Vortex Coronagraph A Game Changer For Seeing Close In Exoplanets

The vortex coronagraph at the Keck Observatory captured this image of the protoplanetary disk surrounding the young star HD 141569. which is about 380 light years from Earth. Image: NASA/JPL-Caltech

The study of exoplanets has advanced a great deal in recent years, thanks in large part to the Kepler mission. But that mission has its limitations. It’s difficult for Kepler, and for other technologies, to image regions close to their stars. Now a new instrument called a vortex coronagraph, installed at Hawaii’s Keck Observatory, allows astronomers to look at protoplanetary disks that are in very close proximity to the stars they orbit.

The problem with viewing disks of dust, and even planets, close to their stars is that stars are so much brighter than objects that orbit them. Stars can be billions of times brighter than the planets near them, making it almost impossible to see them in the glare. “The power of the vortex lies in its ability to image planets very close to their star, something that we can’t do for Earth-like planets yet,” said Gene Serabyn of NASA’s Jet Propulsion Laboratory (JPL). “The vortex coronagraph may be key to taking the first images of a pale blue dot like our own.”

“The power of the vortex lies in its ability to image planets very close to their star, something that we can’t do for Earth-like planets yet.” – Gene Serabyn, JPL.

“The vortex coronagraph allows us to peer into the regions around stars where giant planets like Jupiter and Saturn supposedly form,” said Dmitri Mawet, research scientist at NASA’s Jet Propulsion Laboratory and Caltech, both in Pasadena. “Before now, we were only able to image gas giants that are born much farther out. With the vortex, we will be able to see planets orbiting as close to their stars as Jupiter is to our sun, or about two to three times closer than what was possible before.”

Rather than masking the light of stars, like other methods of viewing exoplanets, the vortex coronagraph redirects light away from the detectors by combining light waves and cancelling them out. Because there is no occulting mask, the vortex coronagraph can capture images of regions much closer to stars than other coronagraphs can. Dmitri Mawet, research scientist who invented the new coronagraph, compares it to the eye of a storm.

The vortex mask shown at left is made out of synthetic diamond. When viewed with a scanning electron microscope, right, the "vortex" microstructure of the mask is revealed. Image credit: University of Liège/Uppsala University
The vortex mask shown at left is made out of synthetic diamond. When viewed with a scanning electron microscope, right, the “vortex” microstructure of the mask is revealed. Image credit: University of Liège/Uppsala University

“The instrument is called a vortex coronagraph because the starlight is centered on an optical singularity, which creates a dark hole at the location of the image of the star,” said Mawet. “Hurricanes have a singularity at their centers where the wind speeds drop to zero — the eye of the storm. Our vortex coronagraph is basically the eye of an optical storm where we send the starlight.”

The results from the vortex coronagraph are presented in two papers (here and here) published in the January 2017 Astronomical Journal. One of the studies was led by Gene Serabyn of JPL, who is also head of the Keck vortex project. That study presented the first direct image of HIP79124 B, a brown dwarf that is 23 AU from its star, in the star-forming region called Scorpius-Centaurus.

The vortex coronagraph captured this image of the brown dwarf PIA21417.
The vortex coronagraph captured this image of the brown dwarf PIA21417. Image: NASA/JPL-Caltech

“The ability to see very close to stars also allows us to search for planets around more distant stars, where the planets and stars would appear closer together. Having the ability to survey distant stars for planets is important for catching planets still forming,” said Serabyn.

“Having the ability to survey distant stars for planets is important for catching planets still forming.” – Gene Serabyn, JPL.

The second of the two vortex studies presented images of a protoplanetary disk around the young star HD141569A. That star actually has three disks around it, and the coronagraph was able to capture an image of the innermost ring. Combining the vortex data with data from the Spitzer, WISE, and Herschel missions showed that the planet-forming material in the disk is made up pebble-size grains of olivine. Olivine is one of the most abundant silicates in Earth’s mantle.

“The three rings around this young star are nested like Russian dolls and undergoing dramatic changes reminiscent of planetary formation,” said Mawet. “We have shown that silicate grains have agglomerated into pebbles, which are the building blocks of planet embryos.”

These images and studies are just the beginning for the vortex coronagraph. It will be used to look at many more young planetary systems. In particular, it will look at planets near so-called ‘frost lines’ in other solar systems. The is the region around star systems where it’s cold enough for molecules like water, methane, and carbon dioxide to condense into solid, icy grains. Current thinking says that the frost line is the dividing line between where rocky planets and gas planets are formed. Astronomers hope that the coronagraph can answer questions about hot Jupiters and hot Neptunes.

Hot Jupiters and Neptunes are large gaseous planets that are found very close to their stars. Astronomers want to know if these planets formed close to the frost line then migrated inward towards their stars, because it’s impossible for them to form so close to their stars. The question is, what forces caused them to migrate inward? “With a bit of luck, we might catch planets in the process of migrating through the planet-forming disk, by looking at these very young objects,” Mawet said.

