Newly discovered Earth-size planet TOI 700 e orbits within the habitable zone of its star in this illustration. Its Earth-size sibling, TOI 700 d, can be seen in the distance.
Credit: NASA/JPL-Caltech/Robert Hurt
For planet-hunters, finding an Earth-sized exoplanet must be special. NASA estimates there are about 100 billion planets in the Milky Way, but the large majority of the 5,000+ exoplanets we’ve found are extremely inhospitable. So finding one that’s similar to ours is kind of comforting.
In this case, it’s even more interesting because it’s the second Earth-sized planet orbiting the same star.
Artist rendition of the PSR B1257+12. (Credit: NASA/JPL-Caltech/R. Hurt)
Exoplanets have become quite the sensation over the last decade-plus, with scientists confirming new exoplanets on a regular basis thanks to NASA’s Kepler and TESS missions, along with the James Webb Space Telescope recently examining exoplanet atmospheres, as well. It’s because of these discoveries that exoplanet science has turned into an exciting field of intrigue and wonder, but do the very same scientists who study these wonderful and mysterious worlds have their own favorite exoplanets? As it turns out, four such exoplanet scientists, sometimes referred to as “exoplaneteers”, were kind enough to share their favorites with Universe Today!
An artistic view of the Jovian exoplanet GJ 504b. Credit: NASA's Goddard Space Flight Center/S. Wiessinger
Discovering exoplanets is a difficult job. Given the challenges, it’s amazing that we’ve found any at all. But astronomers are clever, so there are currently more than 4,300 confirmed exoplanets. They range from small Mercury-sized worlds to planets larger than Jupiter, but most of them have one thing in common: they orbit close to their home star.
An artist's illustration of TOI 700d, an Earth-size exoplanet that TESS found in its star's habitable zone. Image Credit: NASA
At times, it seems like there’s an indundation of announcements featuring discoveries of “Earth-like” planets. And while those announcements are exciting, and scientifically noteworthy, there’s always a little question picking away at them: exactly how Earth-like are they, really?
After all, Earth is defined by its relationship with the Sun.
Almost all known exoplanets are larger than Earth and typically as large as the gas planet Neptune. The 18 newly discovered planets (here in orange and green), for comparison, are much smaller than Neptune, three of them even smaller than Earth and two more as large as Earth. Planet EPIC 201238110.02 is the only one of the new planets cool enough to potentially host liquid water on its surface.
Image Credit: NASA/JPL (Neptune), NASA/NOAA/GSFC/Suomi NPP/VIIRS/Norman Kuring (Earth), MPS/René Heller
Scientists working with data from the Kepler mission have discovered an additional 18 Earth-sized worlds. The team used a newer, more stringent method of combing through the data to find these planets. Among the 18 is the smallest exoplanet ever found.
Simulation of a collision between two 10 Earth-mass planets. Image Credit: Zoe Leinhardt and Thomas Denman, University of Bristol
How can two planets so similar in some respects have such different densities? According to a new study, a catastrophic collision may be to blame.
In our Solar System, all the inner planets are small rocky worlds with similar densities, while the outer planets are gas giants with their own similar densities. But not all solar systems are like ours.
This illustration depicts a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian's Star or Tabby's Star. Credit: NASA/JPL-Caltech
In September of 2015, the star KIC 8462852 (aka. Tabby’s Star) captured the world’s attention when it was found to be experiencing a mysterious drop in brightness. In the years since then, multiple studies have been conducted that have tried to offer a natural explanation for this behavior – and even an unnatural one (i.e. the “alien megastructure” theory). At the same time, multiple observatories have been tracking the star regularly for further dimming.
Well, it seems that Tabby’s Star is at it again! On Friday, March 16th, Tabetha Boyajian (the astronomer who was responsible for discovering the star’s variations in flux) and her colleagues reported that the star was dimming yet again. As they indicated recently their blog – Where’s the Flux? – the star experienced its greatest dip since it was observed by the Kepler mission in 2013.
Artist's concept of the Kepler mission with Earth in the background. Credit: NASA/JPL-Caltech
Since its deployment in March of 2009, the Kepler space telescope has been a boon for exoplanet-hunters. As of March 8th, 2018, a total of 3,743 exoplanets have been confirmed, 2,649 of which were discovered by Kepler alone. At the same time, the telescope has suffered its share of technical challenges. These include the failure of two reaction wheels, which severely hampered the telescope’s ability to conduct its original mission.
