China’s Rover Found Evidence of an Ancient Ocean on Mars

Elevation map of the northern hemisphere of Mars with the red star denoting the landing site of the Zhurong rover, which is ~282 kilometers (~175 miles) north of a previously proposed shoreline of the ancient Deuteronilus ocean. The different colored lines represent proposed shorelines from past studies. (Credit: ©Science China Press)

In a recent study published in National Science Review, a team of researchers led by the China University of Geosciences discuss direct evidence of an ancient ocean and its shoreline that existed in the northern hemisphere of Mars during the Hesperian Period, or more than 3 billion years ago. This finding is based on data collected by the China National Space Agency’s (CNSA) Zhurong rover in the Vastitas Borealis Formation (VBF), which lies within southern Utopia Planitia on Mars.

Continue reading “China’s Rover Found Evidence of an Ancient Ocean on Mars”

ESA Has a Playground for Mars Rovers to Learn how to Explore the Red Planet

A downward view of ESA’s rock-strewn recreation of the Red Planet, designed to put prototype planetary rovers through their paces. Image Credit: ESA-Remedia

NASA makes successful rover missions seem mundane. Spirit and Opportunity were wildly successful, and Curiosity and Perseverance would both be considered successes even if they stopped working today. But complex missions don’t succeed without rigorous testing.

The ESA takes that lesson to heart, and when it comes to their Mars rover, they’ve built a ‘rover playground’ to test it in.

Continue reading “ESA Has a Playground for Mars Rovers to Learn how to Explore the Red Planet”

Researchers Are Building a Simulated Moon/Mars Research Station Deep Underground

These images show the first laboratory in the Bio-SPHERE project. The medical lab is located 1 km under the surface, near one of the UK's deepest mine sites. Image Credit: Dr. Alexandra Iordachescu/University of Birmingham.

In the early days of spaceflight, just getting a satellite into Earth’s orbit was an accomplishment. In our era, landing rovers on other planets and bringing samples home from asteroids is the cutting edge. But the next frontier is rapidly approaching, when astronauts will stay for long periods of time on the Moon and hopefully Mars.

But before we can send people to those dangerous environments, the Artemis partner space agencies have to know how to keep them safe. An important part of that is simulating the conditions on the Moon and Mars.

Continue reading “Researchers Are Building a Simulated Moon/Mars Research Station Deep Underground”

Mars Has a Thick Crust. Its Internal Heat Mainly Comes from Radioactivity

Elevation data of Mars featuring the lower elevations of the northern lowlands primarily in blue and the much higher elevations of the southern highlands primarily in orange and red. (Credit: MOLA Science Team)

How thick is the crust of Mars? This question is what a recent study published in Geophysical Research Letters attempted to answer as it reported on data from a magnitude 4.7 marsquake recorded in May 2022 by NASA’s InSight lander, which remains the largest quake ever recorded on another planetary body. As it turns out, this data helped provide estimates of Mars’ global crustal thickness, along with a unique discovery regarding the crust in the northern and southern hemispheres, and how the interior of Mars produces its heat.

Continue reading “Mars Has a Thick Crust. Its Internal Heat Mainly Comes from Radioactivity”

Life Probably Didn't Have a Hand in Creating Organic Deposits on the Surface of Mars

ExoMars Trace Gas Orbiter analyses the martian atmosphere. Credit: ESA/ATG medialab

At this very moment, eleven robotic missions are exploring Mars, a combination of orbiters, landers, rovers, and one aerial vehicle (the Ingenuity helicopter). Like their predecessors, these missions are studying Mars’ atmosphere, surface, and subsurface to learn more about its past and evolution, including how it went from a once warmer and wetter environment to the freezing, dusty, and extremely dry planet we see today. In addition, these missions are looking for evidence of past life on Mars and perhaps learning if and where it might still exist today.

One particularly interesting issue is how the atmosphere of Mars – primarily composed of carbon dioxide (CO2) – is relatively enriched with Carbon-13 (13C), aka. “heavy carbon.” For years, scientists have speculated that the ratio of this isotope to “light carbon” (12C) might be responsible for organics found on the surface (a sign of biological processes!). But after analyzing data from the ESA’s ExoMars Trace Gas Orbiter (TGO) mission, an international team led by The Open University determined that these organics may be “abiotic” in origin (i.e., not biological).