Eris’ Moon Dysnomia

Tenth planet? Artists concept of the view from Eris with Dysnomia in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)

Ask a person what Dysnomia refers to, and they might venture that it’s a medical condition. In truth, they would be correct. But in addition to being a condition that affects the memory (where people have a hard time remembering words and names), it is also the only known moon of the distant dwarf planet Eris.

In fact, the same team that discovered Eris a decade ago – a discovery that threw our entire notion of what constitutes a planet into question – also discovered a moon circling it shortly thereafter. As the only satellite that circles one of the most distant objects in our Solar System, much of what we know about this ball of ice is still subject to debate.

Discovery and Naming:

In January of 2005, astronomer Mike Brown and his team discovered Eris using the new laser guide star adaptive optics system at the W. M. Keck Observatory in Hawaii. By September, Brown and his team were conducting observations of the four brightest Kuiper Belt Objects – which at that point included Pluto, Makemake, Haumea, and Eris – and found indications of an object orbiting Eris.

Provisionally, this body was designated S/2005 1 (2003 UB³¹³). However, in keeping with the Xena nickname that his team was already using for Eris, Brown and his colleagues nicknamed the moon “Gabrielle” after Xena’s sidekick. Later, Brown selected the official name of Dysnomia for the moon, which seemed appropriate for a number of reasons.

For one, this name is derived from the daughter of the Greek god Eris – a daemon who represented the spirit of lawlessness – which was in keeping with the tradition of naming moons after lesser gods associated with the primary god. It also seemed appropriate since the “lawless” aspect called to mind actress Lucy Lawless, who portrayed Xena on television. However, it was not until the IAU’s resolution on what defined a planet – passed in August of 2006 – that the planet was officially designated as Dysnomia.

Size, Mass and Orbit:

The actual size of Dysnomia is subject to dispute, and estimates are based largely on the planet’s albedo relative to Eris. For example, the IAU and Johnston’s Asteroids with Satellites Database estimate that it is 4.43 magnitudes fainter than Eris and has an approximate diameter of between 350 and 490 km (217 – 304 miles)

However, Brown and his colleagues have stated that their observations indicate it to be 500 times fainter and between 100 and 250 km (62 – 155 miles) in diameter. Using the Herschel Space Observatory in 2012, Spanish astronomer Pablo Santo Sanz and his team determined that, provided Dysnomia has an albedo five times that of Eris, it is likely to be 685±50 km in diameter.

Forget about Pluto for a moment. Should Eris be our tenth Planet? Like Pluto it has a prominent moon- Dysnomia. Human perception and conceptions of the Universe have shaped our view of the Solar System. The Ptolemaic system (Earth centered), Kepler's Harmonic Spheres, even the fact that ten digits reside on our hands impact our impression of the Solar System (Photo Credits:NASA/ESA and M. Brown / Caltech)
Eris and its moon, Dysnomia, as imaged by the W.M. Keck Observatory in Hawaii. Credits:NASA/ESA and M. Brown/Caltech

In 2007, Brown and his team also combined Keck and Hubble observations to determine the mass of Eris, and estimate the orbital parameters of the system. From their calculations, they determined that Dysnomia’s orbital period is approximately 15.77 days. These observations also indicated that Dysnomia has a circular orbit around Eris, with a radius of 37350±140 km. In addition to being a satellite of a dwarf planet, Dysnomia is also a Kuiper Belt Object (KBO) like Eris.

Composition and Origin:

Currently, there is no direct evidence to indicate what Dysnomia is made of. However, based on observations made of other Kuiper Belt Objects, it is widely believed that Dysnomia is composed primarily of ice. This is based largely on infrared observations made of Haumea (2003 EL61), the fourth largest object in the Kuiper Belt (after Eris, Pluto and Makemake) which appears to be made entirely of frozen water.

Astronomers now know that three of the four brightest KBOs – Pluto, Eris and Haumea – have one or more satellites. Meanwhile, of the fainter members, only about 10% are known to have satellites. This is believed to imply that collisions between large KBOs have been frequent in the past. Impacts between bodies of the order of 1000 km across would throw off large amounts of material that would coalesce into a moon.

This is an artist's concept of Kuiper Belt object Eris and its tiny satellite Dysnomia. Eris is the large object at the bottom of the illustration. A portion of its surface is lit by the Sun, located in the upper left corner of the image. Eris's moon, Dysnomia, is located just above and to the left of Eris. The Hubble Space Telescope and Keck Observatory took images of Dysnomia's movement from which astronomer Mike Brown (Caltech) precisely calculated Eris to be 27 percent more massive than Pluto. Artwork Credit: NASA, ESA, Adolph Schaller (for STScI)
Artist’s concept of Kuiper Belt Object Eris and its tiny satellite Dysnomia. The Hubble Space Telescope and Keck Observatory took images of Dysnomia’s movement from which astronomer Mike Brown (Caltech) precisely calculated Eris to be 27 percent more massive than Pluto. Credit: NASA/ESA/Adolph Schaller (for STScI)

This could mean that Dysnomia was the result of a collision between Eris and a large KBO. After the impact, the icy material and other trace elements that made up the object would have evaporated and been ejected into orbit around Eris, where it then re-accumulated to form Dysnomia. A similar mechanism is believed to have led to the formation of the Moon when Earth was struck by a giant impactor early in the history of the Solar System.