Nevertheless, the Kepler team was able to return the telescope to a stable configuration by using small amounts of thruster fuel to compensate for the failed reaction wheels. Unfortunately, after almost four years conducting its K2 observation campaign, the Kepler telescope is now running out fuel. Based on its remaining fuel and rate of consumption, NASA estimates that the telescope’s mission will end in a few months.
For years, the Kepler space telescope has been locating planets around distant stars using the Transit Method (aka. Transit Photometry). This consists of monitors stars for periodic dips in brightness, which are caused by a planet passing in front of the star (i.e. transiting). Of all the methods used to hunt for exoplanets, the Transit Method is considered the most reliable, accounting for a total of 2900 discoveries.
Naturally, this news comes as a disappointment to astronomers and exoplanet enthusiasts. But before anyone starts lamenting the situation, they should keep some things in mind. For one, the Kepler mission has managed to last longer than anyone expected. Ever since the K2 campaign began, the telescope has been required to shift its field of view about every three months to conduct a new observation campaign.
Based on their original estimates, the Kepler team believed they had enough fuel to conduct 10 more campaigns. However, the mission has already completed 16 campaigns and the team just began their 17th. As Charlie Sobeck, a system engineer for the Kepler space telescope mission, explained in a recent NASA press statement:
“Our current estimates are that Kepler’s tank will run dry within several months – but we’ve been surprised by its performance before! So, while we anticipate flight operations ending soon, we are prepared to continue as long as the fuel allows. The Kepler team is planning to collect as much science data as possible in its remaining time and beam it back to Earth before the loss of the fuel-powered thrusters means that we can’t aim the spacecraft for data transfer. We even have plans to take some final calibration data with the last bit of fuel, if the opportunity presents itself.”
So while the mission is due to end soon, the science team hopes to gather as much scientific data as possible and beam it back to Earth before then. They also hope to gather some final calibration data using the telescope’s last bit of fuel, should the opportunity present itself. And since they cannot refuel the spacecraft, they hope to stop collecting data so they can use their last bit of fuel to point the spacecraft back towards Earth and bring it home.
NASA’s Kepler spacecraft has been on an extended mission called K2 after two of its four reaction wheels failed in 2013. Credit: NASA
“Without a gas gauge, we have been monitoring the spacecraft for warning signs of low fuel— such as a drop in the fuel tank’s pressure and changes in the performance of the thrusters,” said Sobeck. “But in the end, we only have an estimate – not precise knowledge. Taking these measurements helps us decide how long we can comfortably keep collecting scientific data.”
This has been standard practice for many NASA missions, where enough fuel has been reserved to conduct one last maneuver. For example, the Cassini mission had to reserve fuel in order to descend into Saturn’s atmosphere so it would avoid colliding with one of its moons and contaminating a potentially life-bearing environment. Satellites also regularly conduct final maneuvers to ensure they don’t crash into other satellites or fall to Earth.
While deep-space missions like Kepler are in no danger of crashing to Earth or contaminating a sensitive environment, this final maneuver is designed to ensure that the science team can squeeze every last drop of data from the spacecraft. So before the mission wraps up, we can expect that this venerated planet-hunter will have some final surprises for us!
Artist’s rendition of TESS in space. (Credit: MIT Kavli Institute for Astrophysics Research).
In the coming years, next-generation telescopes will be taking to space to pick up where Kepler and other space telescopes left off. These include the Transiting Exoplanet Survey Satellite(TESS), which will be conducting Transit surveys shortly after it launches in April of 2018. By 2019, the James Webb Space Telescope (JWST) will also take to space and use its powerful infrared instruments to aid in the hunt for exoplanets.
So while we will soon be saying goodbye to the Kepler mission, its legacy will live on. In truth, the days of exoplanet discovery are just getting started!
Artist’s impression of a view from the HD 7924 planetary system looking back toward our sun, which would be easily visible to the naked eye. Since HD 7924 is in our northern sky, an observer looking back at the sun would see objects like the Southern Cross and the Magellanic Clouds close to our sun in their sky. Credit: Karen Termaura and BJ Fulton, UH IfA
As of March 1st, 2018, 3,741 exoplanets have been confirmed in 2,794 systems, with 622 systems having more than one planet. Most of the credit for these discoveries goes to the Kepler space telescope, which has discovered roughly 3500 planets and 4500 planetary candidates. In the wake of all these discoveries, the focus has shifted from pure discovery to research and characterization.