Continue reading “Life Probably Didn't Have a Hand in Creating Organic Deposits on the Surface of Mars”

It’s Time to Figure Out How to Land Large Spacecraft Safely on Other Worlds

Exhaust plume-surface interaction, more commonly known as brownout, while landing on the Moon. (Credit: Reproduced with permission from A. Rahimi, O. Ejtehadi, K.H. Lee, R.S. Myong, Acta Astronautica, 175 (2020) 308-326. ©2018 Elsevier.)

One of the most iconic events in history is Apollo 11 landing on the lunar surface. During the descent, astronauts Neil Armstrong and Edwin “Buzz” Aldrin are heard relaying commands and data back and forth to mission control across 385,000 kilometers (240,000 miles) of outer space as the lunar module “Eagle” slowly inched its way into the history books.

In the final moments before touchdown, Aldrin can be heard saying, “Picking up some dust”, followed by large dust clouds shooting outward from underneath from the spacecraft as the exhaust plumes interacted with the lunar surface, more commonly known as brownout or brownout effect. This significantly reduced the visibility for Armstrong and Aldrin as they landed, and while they successfully touched down on the Moon, future astronauts might not be so lucky.

Continue reading “It’s Time to Figure Out How to Land Large Spacecraft Safely on Other Worlds”

New Photos Show Collapsed Chains of Craters on a Martian Volcano

This image from ESA’s Mars Express shows the southern flanks of Ascraeus Mons, the second-tallest volcano on Mars. Credit: ESA/DLR/FU Berlin,.

Most everyone is familiar with Olympus Mons, the largest volcano on Mars and also the largest in the Solar System. But there are several other enormous shield volcanoes on Mars. The second largest is Ascraeus Mons, and new images from ESA’s Mars Express spacecraft reveal some interesting features on the side or flank of the mountain.

Continue reading “New Photos Show Collapsed Chains of Craters on a Martian Volcano”

Perseverance Finds an Ancient, Fast Flowing River

In a first for Martian water science, NASA’s Perseverance rover has discovered geological evidence of a large, fast-moving river in Mars’ ancient past. The high-energy river once emptied into Jezero crater, which the rover has been exploring since early 2021, and is a totally different water system than anything seen previously on the red planet.

Continue reading “Perseverance Finds an Ancient, Fast Flowing River”

Meteorites Store a Magnetic Memory of the Early Solar System

Black Beauty, or NWA 7034, is a Martian meteorite thought to have formed at a time when the Red Planet harbored a magnetic field. Credit: C Agee, Institute of Meteoritics, UNM; NASA

Although they are thought of as rare, meteorites are actually quite common. About 40,000 tons of meteorites strike Earth every day. Most of them land in the ocean, and most are quite tiny, but they are still common enough that hobbyists all over the world find meteorites all the time. The most common place to find them is in arid regions where their coloring can stand out from the terrain. But even then a meteorite can be difficult to distinguish from terrestrial rocks.

Continue reading “Meteorites Store a Magnetic Memory of the Early Solar System”

China's Mars Rover Finds Recent Evidence of Water Near the Equator

China's Zhurong rover on Mars
An image from China's Zhurong rover shows spacecraft hardware in the foreground and Martian terrain in the background. (Credit: CNSA)

The surface of Mars is a pretty desolate place at first glance. The soil is many times as dry as the driest desert on planet Earth, the temperatures swing from one extreme to the other, and the air is incredibly thin and toxic. And yet, there’s ample evidence that the planet was once much warmer and wetter, with lots of flowing and standing water on its surface. Over time, as Mars’ atmosphere was slowly stripped away, much of this water was lost to space, and what remains is largely concentrated around the poles as glacial ice and permafrost.

For years, space agencies have been sending robotic landers, rovers, orbiters, and aerial vehicles to Mars to learn more about when this transition took and how long it took. According to China’s Tianwen-1 mission, which includes the Zhurong rover, there may have been liquid water on the Martian surface later than previously thought. According to new research from the Chinese Academy of Sciences (CAS), the Zhurong rover observed salt-rich dunes in the Utopia Planitia region that showed cracks and crusts, indicating the possible presence of water as recently as a few hundred thousand years ago.

Continue reading “China's Mars Rover Finds Recent Evidence of Water Near the Equator”