Why Can Black Hole Binaries Have Dramatically Different Masses? Multiple Generations of Mergers

On the 12th of April, 2019, the LIGO and Virgo gravitational wave observatories detected the merger of two black holes. Named GW190412, one of the black holes was eight solar masses, while the other was 30 solar masses. On the 14th of August that year, an even more extreme merger was observed, when a 2.5 solar mass object merged with a black hole nearly ten times more massive. These mergers raise fundamental questions about the way black hole mergers happen.

Continue reading “Why Can Black Hole Binaries Have Dramatically Different Masses? Multiple Generations of Mergers”

The Moon is an Ideal Spot for a Gravitational Wave Observatory

In the coming years, multiple space agencies will be sending missions (including astronauts) to the Moon’s southern polar region to conduct vital research. In addition to scouting resources in the area (in preparation for the construction of a lunar base) these missions will also investigate the possibility of conducting various scientific investigations on the far side of the Moon.

However, two prominent scientists (Dr. Karan Jani and Prof. Abraham Loeb) recently published a paper where they argue that another kind of astronomy could be conducted on the far side of the Moon – Gravitational Wave astronomy! As part of NASA’s Project Artemis, they explain how a Gravitational-wave Lunar Observatory for Cosmology (GLOC) would be ideal for exploring GW in the richest and most challenging frequencies.

Continue reading “The Moon is an Ideal Spot for a Gravitational Wave Observatory”

Astronomers Detected a Black Hole Merger With Very Different Mass Objects

In another first, scientists at the LIGO and Virgo gravitational wave detectors announced a signal unlike anything they’ve ever seen before. While many black hole mergers have been detected thanks to LIGO and Virgo’s international network for detectors, this particular signal (GW190412) was the first where the two black holes had distinctly different masses.

Continue reading “Astronomers Detected a Black Hole Merger With Very Different Mass Objects”

Just How Feasible is a Warp Drive?

It’s hard living in a relativistic Universe, where even the nearest stars are so far away and the speed of light is absolute. It is little wonder then why science fiction franchises routinely employ FTL (Faster-than-Light) as a plot device. Push a button, press a pedal, and that fancy drive system – whose workings no one can explain – will send us to another location in space-time.

However, in recent years, the scientific community has become understandably excited and skeptical about claims that a particular concept – the Alcubierre Warp Drive – might actually be feasible. This was the subject of a presentation made at this year’s American Institute of Aeronautics and Astronautics Propulsion and Energy Forum, which took place from August 19th to 22nd in Indianapolis.

Continue reading “Just How Feasible is a Warp Drive?”

Gravitational Wave Detectors Might be Able to Detect Dark Matter Particles Colliding With Their Mirrors

The field of astronomy has been revolutionized thanks to the first-ever detection of gravitational waves (GWs). Since the initial detection was made in February of 2016 by scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO), multiple events have been detected. These have provided insight into a phenomenon that was predicted over a century ago by Albert Einstein.

As it turns out, the infrastructure that is used to detect GWs could also help crack another astronomical mystery: Dark Matter! According to a new study by a team of Japanese researchers, laser interferometers could be used to look for Weakly-Interacting Massive Particles (WIMPs), a major candidate particle in the hunt for Dark Matter.

Continue reading “Gravitational Wave Detectors Might be Able to Detect Dark Matter Particles Colliding With Their Mirrors”

Dr. Avi Loeb Thinks the Government Should set its Sights on Big Ideas in Space Exploration

Buzz Aldrin on the Moon

On July 20th, 2019, exactly 50 years will have passed since human beings first set foot on the Moon. To mark this anniversary, NASA will be hosting a number of events and exhibits and people from all around the world will be united in celebration and remembrance. Given that crewed lunar missions are scheduled to take place again soon, this anniversary also serves as a time to reflect on the lessons learned from the last “Moonshot”.

For one, the Moon Landing was the result of years of government-directed research and development that led to what is arguably the greatest achievement in human history. This achievement and the lessons it taught were underscored in a recent essay by two Harvard astrophysicists. In it, they recommend that the federal government continue to provide active leadership in the field of space research and exploration.

Continue reading “Dr. Avi Loeb Thinks the Government Should set its Sights on Big Ideas in Space Exploration”

Weekly Space Hangout: June 19, 2019 – Corey Gray, Lead Operator at the LIGO Hanford Observatory

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)
Dr. Brian Koberlein (briankoberlein.com / @BrianKoberlein)

Continue reading “Weekly Space Hangout: June 19, 2019 – Corey Gray, Lead Operator at the LIGO Hanford Observatory”

As Expected, the Newly Upgraded LIGO is Finding a Black Hole Merger Every Week

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.

In February of 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) announced the first-ever detection of gravitational waves (GWs). Since then, multiple events have been detected, providing insight into a cosmic phenomena that was predicted over a century ago by Einstein’s Theory of General Relativity.

A little over a year ago, LIGO was taken offline so that upgrades could be made to its instruments, which would allow for detections to take place “weekly or even more often.” After completing the upgrades on April 1st, the observatory went back online and performed as expected, detecting two probable gravitational wave events in the space of two weeks.

Continue reading “As Expected, the Newly Upgraded LIGO is Finding a Black Hole Merger Every Week”

LIGO Just Got a Big Upgrade, Will Begin Searching for Gravitational Waves Again on April 1st

In February of 2016, scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO) made history by announcing the first-ever detection of gravitational waves (GWs). These ripples in the very fabric of the Universe, which are caused by black hole mergers or white dwarfs colliding, were first predicted by Einstein’s Theory of General Relativity roughly a century ago.

About a year ago, LIGO’s two facilities were taken offline so its detectors could undergo a series of hardware upgrades. With these upgrades now complete, LIGO recently announced that the observatory will be going back online on April 1st. At that point, its scientists are expecting that its increased sensitivity will allow for “almost daily” detections to take place.

Continue reading “LIGO Just Got a Big Upgrade, Will Begin Searching for Gravitational Waves Again on April 1st”