In this respect, planets detected using the Transit Method are especially valuable since they allow for the study of these planets in detail. For example, a team of astronomers recently discovered three Super-Earths orbiting a star known GJ 9827, which is located just 100 light years (30 parsecs) from Earth. The proximity of the star, and the fact that it is orbited by multiple Super-Earths, makes this system ideal for detailed exoplanet studies.
Artistic design of the super-Earth GJ 625 b and its star, GJ625 (Gliese 625). Credit: Gabriel Pérez/SMM (IAC)
As with all Kepler discoveries, these planets were discovered using the Transit Method (aka. Transit Photometry), where stars are monitored for periodic dips of brightness. These dips are the result of exoplanets passing in front of the star (i.e. transiting) relative to the observer. While this method is ideal for placing constraints on the size and orbital periods of a planet, it can also allow for exoplanet characterization.
Basically, scientists are able to learn things about their atmospheres by measuring the spectra produced by the star’s light as it passes through the planet’s atmosphere. Combined with radial velocity measurements of the star, scientists can also place constraints on the planet’s mass and radius and can determine things about the planet’s interior structure.
For the sake of their study, the team analyzed data obtained by the K2 mission, which showed the presence of three Super-Earths around the star GJ 9827 (GJ 9827 b, c, and d). Since they initially submitted their research paper back in September of 2017, the presence of these planets has been confirmed by another team of astronomers. As Dr. Rodriguez told Universe Today via email:
“We detected three super-Earth sized planets orbiting in a very compact configuration. Specifically, the three planets have radii of 1.6, 1.2, and 2.1 times the radius of Earth and all orbit their host star within 6.2 days. We note that this system was independently discovered (simultaneously) by another team from Wesleyan University (Niraula et al. 2017).”
The super-Earth exoplanet 55 Cancri e, depicted with its star in this artist’s concept, likely has an atmosphere thicker than Earth’s but with ingredients that could be similar to those of Earth’s atmosphere. Credit: NASA/JPL
These three exoplanets are especially interesting because the larger of the two have radii that place them in the range between being rocky or gaseous. Few such exoplanets have been discovered so far, which makes these three a prime target for research. As Dr. Rodriguez explained:
“Super Earth sized planets are the most common type of planet we know of but we do not have one in our own solar system, limiting our ability to understand them. They are especially important because their radii span the rock to gas transition (as I discuss below in one of the other responses). Essentially, planets larger then 1.6 times the radius of the Earth are less dense and have thick hydrogen/helium atmospheres while planets smaller are very dense with little to no atmosphere.”
Another interesting thing about these super-Earths is how their short orbital periods – which are 1.2, 3.6 and 6.2 days, respectively – would result in fairly hot temperatures. In short, the team estimates that the three super-Earths experience surface temperatures of 1172 K (899 °C; 1650 °F), 811 K (538 °C; 1000 °F), and 680 K (407 °C; 764 °F), respectively.
By comparison, Venus – the hottest planet in the Solar System – experiences surface temperatures of 735 K (462 °C; 863 °F). So while temperatures on Venus are hot enough to melt lead, conditions on GJ 9827 b are almost hot enough to melt bronze.
The light curve obtained during Campaign 12 of the K2 mission of the GJ 9827 system. Credit: Rodriguez et al., 2018.
However, the most significant thing about this discovery is the opportunities it could provide for exoplanet characterization. At just 100 light-years from Earth, it will be relatively easy for the next-generation telescopes (such as the James Webb Space Telescope) to conduct studies of their atmospheres and provide a more detailed picture of this system of planets.
In addition, these three strange planets are all in the same system, which makes conducting observation campaigns that much easier. As Rodriguez concluded:
“The GJ 9827 system is unique because one planet is smaller than this cutoff, one planet is larger, and the third planet has a radius of ~1.6 times the radius of the Earth, right on that border. So in one system, we have planets that span this rock to gas transition. This is important because we can study the atmosphere’s of these planets, look for differences in the composition of their atmospheres and begin to understand why this transition occurs at 1.6 times the radius of the Earth. Since all three planets orbit the same star, the effect of the host star is kept constant in this “experiment”. Therefore, if these three planets in GJ 9827 were instead orbiting three separate stars, we would have to worry about how the host star is influencing or affecting the planet’s atmosphere. In the GJ 9827 system, we do not have to worry about this since they orbit the same star.”
A team of astronomers from UCLA searched for "technosignatures" in the Kepler field data. Credit and Copyright: Danielle Futselaar
When it comes to looking for life on extra-solar planets, scientists rely on what is known as the “low-hanging fruit” approach. In lieu of being able to observe these planets directly or up close, they are forced to look for “biosignatures” – substances that indicate that life could exist there. Given that Earth is the only planet (that we know of) that can support life, these include carbon, oxygen, nitrogen and water.
However, while the presence of these elements are a good way of gauging “habitability”, they are not necessarily indications that extra-terrestrial civilizations exist. Hence why scientists engaged in the Search for Extra-Terrestrial Intelligence (SETI) also keep their eyes peeled for “technosignatures”. Targeting the Kepler field, a team of scientists recently conducted a study that examined 14 planetary systems for indications of intelligent life.
The Green Bank Telescope is the world’s largest, fully-steerable telescope, which is currently being used in a new SETI (Search for Extraterrestrial Intelligence) attempt to look for possible alien radio signals from Tabby’s Star. Credit: NRAO/AUI/NSF
Together, the team selected 14 systems from the Kepler catalog and examined them for technosignatures. While radio waves are a common occurrence in the cosmos, not all sources can be easily attributed to natural causes. Where and when this is the case, scientists conduct additional studies to try and rule out the possibility that they are a technosignature. As Professor Margot told Universe Today via email:
“In our article, we define a “technosignature” as any measurable property or effect that provides scientific evidence of past or present technology, by analogy with “biosignatures,” which provide evidence of past or present life.”
For the sake of their study, the team conducted an L-band radio survey of these 14 planetary systems. Specifically, they looked for signs of radio waves in the 1.15 to 1.73 gigahertz (GHz) range. At those frequencies, their study is sensitive to Arecibo-class transmitters located within 450 light-years of Earth. So if any of these systems have civilizations capable of building radio observatories comparable to Arecibo, the team hoped to find out!
Spring 2016 UCLA SETI class with Larry Lesyna. Credit: UCLA
“We searched for signals that are narrow (< 10 Hz) in the frequency domain,” said Margot. “Such signals are technosignatures because natural sources do not emit such narrowband signals… We identified approximately 850,000 candidate signals, of which 19 were of particular interest. Ultimately, none of these signals were attributable to an extraterrestrial source.”
What they found was that of the 850,000 candidate signals, about 99% of them were automatically ruled out because they were quickly determined to be the result of human-generated radio-frequency interference (RFI). Of the remaining candidates, another 99% were also flagged as anthropogenic because their frequencies overlapped with other known sources of RFI – such as GPS systems, satellites, etc.
The 19 candidate signals that remained were heavily scrutinized, but none could be attributed to an extraterrestrial source. This is key when attempting to distinguish potential signs of intelligence from radio signals that come from the only intelligence we know of (i.e. us!) Hence why astronomers have historically been intrigued by strong narrowband signals (like the WOW! Signal, detected in 1977) and the Lorimer Burst detected in 2007.
In these cases, the sources appeared to be coming from the Messier 55 globular cluster and the Large Magellanic Cloud, respectively. The latter was especially fascinating since it was the first time that astronomers had observered what are now known as Fast Radio Bursts (FRBs). Such bursts, especially when they are repeating in nature, are considered to be one of the best candidates in the search for intelligent, technologically-advanced life.
The UCLA SETI Group banner, featuring a photo of the central region of the Milky Way Galaxy. Credit: Yuri Beletsky/Carnegie Las Campanas Observatory
Unfortunately, these sources are still being investigated and scientists cannot attribute them to unnatural causes just yet. And as Professor Margot indicated, this study (which covered only 14 of the many thousand exoplanets discovered by Kepler) is just the tip of the iceberg:
“Our study encompassed only a small fraction of the search volume. For instance, we covered less than five-millionths of the entire sky. We are eager to scale the effort to sample a larger fraction of the search volume. We are currently seeking funds to expand our search.”
Between Kepler‘s first and second mission (K2), a total of 5,118 candidates and 2,538 confirmed exoplanets have been discovered within our galaxy alone. As of February 1st, 2018, a grand total of 3,728 exoplanets have been confirmed in 2,794 systems, with 622 systems having more than one planet. On top of that, a team of researchers from the University of Oklahoma recently made the first detection of extra-galactic planets as well!
It would therefore be no exaggeration to say that the hunt for ETI is still in its infancy, and our efforts are definitely beginning to pick up speed. There is literally a Universe of possibilities out there and to think that there are no other civilizations that are also looking for us seems downright unfathomable. To quote the late and great Carl Sagan: “The Universe is a pretty big place. If it’s just us, seems like an awful waste of space.”
And be sure to check out this video of the 2017 UCLA SETI Group, courtesy of the UCLA EPSS department: