Weekly Space Hangout – Nov. 21, 2014: New Images of Europa

Host: Fraser Cain (@fcain)

Guests:
Morgan Rehnberg (cosmicchatter.org / @cosmic_chatter)
Brian Koberlein (@briankoberlein)
Ramin Skibba (@raminskibba)
Dave Dickinson (@astroguyz / www.astroguyz.com)

Continue reading “Weekly Space Hangout – Nov. 21, 2014: New Images of Europa”

James Webb Space Telescope’s Pathfinder Mirror Backplane Arrives at NASA Goddard for Critical Assembly Testing

The central piece of the “pathfinder” backplane that will hold all the mirrors for NASA’s James Webb Space Telescope (JWST) has arrived at the agency’s Goddard Space Flight Center in Maryland for critical assembly testing on vital parts of the mammoth telescope.

The pathfinder backplane arrived at Goddard in July and has now been hoisted in place onto a huge assembly stand inside Goddard’s giant cleanroom where many key elements of JWST are being assembled and tested ahead of the launch scheduled for October 2018.

The absolutely essential task of JWST’s backplane is to hold the telescopes 18 segment, 21-foot-diameter primary mirror nearly motionless while floating in the utterly frigid space environment, thereby enabling the telescope to peer out into deep space for precise science gathering measurements never before possible.

Over the next several months, engineers will practice installing two spare primary mirror segments and one spare secondary mirror onto the center part of the backplane.

JWST is being assembled here inside the world’s largest clean room at NASA Goddard Space Flight Center, Greenbelt, Md. Primary mirror segments stored in silver colored containers at top left. Technicians practice mirror installation on test piece of backplane (known as the BSTA or Backplane Stability Test Article) at center, 3 hexagonals.  Telescope assembly bays at right.  Credit: Ken Kremer- kenkremer.com
JWST pathfinder backplane has arrived here at NASA Goddard clean room.
JWST is being assembled here inside the world’s largest clean room at NASA Goddard Space Flight Center, Greenbelt, Md. Primary mirror segments stored in silver colored containers at top left. Technicians practice mirror installation on test piece of backplane (known as the BSTA or Backplane Stability Test Article) at center, 3 hexagonals. Pathfinder backplane has been hoisted into telescope assembly bays at right. Credit: Ken Kremer- kenkremer.com

The purpose is to gain invaluable experience practicing the delicate procedures required to precisely install the hexagonal shaped mirrors onto the actual flight backplane unit after it arrives.

The telescopes primary and secondary flight mirrors have already arrived at Goddard.

The mirrors must remained precisely aligned in space in order for JWST to successfully carry out science investigations. While operating at extraordinarily cold temperatures between -406 and -343 degrees Fahrenheit the backplane must not move more than 38 nanometers, approximately 1/1,000 the diameter of a human hair.

The backplane and every other component must function and unfold perfectly and to precise tolerances in space because JWST has not been designed for servicing or repairs by astronaut crews voyaging beyond low-Earth orbit into deep space, William Ochs, Associate Director for JWST at NASA Goddard told me in an interview during a visit to JWST at Goddard.

Watch this video showing movement of the pathfinder backplane into the Goddard cleanroom.

Video Caption: This is a time-lapse video of the center section of the ‘pathfinder’ backplane for NASA’s James Webb Space Telescope being moved into the clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Credit: NASA/Chris Gunn

The actual flight backplane is comprised of three segments – the main central segment and a pair of outer wing-like parts which will be folded over into launch configuration inside the payload fairing of the Ariane V ECA booster rocket. The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.

Both the backplane flight unit and the pathfinder unit, which consists only of the center part, are being assembled and tested by prime contractor Northrop Grumman in Redondo Beach, California.

Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room.  Credit: Ken Kremer- kenkremer.com
Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room. Credit: Ken Kremer- kenkremer.com

The test unit was then loaded into a C-5, flown to the U.S. Air Force’s Joint Base Andrews in Maryland and unloaded for transport by trailer truck to NASA Goddard in Greenbelt, Maryland.

JWST is the successor to the 24 year old Hubble Space Telescope and will become the most powerful telescope ever sent to space.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA
A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.

Read my story about the recent unfurling test of JWST’s sunshade – here.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The Webb telescope backplane "pathfinder" or practice-model was unloaded from a C-5 aircraft at the U.S. Air Force's Joint Base Andrews in Maryland.   Image Credit:   NASA/Desiree Stover
The Webb telescope backplane “pathfinder” or practice-model was unloaded from a C-5 aircraft at the U.S. Air Force’s Joint Base Andrews in Maryland. Image Credit: NASA/Desiree Stover

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom.  Credit: NASA/ESA
Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA

James Webb Space Telescope’s Giant Sunshield Test Unit Unfurled First Time

GODDARD SPACE FLIGHT CENTER, MD – The huge Sunshield test unit for NASA’s James Webb Space Telescope (JWST) has been successfully unfurled for the first time in a key milestone ahead of the launch scheduled for October 2018.

Engineers stacked and expanded the tennis-court sized Sunshield test unit last week inside the cleanroom at a Northrop Grumman facility in Redondo Beach, California.

NASA reports that the operation proceeded perfectly the first time during the test of the full-sized unit.

The Sunshield and every other JWST component must unfold perfectly and to precise tolerances in space because it has not been designed for servicing or repairs by astronaut crews voyaging beyond low-Earth orbit into deep space, William Ochs, Associate Director for JWST at NASA Goddard told me in an exclusive interview.

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom.  Credit: NASA/ESA
Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA

The five layered Sunshield is the largest component of the observatory and acts like a parasol.

Its purpose is to protect Webb from the suns heat and passively cool the telescope and its quartet of sensitive science instruments via permanent shade to approximately 45 kelvins, -380 degrees F, -233 C.

The kite-shaped Sunshield provides an effective sun protection factor or SPF of 1,000,000. By comparison suntan lotion for humans has an SPF of 8 to 40.

Two sides of the James Webb Space Telescope (JWST). Credit: NASA
Two sides of the James Webb Space Telescope (JWST). Credit: NASA

The extreme cold is required for the telescope to function in the infrared (IR) wavelengths and enable it to look back in time further than ever before to detect distant objects.

The shield separates the observatory into a warm sun-facing side and a cold anti-sun side.

Its five thin membrane layers also provides a stable thermal environment to keep the telescopes 18 primary mirror segments properly aligned for Webb’s science investigations.

JWST is the successor to the 24 year old Hubble Space Telescope and will become the most powerful telescope ever sent to space.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.

Webb will launch folded up inside the payload fairing of an ESA Ariane V ECA rocket from the Guiana Space Center in Kourou, French Guiana.

In launch configuration, the Sunshield will surround the main mirrors and instruments like an umbrella.

During the post launch journey to the L2 observing orbit at the second Sun-Earth Lagrange point nearly a million miles (1.5 million Km) from Earth, the telescopes mirrors and sunshield will begin a rather complex six month long unfolding and calibration process.

The science instruments have been mounted inside the ISIM science module and are currently undergoing critical vacuum chamber testing at NASA Goddard Space Flight Center which provides overall management and systems engineering.

Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room.  Credit: Ken Kremer- kenkremer.com
Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room. Credit: Ken Kremer- kenkremer.com

The mirror segments have arrived at NASA Goddard where I’ve had the opportunity to observe and report on work in progress.

Stay tuned here for Ken’s continuing JWST, MMS, ISS, Curiosity, Opportunity, SpaceX, Orbital Sciences, Boeing, Orion, MAVEN, MOM, Mars and more Earth and Planetary science and human spaceflight news.

Ken Kremer

Sunshield test unit on NASA's James Webb Space Telescope is unfurled for the first time at Northrup Grumman.  Credit: NASA
Sunshield test unit on NASA’s James Webb Space Telescope is unfurled for the first time at Northrup Grumman. Credit: NASA

The Search for Alien Life Could Get A Boost From NASA’s Next-Generation Rocket

In three years, NASA is planning to light the fuse on a huge rocket designed to bring humans further out into the solar system.

We usually talk about SLS here in the context of the astronauts it will carry inside the Orion spacecraft, which will have its own test flight later in 2014. But today, NASA advertised a possible other use for the rocket: trying to find life beyond Earth.

At a symposium in Washington on the search for life, NASA associate administrator John Grunsfeld said SLS could serve two major functions: launching bigger telescopes, and sending a mission on an express route to Jupiter’s moon Europa.

The James Webb Space Telescope, with a mirror of 6.5 meters (21 feet), will in part search for exoplanets after its launch in 2018. Next-generation telescopes of 10 to 20 meters (33 to 66 feet) could pick out more, if SLS could bring them up into space.

“This will be a multi-generational search,” said Sara Seager, a planetary scientist and physicist at the Massachusetts Institute of Technology. She added that the big challenge is trying to distinguish a planet like Earth from the light of its parent star; the difference between the two is a magnitude of 10 billion. “Our Earth is actually extremely hard to find,” she said.

Much like our solar system, Kepler-62 is home to two habitable zone worlds. The small shining object seen to the right of Kepler-62f is Kepler-62e. Orbiting on the inner edge of the habitable zone, Kepler-62e is roughly 60 percent larger than Earth. Image credit: NASA Ames/JPL-Caltech.
Much like our solar system, Kepler-62 is home to two habitable zone worlds. The small shining object seen to the right of Kepler-62f is Kepler-62e. Orbiting on the inner edge of the habitable zone, Kepler-62e is roughly 60 percent larger than Earth. Image credit: NASA Ames/JPL-Caltech.

While the symposium was not talking much about life in the solar system, Europa is considered one of the top candidates due to the presence of a possible subsurface ocean beneath its ice. NASA is now seeking ideas for a mission to this moon, following news that water plumes were spotted spewing from the moon’s icy south pole. A mission to Europa would take seven years with the technology currently in NASA’s hands, but the SLS would be powerful enough to speed up the trip to only three years, Grunsfeld said.

And that’s not all that SLS could do. If it does bring astronauts deeper in space as NASA hopes it will, this opens up a range of destinations for them to go to. Usually NASA talks about this in terms of its human asteroid mission, an idea it has been working on and pitching for the past year to a skeptical, budget-conscious Congress.

But in passing, John Mather (NASA’s senior project scientist for Webb) said it’s possible astronauts could be sent to maintain the telescope. Webb is supposed to be parked in a Lagrange point (gravitationally stable location) in the exact opposite direction of the sun, almost a million miles away. It’s a big contrast to the Hubble Space Telescope, which was conveniently parked in low Earth orbit for astronauts to fix every so often with the space shuttle.

An Artist's Conception of the James Webb Space Telescope. Credit: ESA.
An Artist’s Conception of the James Webb Space Telescope. Credit: ESA.

While NASA works on the funding and design for larger telescope mirrors, Webb is one of the two new space telescopes it is focusing on in the search for life. Webb’s infrared eyes will be able to peer at solar systems being born, once it is launched in 2018. Complementary to that will be the Transiting Exoplanet Survey Satellite, which will fly in 2017 and examine planets that pass in front of their parent stars to find elements in their atmospheres.

The usual cautions apply when talking about this article: NASA is talking about several missions under development, and it is unclear yet what the success of SLS or any of these will be until they are battle-tested in space.

But what this discussion does show is the agency is trying to find many purposes for its next-generation rocket, and working to align it to astrophysics goals as well as its desire to send humans further out in the solar system.

Will We Find Alien Life Within 20 Years? You Can Bet On It.

During a hearing last week before the U.S. House Science and Technology Committee SETI scientists Seth Shostak and Dan Werthimer asserted that solid evidence for extraterrestrial life in our galaxy — or, at the very least, solid evidence for a definitive lack of it — will come within the next two decades. It’s a bold claim for scientists to make on public record, but one that Shostak has made many times before (and he’s not particularly off-schedule either.) And with SETI’s Allen Telescope Array (ATA) continually scanning the sky for any signals that appear intentional, exoplanets being discovered en masse, and new technology on deck that can further investigate a select few of their (hopefully) Earth-like atmospheres, the chances that alien life — if it’s out there — will be found are getting better and better each year.

Would you put your bet on E.T. being out there? Actually, you can.

Thanks to the internet and the apparently incorrigible human need to compete you can actually place a wager on when alien life will be discovered, via an Irish online betting site.

Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

Typically focused on the results of international sporting matches, PaddyPower.com has also included the announcement of extraterrestrial life in its novelty bet section, hinging on “the sitting President of the USA making a statement confirming without doubt the existence of alternative life beings from another planet.” The odds of such an announcement being made in the years 2015-2018 are currently listed at 100 to one. After that they drop significantly… probably because by then the JWST will be in operation and we will “have the technology.”

Of course, whether you personally would place a wager on such things is purely personal preference, and neither I nor Universe Today condones or supports gambling, for aliens or otherwise. (And the legalities of doing so and any and all results thereof are the sole responsibility of the reader.) But it is interesting that we now live in a time when wagering on the discovery of alien life sits just a click away from the results of the Kentucky Derby, French Open, or World Cup.

Now if you really want to support the science that will make such a discovery possible — maybe even within our own Solar System — you can “stand up for space” and write your representatives to tell them you want NASA’s planetary science budget to be funded, and rather than gamble your money you can make a donation to support SETI’s ongoing mission here (or even help out yourself via [email protected].)

And even if all else fails, you could end up with a free coffee courtesy of Dr. Shostak…

Learn more about SETI and how the ATA works here, and read Dan Werthimer’s May 21 statement to the House Committee here.

Source/ht: FloridaToday Space and The Independent

“Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”

– Arthur C. Clarke

 

Kepler Can Still Hunt For Earth-Sized Exoplanets, Researchers Suggest

Illustration of the Kepler spacecraft. Kepler's mission is over, but all of the exoplanets it found still need to be confirmed in follow-up observations. (NASA/Kepler mission/Wendy Stenzel)

Kepler may not be hanging up its planet-hunting hat just yet. Even though two of its four reaction wheels — which are crucial to long-duration observations of distant stars —  are no longer operating, it could still be able to seek out potentially-habitable exoplanets around smaller stars. In fact, in its new 2-wheel mode, Kepler might actually open up a whole new territory of exoplanet exploration looking for Earth-sized worlds orbiting white dwarfs.

An international team of scientists, led by Mukremin Kilic of the University of Oklahoma’s Department of Physics and Astronomy, are suggesting that NASA’s Kepler spacecraft should turn its gaze toward dim white dwarfs, rather than the brighter main-sequence stars it was previously observing.

“A large fraction of white dwarfs (WDs) may host planets in their habitable zones. These planets may provide our best chance to detect bio-markers on a transiting ex- oplanet, thanks to the diminished contrast ratio between the Earth-sized WD and its Earth-sized planets. The James Webb Space Telescope is capable of obtaining the first spectroscopic measurements of such planets, yet there are no known planets around WDs. Here we propose to take advantage of the unique capability of the Kepler space- craft in the 2-Wheels mode to perform a transit survey that is capable of identifying the first planets in the habitable zone of a WD.”

– Kilic et al.

Any bio-markers — such as molecular oxygen, O2 — could later be identified around such Earth-sized exoplanets by the JWST, they propose.

Will Kepler be able to find the first Earth-sized exoplanet orbiting a white dwarf? (Illustration of Kepler 22b. Credit: NASA/Ames/JPL-Caltech)
Will Kepler be able to find the first Earth-sized exoplanet — or even an exomoon — orbiting a white dwarf? (Illustration of Kepler 22b. Credit: NASA/Ames/JPL-Caltech)

Because Kepler’s precision has been greatly reduced by the failure of a second reaction wheel earlier this year, it cannot accurately aim at large stars for the long periods of time required to identify the minute dips in brightness caused by the silhouetted specks of passing planets. But since white dwarfs — the dim remains of stars like our Sun — are much smaller, any eclipsing exoplanets would make a much more pronounced effect on their apparent luminosity.

In effect, exoplanets ranging from Earth- to Jupiter-size orbiting white dwarfs as close as .03 AU — well within their habitable zones — would significantly block their light, making Kepler’s diminished aim not so much of an issue.

“Given the eclipse signature of Earth-size and larger planets around WDs, the systematic errors due to the pointing problems is not the limiting factor for WDHZ observations,” the team assures in their paper “Habitable Planets Around White Dwarfs: an Alternate Mission for the Kepler Spacecraft.”

Even smaller orbiting objects could potentially be spotted in this fashion, they add… perhaps even as small as the Moon.

The team is proposing a 200-day-long survey of 10,000 known white dwarfs within the Sloan Digital Sky Survey (SDSS) area, and expects to find up to 100 exoplanet candidates as well as other “eclipsing short period stellar and sub-stellar companions.”

“If the history of exoplanet science has taught us anything, it is that planets are ubiquitous and they exist in the most unusual places, including very close to their host stars and even around pulsars… