Kepler Discovers Multi-Planet System

Relative sizes and orbital periods of the newly discovered planets and the super-Earth candidate as they cross their host star, Kepler-9. Image courtesy of NASA/Kepler/Darin Ragozzine

[/caption]

The Kepler mission has discovered a system of two Saturn size planets with perhaps a third planet that is only 1.5 times the radius of Earth. While the news of this discovery is tempered somewhat with the announcement by a team from the European Southern Observatory of a system with five confirmed Neptune-sized planets and perhaps two additional smaller planets, both discoveries highlight that the spacecraft and techniques astronomers are using to find exoplanets are getting the desired results, and excitingly exoplanet reseach now includes the study of multiplanet systems. This discovery is the first time multiple planets were found by looking at transit time variations, which can provide more information about planets, such as their masses.

“What is particularly special about this system, is that the variations in transit times are large enough, that we can use these transit timing to detect the masses of these bodies” said Matthew Holman, Kepler team lead for the study of star Kepler-9, speaking on the AAAS Science podcast. Additionally, these findings should provide the tools astronomers need to determine even more physical conditions of these planets — and others — in the future.

The inner world weighs in at 0.25 Jupiter mass (80 Earths) while the outer world is a slimmer 0.17 Jupiter mass (54 Earths).

The team analyzed seven months of data from the orbiting Kepler telescope, and the two large confirmed planets—Kepler-9b and Kepler-9c— are transiting the parent star at unstable rates. The planets’ 19.2- and 38.9-day transition periods are increasing and decreasing at average, respective rates of four and 39 minutes per orbit.

“One thing that caught our attention right off, is when we do preliminary estimates at the time of the transit, we saw large variations in this particular system. Not only did we see more than one planet transiting, but one planet seemed to be speeding up and one slowing down,” Holman said.

Because period one is roughly twice the other, they have a signature of what is called a 2:1 orbital resonance, where astronomers expect to see large timing variation, due to the orbital gravitational push and pull the systems has on all the objects.

“The variation in transit times depend upon the masses of the planets,” Holman told reporters in a news conference announcing the findings. “The larger the mass the larger the variations. These variations allows us to determine the mass of the objects and we can confirm that they are planets.”

The team also confirmed the objects were planets with radial velocity observations with the Keck I telescope.

The third planet, with a mass several times that of the Earth, is transiting the star in a more interior orbit, but further analysis will be necessary to confirm that this signature is actually a planet.

“We are being very careful at this point to only call it a planet candidate, rather than a confirmed planet,” Holman said. “If it is confirmed it would only have a radius of about 1.5 that of Earth’s. It has a much shorter orbital period of 1.6 days, so it is very close to its host star, so we should be able to see evidence of many transits.”

Holman added that this discovery — regardless of whether they are able to confirm that this is a planet or not — highlights the sensitivity of Kepler to very small signatures.

Holman said the planets have probably migrated to be closer to the star from where they started out when they formed. “Likely they formed with the star, but likely they formed farther out at the “snow line” several times farther away from the star than the Earth is, and by a dynamical process move in closer,” he said in the Science podcast.

The resonance is a signature that some kind of migration had occurred, called convergent migration, where planets are moving towards the star and also coming closer to each other.

From all the transit timing information that has been gathered so far, astronomers are piecing together the migration history of this planetary system. “The whole history of that system may be encoded in the information we have,” said Alycia Weinberger, from the Department of Terrestrial Magnetism at the Carnegie Institution. “Isn’t it cool that what the planetary system looks like today has much to tell us about its history?”.

Kepler looks for the signatures of planets by measuring tiny decreases in the brightness of stars when planets cross in front of, or transit them. The size of the planet can be derived from the change in the star’s brightness. In June, mission scientists announced the mission has identified more than 700 planet candidates, including five systems with more than one planet candidate. This is the first of those systems to be confirmed.

Kepler principal investigator William Borucki said the team is working hard to get these candidates “turned into confirmed planets.”

Asked about why the public seems to be so interested in the Kepler mission, Borucki said, “We addressing a very important question, which is, are there other earths out there and are they frequent? Any answer is important. If we get zero that might mean there is very little life out there in the universe.”

Sources: Science, AAAS Science podcast, NASA,

The Milky Way Could have Billions of Earths

Exoplanets like the Earth might be more common than we think. Image Credit: ESO

With the upcoming launch in March of the Kepler mission to find extrasolar planets, there is quite a lot of buzz about the possibility of finding habitable planets outside of our Solar System. Kepler will be the first satellite telescope with the capability to find Earth-size and smaller planets. At the most recent meeting of the American Association for the Advancement of Science (AAAS) in Chicago, Dr. Alan Boss is quoted by numerous media outlets as saying that there could be billions of Earth-like planets in the Milky Way alone, and that we may find an Earth-like planet orbiting a large proportion of the stars in the Universe.

“There are something like a few dozen solar-type stars within something like 30 light years of the sun, and I would think that a good number of those — perhaps half of them would have Earth-like planets. So, I think there’s a very good chance that we’ll find some Earth-like planets within 10, 20, or 30 light years of the Sun,” Dr. Boss said in an AAAS podcast interview.

Dr. Boss is an astronomer at the Carnegie Institution of Washington Department of Terrestrial Magnetism, and is the author of The Crowded Universe, a book on the likelihood of finding life and habitable planets outside of our Solar System.

“Not only are they probably habitable but they probably are also going to be inhabited. But I think that most likely the nearby ‘Earths’ are going to be inhabited with things which are perhaps more common to what Earth was like three or four billion years ago,” Dr. Boss told the BBC. In other words, it’s more likely that bacteria-like lifeforms abound, rather than more advanced alien life.

This sort of postulation about the existence of extraterrestrial life (and intelligence) falls under the paradigm of the Drake Equation, named after the astronomer Frank Drake. The Drake Equation incorporates all of the variables one should take into account when trying to calculate the number of technologically advanced civilizations elsewhere in the Universe. Depending on what numbers you put into the equation, the answer ranges from zero to trillions. There is wide speculation about the existence of life elsewhere in the Universe.

To date, the closest thing to an Earth-sized planet discovered outside of our Solar System is CoRoT-Exo-7b, with a diameter of less than twice that of the Earth.

The speculation by Dr. Boss and others will be put to the test later this year when the Kepler satellite gets up and running. Set to launch on March 9th, 2009, the Kepler mission will utilize a 0.95 meter telescope to view one section of the sky containing over 100,000 stars for the entirety of the mission, which will last at least 3.5 years.

The prospect of life existing elsewhere is exciting, to be sure, and we’ll be keeping you posted here on Universe Today when any of the potentially billions of Earth-like planets are discovered!

Source: BBC, EurekAlert