Since its discovery, Eris has lived up to its namesake by stirring things up. However, it has also helped astronomers to learn many things about this distant region of the Solar System. As already mentioned, astronomers have used Dysnomia to estimate the mass of Eris, which in turn helped them to compare it to Pluto.

While astronomers already knew that Eris was bigger than Pluto, but they did not know whether it was more massive. This they did by measuring the distance between Dysnomia and how long it takes to orbit Eris. Using this method, astronomers were able to discover that Eris is 27% more massive than Pluto is.

With this knowledge in hand, the IAU then realized that either Eris needed to be classified as a planet, or that the term “planet” itself needed to be refined. Ergo, one could make that case that it was the discovery of Dysnomia more than Eris that led to Pluto no longer being designated a planet.

Universe Today has articles on Xena named Eris and The Dwarf Planet Eris. For more information, check out Dysnomia and dwarf planet outweighs Pluto.

Astronomy Cast has an episode on Pluto’s planetary identity crisis.


Power Up! Distant Uranus Sees A Storm Surge Of ‘Monstrous’ Proportions

Who can imagine Uranus as a quiet planet now? The Keck Observatory caught some spectacular pictures of the gas giant undergoing a large storm surge a few days ago, which took astronomers by surprise because the planet is well past the equinox in 2007, when the sun was highest above the equator.

“We are always anxious to see that first image of the night of any planet or satellite, as we never know what it might have in store for us,” stated Imke de Pater, an astronomer at the University of California, Berkeley that led the research.

“This extremely bright feature we saw on UT 6 August 2014 reminds me of a similarly bright storm we saw on Uranus’s southern hemisphere during the years leading up to and at equinox.”

Astronomers say the brightest of the storms is “monstrous” and reminds them of a dissipated feature nicknamed the “Berg”, since it looked a bit like an iceberg.

These two pictures of Uranus -- one in true color (left) and the other in false color -- were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. Image credit: NASA/JPL
These two pictures of Uranus — one in true color (left) and the other in false color — were compiled from images returned Jan. 17, 1986, by the narrow-angle camera of Voyager 2. Image credit: NASA/JPL

The Berg, which might have been there when one of the Voyager spacecraft flew by in 1986, moved between the southern latitudes of 32 and 36 degrees between 2000 and 2005. After getting brighter in 2004, it moved towards the equator and got even stronger, where it remained until falling apart in 2009. (You can see pictures of it here.)

“The present storm is even brighter than the Berg. Its morphology is rather similar, and the team expects it may also be tied to a vortex in the deeper atmosphere,” Keck stated. Based on how bright the storm appears, researchers believe it must be reaching high into the atmosphere, perhaps approaching the tropopause (just below the stratosphere)

Source: Keck Observatory

Hubble Spots Farthest Lensing Galaxy Yet

Sometimes there’s a chance alignment — faraway in the universe, where objects are separated by unimaginable distances measured in billions of light-years — when a galaxy cluster in the foreground intersects light from an even more distant object. The conjunction plays visual tricks, where the galaxy cluster acts like a lens, appearing to magnify and bend the distant light.

The rare cosmic alignment can bring the distant universe into view. Now, astronomers have stumbled upon a surprise: they’ve detected the most distant cosmic magnifying glass yet.

Seen above as it looked 9.6 billion years ago, this monster elliptical galaxy breaks the previous record holder by 200 million light-years. It’s bending, distorting and magnifying the distant spiral galaxy, whose light has taken 10.7 billion years to reach Earth.

“When you look more than 9 billion years ago in the early universe, you don’t expect to find this type of galaxy-galaxy lensing at all,” said lead researcher Kim-Vy Tran from Texas A&M University in a Hubble press release.

“Imagine holding a magnifying glass close to you and then moving it much farther away. When you look through a magnifying glass held at arm’s length, the chances that you will see an enlarged object are high. But if you move the magnifying glass across the room, your chances of seeing the magnifying glass nearly perfectly aligned with another object beyond it diminishes.”

The team was studying star formation in data collected by the W. M. Keck Observatory in Hawai’i, when they came across a strong detection of hot hydrogen gas that appeared to arise form a massive, bright elliptical galaxy. It struck the team as odd. Hot hydrogen is a clear sign of star birth, but it was detected in a galaxy that looked far too old to be forming new stars.

“I was very surprised and worried,” Tran recalled. “I thought we had made a major mistake with our observations.”

So Tran dug through archived Hubble images, which revealed a smeared, blue object next to the larger elliptical. It was the clear signature of a gravitational lens.

“We discovered that light from the lensing galaxy and from the background galaxy were blended in the ground-based data, which was confusing us,” said coauthor Ivelina Momcheva of Yale University. “The Keck spectroscopic data hinted that something interesting was going on here, but only with Hubble’s high-resolution spectroscopy were we able to separate the lensing galaxy from the more distant background galaxy and determine that the two were at different distances. The Hubble data also revealed the telltale look of the system, with the foreground lens in the middle, flanked by a bright arc on one side and a faint smudge on the other — both distorted images of the background galaxy. We needed the combination of imaging and spectroscopy to solve the puzzle.”

By gauging the intensity of the background galaxy’s light, the team was able to measure the giant galaxy’s total mass. All in all it weighs 180 billion times more than our Sun. Although this may seem big, it actually weighs four times less than the Milky Way galaxy.

“There are hundreds of lens galaxies that we know about, but almost all of them are relatively nearby, in cosmic terms,” said lead author Kenneth Wong from the Academia Sinica Institute of Astronomy & Astrophysics. “To find a lens as far away as this one is a very special discovery because we can learn about the dark-matter content of galaxies in the distant past. By comparing our analysis of this lens galaxy to the more nearby lenses, we can start to understand how that dark-matter content has evolved over time.”

Interestingly, the lensing galaxy is underweight in terms of its dark-matter content. In the past, astronomers have assumed that dark matter and normal matter build up equally in a galaxy over time. But this galaxy, suggests this is not the case.

The team’s results appeared in the July 10 issue of The Astrophysical Journal Letters and is available online.

Watch Live as Astronomers Look for Object ‘G2’ in Observing Run Webcast from the Keck Observatory

Wondering about the latest news on the intriguing object called ‘G2’ that is making its closest approach to the supermassive black hole at the center of our galaxy? You might be able to get the latest update on this object in real time during a rare live-streamed observing run from the W. M. Keck Observatory in Hawaii. Watch live above.

The two 10-meter Keck Observatory telescopes on the summit of Mauna Kea will be steered by astronomer Andrea Ghez and her team of observers from the UCLA Galactic Center Group for two nights to study our galaxy’s supermassive black hole, with an attempt to focus in on the enigmatic G2 to see if it is still intact. They’ll also be setting up a test for Einstein’s General Relativity and gathering more data on what they describe as The Paradox of Youth: young objects paradoxically developing around the black hole.

Here’s the time for the livestream in various timezones:

July 3, 2014 @ 9 pm – 10 pm Hawaii
July 4, 2014 @ Midnight – 1 am Pacific
July 4, 2014 @ 3 am – 4 am Eastern

The most previous observations by the Keck Observatory in Hawaii, according to an Astronomer’s Telegram from May 2, 2014 show that the gas cloud called ‘G2’ was surprisingly still intact, even during its closest approach to the supermassive black hole. This means G2 is not just a gas cloud, but likely has a star inside.

“We conclude that G2, which is currently experiencing its closest approach, is still intact, in contrast to predictions for a simple gas cloud hypothesis and therefore most likely hosts a central star,” said the May 2 Telegram. “Keck LGSAO observations of G2 will continue in the coming months to monitor how this unusual object evolves as it emerges from periapse passage.”

For additional info, see our two previous articles about G2:

Gas Cloud or Star? Mystery Object Heading Towards our Galaxy’s Supermassive Black Hole is Doomed
Object “G2? Still Intact at Closest Approach to Galactic Center, Astronomers Report

Nearby Brown Dwarf Captured in a Direct Image

A recent find announced by astronomers may go a long ways towards understanding a crucial “missing link” between planets and stars.

The team, led by Friemann Assistant Professor of Physics at the University of Notre Dame’s Justin R. Crepp, recently released an image of a brown dwarf companion to a star 98 light years or 30 parsecs distant. This discovery marks the first time that a T-dwarf orbiting a Sun-like star with known radial velocity acceleration measurement has been directly imaged.

Located in the constellation Eridanus, the object weighs in at about 52 Jupiter masses, and orbits a 0.95 Sol mass star 51 Astronomical Units (AUs) distant once every 320-1900 years. Note that this wide discrepancy stems from the fact that even though we’ve been following the object for some 17 years since 1996, we’ve yet to ascertain whether we’ve caught it near apastron or periastron yet: we just haven’t been watching it long enough.

The T-dwarf, known as HD 19467 B, may become a benchmark in the study of sub-stellar mass objects that span the often murky bridge between true stars shining via nuclear fusion and ordinary high mass planets.

Brown dwarfs are classified as spectral classes M, L, T, and Y and are generally quoted as having a mass of between 13 to 80 Jupiters. Brown dwarfs utilize a portion of the proton-proton chain fusion reaction to create energy, known as deuterium burning. Low mass red dwarf stars have a mass range of 80 to 628 Jupiters or 0.75% to 60% the mass of our Sun. The Sun has just over 1,000 times Jupiter’s mass.

Researchers used data from the TaRgeting bENchmark-objects with Doppler Spectroscopy (TRENDS) high-contrast imaging survey, and backed it up with more precise measurements courtesy of the Keck observatory’s High-Resolution Echelle Spectrometer or HIRES instrument.

An artist's conception of a T-type brown dwarf. (Credit: Tyrogthekreeper under a Wikimedia Commons Attribution-Share Alike 3.0 Unported license).
An artist’s conception of a T-type brown dwarf. (Credit: Tyrogthekreeper under a Wikimedia Commons Attribution-Share Alike 3.0 Unported license).

TRENDS uses adaptive optics, which relies on precise flexing the telescope mirror several thousands of times a second to compensate for the blurring effects of the atmosphere. Brown dwarfs shine mainly in the infrared, and objects such as HD 19467 B are hard to discern due to their close proximity to their host star. In this particular instance, for example, HD 19467 B was over 10,000 times fainter than its primary star, and located only a little over an arc second away.

“This object is old and cold and will ultimately garner much attention as one of the most well-studied and scrutinized brown dwarfs detected to date,” Crepp said in a recent Keck observatory press release. “With continued follow-up observations, we can use it as a laboratory to test theoretical atmospheric models. Eventually we want to directly image and acquire the spectrum of Earth-like planets. Then, from the spectrum, we should be able to tell what the planet is made of, what its mass is, radius, age, etc… basically all of its relevant properties.

Discovery of an Earth-sized exoplanet orbiting in a star’s habitable zone is currently the “holy grail” of exoplanet science. Direct observation also allows us to pin down those key factors, as well as obtain a spectrum of an exoplanet, where detection techniques such as radial velocity analysis only allow us to peg an upper mass limit on the unseen companion object.

This also means that several exoplanet candidates in the current tally of 1074 known worlds beyond our solar system also push into the lower end of the mass limit for substellar objects, and may in fact be low mass brown dwarfs as well.

Another key player in the discovery was the Near-Infrared Camera (second generation) or NIRC2. This camera works in concert with the adaptive optics system on the Keck II telescope to achieve images in the near infrared with a better resolution than Hubble at optical wavelengths, perfect for brown dwarf hunting. NIRC2 is most well known for its analysis of stellar regions near the supermassive black hole at the core of our galaxy, and has obtained some outstanding images of objects in our solar system as well.

The hexagonal primary mirror of the Keck II telescope. (Credit: SiOwl. A Wikimedia Commons image under a Creative Commons Attribution 3.0 Unported liscense).
The hexagonal primary mirror of the Keck II telescope. (Credit: SiOwl. A Wikimedia Commons image under a Creative Commons Attribution 3.0 Unported license).

What is the significance of the find? Free floating “rogue” brown dwarfs have been directly imaged before, such as the pair named WISE J104915.57-531906 which are 6.5 light years distant and were spotted last year. A lone 6.5 Jupiter mass exoplanet PSO J318.5-22 was also found last year by the PanSTARRS survey searching for brown dwarfs.

“This is the first directly imaged T-dwarf (very cold brown dwarf) for which we have dynamical information independent of its brightness and spectrum,” team lead researcher Justin Crepp told Universe Today.

Analysis of brown dwarfs is significant to exoplanet science as well.

“They serve as an essential link between our understanding of stars and planets,” Mr. Crepp said. “The colder, the better.”

And just as there has been a controversy over the past decade concerning “planethood” at the low end of the mass scale, we could easily see the debate applied to the higher end range, as objects are discovered that blur the line… perhaps, by the 23rd century, we’ll finally have a Star Trek-esque classifications scheme in place so that we can make statements such as “Captain, we’ve entered orbit around an M-class planet…”

Something that’s always been fascinating in terms of red and brown dwarf stars is also the possibility that a solitary brown dwarf closer to our solar system than Alpha Centauri could have thus far escaped detection. And no, Nibiru conspiracy theorists need not apply. Mr. Crepp notes that while possible, such an object is unlikely to have escaped detection by infrared surveys such as WISE. But what a discovery that’d be!



Major Volcanic Eruption Seen on Jupiter’s Moon Io

Recent observations of Jupiter’s moon Io has revealed a massive volcanic eruption taking place 628,300,000 km (390,400,000 miles) from Earth. Io, the innermost of the four largest moons around Jupiter, is the most volcanically active object in the Solar System with about 240 active regions. But this new one definitely caught the eye of Dr. Imke de Pater, Professor of Astronomy and of Earth and Planetary Science at the University of California in Berkeley. She was using the Keck II telescope on Mauna Kea in Hawaii on August 15, 2013 when it immediately became apparent something big was happening at Io.

