, “with no indications of alien technologies at radio frequencies.”

“The first step in following up a putative SETI signal is to look at the same frequency where it was first detected,” Vakoch said, and with the nil detection from the ATA, “now it’s time to search other parts of the electromagnetic spectrum.”

Vakoch said METI International will be observing HD 164595 for brief laser pulses from the Boquete Optical SETI Observatory in Panama as soon as weather permits.

“It looks like the Boquete Observatory will be hit by heavy thundershowers late this afternoon and into this evening,” he said, “so we’ll likely need to wait to observe until another night. Once the evening sky is clear in Boquete, we’ll have about an hour to observe in the direction of the constellation Hercules shortly after sunset.”

The signal from HD 164595 was originally detected on May 15, 2015, by the Russian Academy of Science-operated RATAN-600 radio telescope in Zelenchukskaya, Russia. It is located about 95 light years from Earth in the constellation Hercules. The signal had a wavelength of 2.7 cm, with an estimated amplitude of 750 mJy.

Gilster wrote on his Centauri Dreams website that the researchers have worked out the strength of the signal and that if “it came from an isotropic beacon, it would be of a power possible only for a Kardashev Type II civilization,” which means a civilization capable of harnessing the energy of the entire star, and developing something like a Dyson sphere surrounding the star, and transfer all the energy to the planet.

Freeman Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com
Freeman Dyson theorized that eventually, a civilization would be able to build a megastructure around its star to capture all its energy. Credit: SentientDevelopments.com

If the beam was narrow and sent directly to our Solar System, the researchers say it would be of a power available to a Kardashev Type I civilization, a type of civilization more advanced than us that is able to harness the full amount of solar power it receives from its star.

Of course, like any other signal, such as the recent study of the dimming light curve of KIC 8462852 (Tabby’s Star) that is still being researched, it is possible the signal comes from other “natural” events such microlensing of a background source or even comets as been proposed for both Tabby’s Star or the “Wow! Signal.”

The SETI website explains that narrow-band signals – ones that are only a few Hertz wide or less – are the mark of a purposely built transmitter. “Natural cosmic noisemakers, such as pulsars, quasars, and the turbulent, thin interstellar gas of our own Milky Way, do not make radio signals that are this narrow. The static from these objects is spread all across the dial.”

And so Gilster said “the signal is provocative enough that the RATAN-600 researchers are calling for permanent monitoring of this target.” You can see a graph of the signal on Centauri Dreams.

Update: A member of the [email protected] team posted a note online that they were “unimpressed” with the paper from the Russian radio astronomers. “Because the receivers used were making broad band measurements, there’s really nothing about this “signal” that would distinguish it from a natural radio transient (stellar flare, active galactic nucleus, microlensing of a background source, etc.) There’s also nothing that could distinguish it from a satellite passing through the telescope field of view. All in all, it’s relatively uninteresting from a SETI standpoint.”

So, this detection might not be as exciting as originally reported. Also SETI senior astronomer Seth Shostak has now weighed in on the topic, also with measured skepticism on the excitement, with a post about this event on the SETI website.

What has probably fueled interest in this signal is the striking similarities between the star and our Sun. HD 164595 is a star just a tad smaller than our Sun (0.99 solar masses), with the exact same metallicity. The age of the star has been estimated at 6.3 billion years it is already known to have at least one planet, HD 164595 b, a Neptune-sized world that orbits the star every 40 days. And as we’ve seen with data from the Kepler spacecraft, with the detection of one planet comes the very high probability that more planets could orbit this star.

The signal has been traveling for 95 years, so it “occurred” (or was sent) in 1920 on Earth calendars. (There is a good discussion of this in the comment section on Gilster’s article.)

Why the Russian team has only made this detection public now is unclear and it may have only come out now because the team wrote a paper to be discussed at an upcoming SETI committee meeting during the 67th International Astronautical Congress in Guadalajara, Mexico, on Tuesday, September 27.

As Gilster wrote, “No one is claiming that this is the work of an extraterrestrial civilization, but it is certainly worth further study.”

Sources: Centauri Dreams, Alan Boyle on Geekwire, SETI

Alien Minds Part III: The Octopus’s Garden and the Country of the Blind

METI logo

In our galaxy, there may be, at least, tens of billions of habitable planets, with conditions suitable for liquid water on their surfaces. There may be habitable moons as well. On an unknown number of those worlds, life may have arisen. On an unknown fraction of life-bearing worlds, life may have evolved into complex multicellular, sexually reproducing forms.

During its habitable period, a world with complex life might produce hundreds of millions of evolutionary lineages. One or a few of them might fortuitously encounter special circumstances that triggered runaway growth of their intelligence. These favored few, if they exist, might have built technological civilizations capable of signaling their presence across interstellar distances, or detecting and deciphering a message we send their way. What might such alien minds be like? What senses might they use? How might we communicate with them?

METI International
METI International

The purposes of the newly created METI (Messaging to ExtraTerrestrial Intelligence) International include fostering multidisciplinary research in the design and transmission of interstellar messages, and building a global community of scholars from the natural sciences, social sciences, humanities, and arts concerned with the origin, distribution, and future of life in the universe.

On May 18 the organization sponsored a workshop which included presentations by biologists, psychologists, cognitive scientists, and linguists. This is the third and final installment of a series of articles about the workshop.

In previous installments, we’ve discussed some ideas about the evolution of intelligence that were featured at the workshop. Here we’ll see whether our Earthly experience can provide us with any clues about how we might communicate with aliens.

Many of the animals that we are most familiar with from daily life, like humans, cats, dogs, birds, fishes, and frogs are vertebrates, or animals with backbones. They are all descended from a common ancestor and share a nervous system organized according to the same basic plan.

Molluscs are another major group of animals that have been evolving separately from vertebrates for more than 600 million years. Although most molluscs, like slugs, snails, and shellfish, have fairly simple nervous systems, one group; the cephalopods, have evolved a much more sophisticated one.

the common octopus
The common octopus, Octopus vulgaris, Is a cephalopod mollusc, has evolved sophisticated cognition and perception along a very different evolutionary path than have human beings and our relatives. The brain is located between the eyes. The large bulbous structure below the eyes is the mantle, a muscular organ involved in swimming. Public domain.

Cephalopods include octopuses, squids, and cuttlefishes. They show cognitive and perceptual abilities rivaling those of our close vertebrate kin. Since this nervous system has a different evolutionary history than of the vertebrates, it is organized in a way completely different from our own. It can give us a glimpse of the similarities and differences we might expect between aliens and ourselves.

David Gire, an associate professor of psychology at the University of Washington, and researcher Dominic Sivitilli gave a presentation on cephalopods at the Puerto Rico workshop. Although these animals have a sophisticated brain, their nervous systems are much more decentralized than that of familiar animals. In the octopus, sensing and moving are controlled locally in the arms, which together contain as many nerve cells, or neurons, as the brain.

David Gire
Dr. David Gire is an Assistant Professor in the Department of Psychology at the University of Washington and a behavioral neuroscientist. He presented at the Puerto Rico workshop on cephalopod intelligence.

The animal’s eight arms are extraordinarily sensitive. Each containing hundreds of suckers, with thousands of sensory receptors on each one. By comparison, the human finger has only 241 sensory receptors per square centimeter. Many of these receptors sense chemicals, corresponding roughly to our senses of taste and smell. Much of this sensory information is processed locally in the arms. When an arm is severed from an octopus’s body, it continues to show simple behaviors on its own, and can even avoid threats. The octopus’s brain simply acts to coordinate the behaviors of its arms.

Cephalopods have acute vision. Although their eyes evolved separately from those of vertebrates, they nonetheless bear an eerie resemblance. They have a unique ability to change the pattern and color of their skin using pigment cells that are under direct control of their nervous systems. This provides them with the most sophisticated camouflage system of any animal on Earth, and is also used for social signaling.

Despite the sophisticated cognitive abilities it exhibits in the lab, the octopus is largely solitary.
Cephalopod groups exchange useful information by observing one another, but otherwise exhibit only limited social cooperation. Many current theories of the evolution of sophisticated intelligence, like Miller’s sapiosexual hypothesis, which was featured in the second installment, assume that social cooperation and competition play a central role in the evolution of complicated brains. Since cephalopods have evolved much more impressive cognitive abilities than other molluscs, their limited social behavior is surprising.

Dominic Sivitilli
Dominic Sivitilli is a post-baccalaureate researcher in the laboratory of David Gire, studying responses to chemical signals by the octopus. He is the co-presenter of a talk on cephalopod cogntition at the METI International Puerto Rico conference. METI International used with permission.

Maybe the limited social behavior of cephalopods really does set limits on their intelligence. However, Gire and Sivitilli speculate that perhaps “an intelligence capable of technological development could exist with minimum social acuity”, and the cephalopod ability to socially share information is enough. The individuals of such an alien collective, they suppose, might possess no sense of self or other.

Besides Gire and Sivitilli, Anna Dornhaus, whose ideas were featured in the first installment, also thinks that alien creatures might function together as a collective mind. Social insects, in some respects, actually do. She doubts, though, that such an entities could evolve human-like technological intelligence without something like Miller’s sapiosexuality to trigger a runaway explosion of intelligence.

But if non-sapiosexual alien technological civilizations do exist, we might find them impossible to comprehend. Given this possible gulf of incomprehension about social structure, Gire and Stivitilli suppose that the most we might aspire to accomplish in terms of interstellar communication is an exchange of mutually useful and comprehensible astronomical information.

Workshop presenter Alfred Kracher, a retired staff scientist at the Ames Laboratory of the University of Iowa, supposes that “the mental giants of the Milky Way are probably artificially intelligent machines… It would be interesting to find evidence of them, if they exist”, he writes, “but then what?” Kracher supposes that if they have emancipated themselves and evolved away from their makers, “they will have nothing in common with organic life forms, human or extraterrestrial. There is no chance of mutual understanding”. We will be able to understand aliens, he maintains, only if “it turns out that the evolution of extraterrestrial life forms is highly convergent with our own”.

Peter Todd, a professor of psychology from Indiana University, holds out hope that such convergence may actually occur. Earthly animals must solve a variety of basic problems that are presented by the physical and biological world that they inhabit.

They must effectively navigate through a world of surfaces, barriers and objects, finding food and shelter, and avoiding predators, parasites, toxins. Extraterrestrial organisms, if they evolve in an Earth-like environment, would face a generally similar set of problems. They may well arrive at similar solutions, just as the octopus evolved eyes similar to ours.

In evolution here on Earth, Todd notes, brain systems originally evolved to solve these basic physical and biological problems appear to have been re-purposed to solve new and more difficult problems, as some animals evolved to solve the problems of living and finding mates as members of societies, and then as one particular ape species went on to evolve conceptual reasoning and language. For example, disgust at bad food, useful for avoiding disease, may have been become the foundation for sexual disgust to avoid bad mates, moral disgust to avoid bad clan mates, and intellectual disgust to avoid dubious ideas.

If alien brains evolved solutions similar to the ones our brains did for negotiating the physical and biological world, they they might also have been re-purposed in similar ways. Alien minds might not be wholly different from ours, and thus hope exists for a degree of mutual understanding.

In the early 1970’s the Pioneer 10 and 11 spacecraft were launched on the first exploratory missions to the planet Jupiter and beyond. When their missions were completed, these two probes became the first objects made by humans to escape the sun’s gravitational pull and hurtle into interstellar space.

Because of the remote possibility that the spacecraft might someday be found by extraterrestrials, a team of scientists and scholars lead by Carl Sagan emplaced a message on the vehicle, etched on a metal plaque. The message consisted, in part, of a line drawing of a man and a woman. Later, the Voyager 1 and 2 spacecraft carried a message that consisted, in part, of a series of 116 digital images encoded on a phonographic record.

Use of images in interstellar messages
The use of images in interstellar communication. In 1977, NASA launched the Voyager 1 and 2 spacecraft on a mission to explore the outer solar system. Destined to wander interstellar space forever following the completion of their mission, each spacecraft carried an interstellar message encoded on a phonographic record. The message, designed by SETI pioneers Carl Sagan and Frank Drake and their collaborators, included 116 digital images. This image is intended to show extraterrestrials how human beings eat and drink. Will extraterrestrials understand such images? The limited quality of the image reflects the state of digital imaging technology in the 70’s National Astronomy and Ionosphere Center, public domain.

The assumption that aliens would see and understand images seems reasonable, since the octopus evolved an eye so similar to our own. And that’s not all. The evolutionary biologists Luitfried Von Salvini-Plawen and Ernst Mayr showed that eyes, of various sorts, have evolved forty separate times on Earth, and vision is typically a dominant sense for large, land dwelling animals. Still, there are animals that function without it, and our earliest mammalian ancestors were nocturnal. Could it be that there are aliens that lack vision, and could not understand a message based on images?

In his short story, The Country of the Blind, the great science fiction writer H. G. Wells imagined an isolated mountain village whose inhabitants had been blind for fifteen generations after a disease destroyed their vision.

A lost mountain climber, finding the village, imagines that with his power of vision, he can easily become their king. But the villagers have adapted thoroughly to a life based on touch, hearing, and smell. Instead of being impressed by their visitor’s claim that he can ‘see’, they find it incomprehensible. They begin to believe he is insane. And when they seek to ‘cure’ him by removing two strange globular growths from the front of his head, he flees.

Mexican blind cavefish
The Mexican blind cavefish (Astyanax mexicanus) has lived in the total darkness of a cave system in central Mexico for more than a million years, and has evolved the loss of its eyes. Astyanax possess a sense that land dwelling animals lack. The lateral line sense, which is present in all fishes, allows these animals to sense their near surroundings based on pressure differences in fields of water flow around their bodies. They also have an acute sense of taste, with taste receptors on their bodies as well as in their mouths. The evolution of cave dwelling intelligent life is probably unlikely, since large brains are metabolically expensive, and food is scarce in caves. On the surface, plants capture energy from sunlight and form the base of the food chain. State Museum of Natural History, Karlsruhe.

Could their really be an alien country of the blind whose inhabitants function without vision? Workshop presenter Dr. Sheri Wells-Jensen, an associate professor of Linguistics at Bowling Green State University, doesn’t need to imagine the country of the blind, because, in a sense, she lives there. She is blind, and believes that creatures without vision could achieve a level of technology sufficient to send interstellar messages. “Sighted people”, she writes, “tend to overestimate the amount and quality of information gathered by vision alone”.
Sheri Wells Jensen
Dr. Sheri Wells-Jensen is an associate professor of linguistics at Bowling Green State University. She presented at talk at the Puerto Rico workshop on alternative perceptual systems and interstellar communications. METI International, used with permission.

Bats and dolphins image their dimly lit environments with a kind of naturally occurring sonar called echolocation. Blind human beings can also learn to echolocate, using tongue clicks or claps as emitted signals and analyzing the returning echoes by hearing. Some can do so well enough to ride a bicycle at a moderate pace through an unfamiliar neighborhood. A human can develop the touch sensitivity needed to read braille in four months. A blind marine biologist can proficiently distinguish the species of mollusc shells by touch.

Wells-Jensen posits a hypothetical civilization which she calls the Krikkits, who lack vision but possess sensory abilities otherwise similar to those of human beings. Could such beings build a technological society? Drawing on her knowledge of the blind community and a series of experiments, she thinks they could.

Finding food would present few special difficulties, since blind naturalists can identify many plant species by touch. Agriculture could be conducted as modern blind gardeners do it, by marking crops using stakes and piles of rock, and harvesting by feel. The combination of a stick used as a cane to probe the path ahead and echolocation make traveling by foot effective and safe. A loadstone compass would further aid navigational abilities. The Krikkits might use snares rather than spears or arrows to trap animals, making tools by touch.

Mathematics is vital to building a technological society. For most human beings, with our limited memory, a paper and pencil or a blackboard are essential for doing math. Krikkits would need to find other such aids, such as tactual symbols on clay tablets, abacus-like devices, or patterns sewn on hides or fabric.

Successful blind mathematicians often have prodigious memories, and can perform complex calculations in their heads. One of history’s greatest mathematicians, Leonard Euler, was blind for the last 17 years of his life, but remained mathematically productive through the use of his memory.

The obstacles to a blind society developing technology may not be insurmountable. Blind people are capable of handling fire and even working with molten glass. Krikkits might therefore use fire for cooking, warmth, to bake clay vessels, and smelt metal ores. Initially there only astronomical knowledge would be of the sun as a source of heat. Experiments with loadstones and metals would lead to a knowledge of electricity.

Eventually, the Krikkits might imitate their sonar with radio waves, inventing radar. If their planet possessed a moon or moons, radar reflections from them might provide their first knowledge of astronomical objects other than their sun. Radar would also enable them to learn for the first time that their planet is round.

The Krikkits might learn to detect other forms of radiation like X-rays and ‘light’. The ability to detect this second mysterious form of radiation might allow them to discover the existence of the stars and develop an interest in interstellar communication.

What sorts of messages might they send or understand? Well-Jensen believes that line drawings, like the drawing of the man and the woman on the Pioneer plaque, and other such pictorial representations might be an impenetrable mystery to them. On the other hand, she speculates that Krikkits might represent large data sets through sound, and that their counterpart to charts and graphs might be equally incomprehensible to us.

Images might pose a challenge for the Krikkits, but perhaps, Wells-Jensen concedes, not an impossible one. There is evidence that bats image their world using echolocation. Kikkits might be likely to evolve similar abilities, though Wells-Jensen believes they would not be essential for making tools or handling objects.

Perhaps humans and Krikkits could find common ground by transmitting instructions for three dimensional printed objects that could be explored tactually. Wells-Jensen thinks they might also understand mathematical or logical languages proposed for interstellar communication.

The diversity of cognition and perception that we find here on Earth teaches us that if extraterrestrial intelligence exists, it is likely to be much more alien than much of science fiction has prepared us to expect. In our attempt to communicate with aliens, the gulf of mutual incomprehension may yawn as wide as the gulf of interstellar space. Yet this is a gulf we must somehow cross, if we wish ever to become citizens of the galaxy.

For further reading:

Cain, F. (2008) Is Our Universe Ruled by Artificial Intelligence, Universe Today.

Kaufmann G. (2005) Spineless smarts, NOVA

Land, M. F., and Nilsson, D-E. (2002) Animal Eyes, Oxford University Press.

Mather, J. A. (2008) Cephalopod consciousness: Behavioral evidence, Cognition and Consciousness 17(1): 37-48.

Patton, P. E. (2016) Alien Minds I: Are Extraterrestrial Civilizations Likely to Evolve? Universe Today.

Patton, P. E. (2016) Alien Minds II: Do Aliens Think Big Brains are Sexy Too? Universe Today.

P. Patton (2014) Communicating across the cosmos, Part 1: Shouting into the darkness, Part 2: Petabytes from the Stars, Part 3: Bridging the Vast Gulf, Part 4: Quest for a Rosetta Stone, Universe Today.

Wells, H. G. (1904) The Country of the Blind, The literature network.

Lone Signal: First Continous Message Beacon to Find and Say Hello to an Extraterrestrial Civilization

Although scientists have been listening for years to search for indications of other sentient life in the Universe, just a few efforts have been made by humans to purposefully send out messages to the cosmos. Called METI (Messaging to Extraterrestrial Intelligence) or Active SETI (Search for Extraterrestrial Intelligence), these messages have so far been just one-time bursts of info – or “pulses in time” said Dr. Jacob Haqq-Misra.

Haqq-Misra is leading a team of scientists and entrepreneurs who are launching a new initiative called “Lone Signal” which will send the first continuous mass “hailing messages” out into space, starting later this month. They’ll be specifically targeting one star system, Gliese 526, which has been identified as a potentially habitable solar system.

And yes, the general public can participate.

“From the start we wanted to be an experiment where anyone on Earth could participate,” said Haqq-Misra during a press event on June 11, 2013, announcing the project.

“Our scientific goals are to discover sentient beings outside of our solar system,” said Lone Star co-founder Pierre Fabre, also speaking at the event. “But an important part of this project is to get people to look beyond themselves and their differences by thinking about what they would say to a different civilization. Lone Signal will allow people to do that.”

Lone Signal will be using the recommissioned radio dish at the Jamesburg Earth Station in Carmel, California, one of the dishes used to carry the Apollo Moon landings live to the world.


Timelapse of the Jamesburg Earth Station

Lone Signal will be sending two signals: one is a continuous wave (CW) signal, a hailing message that sends a slow binary broadcast to provide basic information about Earth and our Solar System using an encoding system created by astrophysicist and planetary scientist Michael W. Busch. The binary code is based on mathematical “first principles” which reflect established laws that, theoretically, are relatively constant throughout the universe; things like gravity and the structure of the hydrogen atom, etc.

“This hailing message is a language we think could be used to instigate communication,” said Haqq-Misra, “and is the most advanced binary coding currently in use.”

The second signal, embedded in the first signal, will be messages from the people of Earth.

Strength of various signals from Earth.  Graph courtesy of Dr. Haqq-Misra.
Strength of various signals from Earth. Graph courtesy of Dr. Haqq-Misra.

Since Gliese 526 is 17.6 light years from Earth, the messages will be beamed to the coordinates of where the star will be in 17.6 years from now. Even though no planets have been found yet in this system, the Lone Signal team said they are confident planets exist there since missions like Kepler and Corot have found that most stars host multiple planets.

The Lone Signal team is allowing anyone with access to the internet to send the equivalent of one free text message or Twitter message — a 144-character text-based message — into space. The team said they want to have messages sent from people all around the world to provide messages that are “representative of humanity.”

Anything additional, like more messages, images, etc., will cost money, but those funds will help support the project.

“In effect we are doing our own Kickstarter and doing the crowdfunding on our own,” said Lone Signal CEO Jamie King. “Long Signal would not be possible without crowd sourcing support, which will be used for maintaining the millions of dollars in equipment, powering the dish, running the web portal and other critical tech that makes the project possible.”

If you want to be part of the project and be a “beamer” you can currently sign up at the Lone Signal website –which currently doesn’t have much information. But on June 18th their public site will go live and ‘beamers will be able to submit messages as well as:

• Share Beams / Track Beams – Once signed in, users can see how far their beam has traveled from Earth as well as share it with the beaming community.

• Dedicate Beams – Parents, friends and loved ones can dedicate a beam to others.

• Explore – The Explore section gives beamers current data on the Lone Signal beam, who is sending messages, from where on Earth, overall stats, etc.

• Blog / Twitter – Via their blog and Twitter, the Lone Signal science team and other contributors will be posting opinion articles on associated topics of interest as well as sharing the latest science news and updates.

One you submit your “beam” you’ll be able to “echo” it on your Facebook and Twitter accounts.

After a user sends their initial free message, Lone Signal will be offering paid credit packages for purchase that allow users to transmit and share longer messages as well as images using credits in the following USD price structure:
• $0.99 buys 4 credits.
• $4.99 buys 40 credits.
• $19.99 buys 400 credits.
• $99.99 buys 4000 credits.

Following the initial free message, each subsequent text-based message costs 1 credit. Image-based messages cost 3 credits.

The team said that each message will be sent as an individual packet of information and won’t be bunched with other messages.

While some scientists have indicated that sending messages out into space might pose a hazard by attracting unwanted attention from potentially aggressive extraterrestrial civilizations, Haqq-Misra thinks the benefits outweigh the potential hazards. In fact, he and his team have written a paper about the concept.

“We want to inspire passion for the space sciences in people young and old, encourage citizens of Earth to think about their role in the Universe, and inspire the next generation of scientists and astronauts,” said Lone Signal chief marketing officer Ernesto Qualizza. “We’re really excited to find out what people will want to say, and the science of METI allows people to do this – to think about more than their own backyard.”

More info: Lone Signal