“When you are right at the telescope and see the data, this is something you can see immediately, especially with a big eruption like that,” de Pater told Universe Today via phone.

de Pater said this eruption is one of the top 10 most powerful eruptions that have been seen on this moon. “It is a very energetic eruption that covers over a 30 square kilometer area,” she said. “For Earth, that is big, and for Io it is very big too. It really is one of the biggest eruptions we have seen.”

She added the new volcano appears to have a large energy output. “We saw a big eruption in 2001, which was in the Surt region, which is well known as the biggest one anyone has ever seen,” she said. “For this one, the total energy is less but per square meter, it is bigger than the one in 2001, so it is very powerful.”

While Io’s eruptions can’t be seen directly from Earth,infrared cameras on the Keck telescope (looking between 1 and 5 microns) have been able to ascertain there are likely fountains of lava gushing from fissures in the Rarog Patera region of Io, aptly named for a Czech fire deity.

While many regions of Io are volcanically active, de Pater said she’s not been able to find any other previous activity that has been reported in the Rarog Patera area, which the team finds very interesting.

Ashley Davies of NASA’s Jet Propulsion Laboratory in Pasadena, California and a member of the observing team told Universe Today that Rarog Patera was identified as a small, relatively innocuous hot spot previously in Galileo PPR data and possibly from Earth, but at a level way, way below what was seen on August 15, and reported in New Scientist.

de Pater and other astronomers will be taking more data soon with Keck and perhaps more telescopes to try and find out more about this massive eruption.

“We never know about eruptions – they can last hours, days months or years, so we have no idea how long it will stay active,” she said, “but we are very excited about it.”

No data or imagery has been released on the new eruption yet since the team is still making their observations and will be writing a paper on this topic.

Scientists think a gravitational tug-of-war with Jupiter is one cause of Io’s intense vulcanism.

Rain is Falling from Saturn’s Rings

Astronomers have known for years there was water in Saturn’s upper atmosphere, but they weren’t sure exactly where it was coming from. New observations have found water is raining down on Saturn, and it is coming from the planet’s rings.

“Saturn is the first planet to show significant interaction between its atmosphere and ring system,” said James O’Donoghue, a postgraduate researcher at the University of Leicester and author of a new paper published in the journal Nature. “The main effect of ring rain is that it acts to ‘quench’ the ionosphere of Saturn, severely reducing the electron densities in regions in which it falls.”

Using the Keck Observatory, O’Donoghue and a team of researchers found charged water particles falling from the planet’s rings into Saturn’s atmosphere. They also found the extent of the ring-rain is far greater, and falls across larger areas of the planet, than previously thought. The work reveals the rain influences the composition and temperature structure of parts of Saturn’s upper atmosphere.

O’Donoghue said the ring’s effect on electron densities is important because it explains why, for many decades, observations have shown electron densities to be unusually low at some latitudes at Saturn.

“It turns out a major driver of Saturn’s ionospheric environment and climate across vast reaches of the planet are ring particles located 120,000 miles [200,000 kilometers] overhead,” said Kevin Baines, a co-author on the paper, from the Jet Propulsion Laboratory. “The ring particles affect which species of particles are in this part of the atmospheric temperature.”

In the early 1980s, images from NASA’s Voyager spacecraft showed two to three dark bands on Saturn and scientists theorized that water could have been showering down into those bands from the rings. Then astronomers using ESA’s Infrared Observatory discovered the presence of trace amounts of water in Saturn’s atmosphere back in 1997, but couldn’t really find an explanation for why it was there and how it got there.

Then in 2011 observations with the Herschel space observatory determined water ice from geysers on Enceladus formed a giant ring of water vapor around Saturn.

But the bands seen by Voyager were not seen again until 2011 as well, when the team observed the planet with Keck Observatory’s NIRSPEC, a near-infrared spectrograph that combines broad wavelength coverage with high spectral resolution, allowing the observers to clearly see subtle emissions from the bright parts of Saturn.

The ring rain’s effect occurs in Saturn’s ionosphere (Earth has a similar ionosphere), where charged particles are produced when the otherwise neutral atmosphere is exposed to a flow of energetic particles or solar radiation. When the scientists tracked the pattern of emissions of a particular hydrogen molecule consisting of three hydrogen atoms (rather than the usual two), they expected to see a uniform planet-wide infrared glow.

What they observed instead was a series of light and dark bands with a pattern mimicking the planet’s rings. Saturn’s magnetic field “maps” the water-rich rings and the water-free gaps between rings onto the planet’s atmosphere.

They surmised that charged water particles from the planet’s rings were being drawn towards the planet by Saturn’s magnetic field and neutralizing the glowing triatomic hydrogen ions. This leaves large “shadows” in what would otherwise be a planet-wide infrared glow. These shadows cover 30 to 43 percent of the planet’s upper atmosphere surface from around 25 to 55 degrees latitude. This is a significantly larger area than suggested by the Voyager images.

Both Earth and Jupiter have a very uniformly glowing equatorial region. Scientists expected this pattern at Saturn, too, but they instead saw dramatic differences at different latitudes.

“Where Jupiter is glowing evenly across its equatorial regions, Saturn has dark bands where the water is falling in, darkening the ionosphere,” said Tom Stallard, one of the paper’s co-authors at Leicester. “We’re now also trying to investigate these features with an instrument on NASA’s Cassini spacecraft. If we’re successful, Cassini may allow us to view in more detail the way that water is removing ionized particles, such as any changes in the altitude or effects that come with the time of day.”

Sources: Keck Observatory
, Nature.

Exoplanet Atmospheres Provide Clues to Solar System Formation

The most detailed look yet at the atmosphere of a distant exoplanet has revealed a mixture of water vapor and carbon monoxide blanketing a world ten times the size of Jupiter about 130 light years away from Earth. But even with water present on this world, it is incredibly hostile to life. Like Jupiter, it has no solid surface, and it has a temperature of more than a thousand degree. Additionally, no tell-tale methane signals were detected in the atmosphere. But this solar system is still of great interest, as three other giant worlds orbit the same star and scientists said studying this system will not only help solve mysteries of how it was formed, but also how our own solar system formed as well.

The observations were made at the Keck II telescope in Hawaii, using an infrared imaging spectrograph called OSIRIS, which was able to uncover the chemical fingerprints of specific molecules.

“This is the sharpest spectrum ever obtained of an extrasolar planet,” said Dr. Bruce Macintosh, from the Lawrence Livermore National Laboratory. “This shows the power of directly imaging a planetary system. It is the exquisite resolution afforded by these new observations that has allowed us to really begin to probe planet formation.”

“With this level of detail,” said co-author Travis Barman from the Lowell Observatory, “we can compare the amount of carbon to the amount of oxygen present in the atmosphere, and this chemical mix provides clues as to how the planetary system formed.”

Artist’s rendering of HR 8799c at an early stage in the evolution of the planetary system, showing the planet, a disk of gas and dust, rocky inner planets, and HR 8799. Credit: Dunlap Institute for Astronomy & Astrophysics
Artist’s rendering of HR 8799c at an early stage in the evolution of the planetary system, showing the planet, a disk of gas and dust, rocky inner planets, and HR 8799.
Credit: Dunlap Institute for Astronomy & Astrophysics

The planets around the star, known as HR 8799, weigh in between five to 10 times the mass of Jupiter and are still glowing in infrared with the heat of their formation. The research team says their observations suggest the solar system was created in a similar way to our own, with gas giants forming far away from their parent star and smaller, rocky planets closer in. However, no Earth-like rocky planets have yet been detected in this system.

“The results suggest the HR 8799 system is like a scaled-up Solar System,” said Quinn Kanopacky, an astronomer from the University of Toronto in Canada. “Once the solid cores grew large enough, their gravity quickly attracted surrounding gas to become the massive planets we see today. Since that gas had lost some of its oxygen, the planet ends up with less oxygen and less water than if it had formed through a gravitational instability.”

There are two leading models of planetary formation: core accretion and gravitational instability. When stars form, a planet-forming disk surrounds them. With core accretion, planets form gradually as solid cores slowly grow big enough to start acquiring gas from the disk, while in the gravitational instability model, planets form almost instantly as the disk collapses on itself.

Properties such as the composition of a planet’s atmosphere are clues to how the planet formed, and in this case core accretion seems to win out. Although there was evidence of water vapor, that signature is weaker than would be expected if the planet shared the composition of its parent star. Instead, the planet has a high ratio of carbon to oxygen – a fingerprint of its formation in the gaseous disk tens of millions of years ago. As the gas cooled with time, grains of water ice formed, depleting the remaining gas of oxygen. Planetary formation then began when ice and solids collected into planetary cores.

“Once the solid cores grew large enough, their gravity quickly attracted surrounding gas to become the massive planets we see today,” said Konopacky. “Since that gas had lost some of its oxygen, the planet ends up with less oxygen and less water than if it had formed through a gravitational instability.”

“Spectral information of this quality not only provides clues about the formation of the HR8799 planets but also provides the guidance we need to improve our theoretical understanding of exoplanet atmospheres and their early evolution,” said Barman. “The timing of this work could not be better as it comes on the heels of new instruments that will image dozens more exoplanets, orbiting other stars, that we can study in similar detail.”

This system was also the study as part of remote reconnaissance imaging with Project 1640. The video below explains more:

Source: Keck Observatory

Evidence for a Deep Ocean on Europa Might be Found on its Surface

Astronomer Mike Brown and his colleague Kevin Hand might be suffering from “Pump Handle Phobia,” as radio personality Garrison Keillor calls it, where those afflicted just can’t resist putting their tongues on something frozen to see if it will stick. But Brown and Hand are doing it all in the name of science, and they may have found the best evidence yet that Europa has a liquid water ocean beneath its icy surface. Better yet, that vast subsurface ocean may actually shoot up to Europa’s surface, on occasion.

In a recent blog post, Brown pondered what it would taste like if he could lick the icy surface of Jupiter’s moon Europa. “The answer may be that it would taste a lot like that last mouthful of water that you accidentally drank when you were swimming at the beach on your last vacation. Just don’t take too long of a taste. At nearly 300 degrees (F) below zero your tongue will stick fast.”

His ponderings were based on a new paper by Brown and Hand which combined data from the Galileo mission (1989 to 2003) to study Jupiter and its moons, along with new spectroscopy data from the 10-meter Keck II telescope in Hawaii.

The study suggests there is a chemical exchange between the ocean and surface, making the ocean a richer chemical environment.

“We now have evidence that Europa’s ocean is not isolated—that the ocean and the surface talk to each other and exchange chemicals,” said Brown, who is an astronomer and professor of planetary astronomy at Caltech. “That means that energy might be going into the ocean, which is important in terms of the possibilities for life there. It also means that if you’d like to know what’s in the ocean, you can just go to the surface and scrape some off.”

“The surface ice is providing us a window into that potentially habitable ocean below,” said Hand, deputy chief scientist for solar system exploration at JPL.

Europa’s ocean is thought to cover the moon’s whole globe and is about 100 kilometers (60 miles) thick under a thin ice shell. Since the days of NASA’s Voyager and Galileo missions, scientists have debated the composition of Europa’s surface.

Salts were detected in the Galileo data – “Not ‘salt’ as in the sodium chloride of your table salt,” Brown wrote in his blog, “Mike Brown’s Planets,” “but more generically ‘salts’ as in ‘things that dissolve in water and stick around when the water evaporates.’”

That idea was enticing, Brown said, because if the surface is covered by things that dissolve in water, that strongly implies that Europa’s ocean water has flowed on the surface, evaporated, and left behind salts.

But there were other explanations for the Galileo data, as Europa is constantly bombarded by sulfur from the volcanoes on Io, and the spectrograph that was on the Galileo spacecraft wasn’t able to tell the difference between salts and sulfuric acid.

But now, with data from the Keck Observatory, Brown and Hand have identified a spectroscopic feature on Europa’s surface that indicates the presence of a magnesium sulfate salt, a mineral called epsomite, that could have formed by oxidation of a mineral likely originating from the ocean below.

This view of Jupiter's moon Europa features several regional-resolution mosaics overlaid on a lower resolution global view for context. The regional views were obtained during several different flybys of the moon by NASA's Galileo mission.  Image credit: NASA/JPL-Caltech/University of Arizona.
This view of Jupiter’s moon Europa features several regional-resolution mosaics overlaid on a lower resolution global view for context. The regional views were obtained during several different flybys of the moon by NASA’s Galileo mission. Image credit: NASA/JPL-Caltech/University of Arizona.

Brown and Hand started by mapping the distribution of pure water ice versus anything else. The spectra showed that even Europa’s leading hemisphere contains significant amounts of non-water ice. Then, at low latitudes on the trailing hemisphere — the area with the greatest concentration of the non-water ice material — they found a tiny, never-before-detected dip in the spectrum.

The two researchers tested everything from sodium chloride to Drano in Hand’s lab at JPL, where he tries to simulate the environments found on various icy worlds. At the end of the day, the signature of magnesium sulfate persisted.

The magnesium sulfate appears to be generated by the irradiation of sulfur ejected from the Jovian moon Io and, the authors deduce, magnesium chloride salt originating from Europa’s ocean. Chlorides such as sodium and potassium chlorides, which are expected to be on the Europa surface, are in general not detectable because they have no clear infrared spectral features. But magnesium sulfate is detectable. The authors believe the composition of Europa’s ocean may closely resemble the salty ocean of Earth.

While no one is going to be traveling to Europa to lick its surface, for now, astronomers will continue to use the modern giant telescopes on Earth to continue to “take spectral fingerprints of increasing detail to finally understand the mysterious details of the salty ocean beneath the ice shell of Europa,” Brown said.

Also, NASA is looking into options to explore Europa further. (Universe Today likes the idea of a big drill or submarine!)

But in the meantime what happens next? “We look for chlorine, I think,” Brown wrote. “The existence of chlorine as one of the main components of the non-water-ice surface of Europa is the strongest prediction that this hypothesis makes. We have some ideas on how we might look; we’re working on them now. Stay tuned.”

Read Brown & Hand’s paper.

Sources: Mike Brown’s Planets, Keck Observatory, JPL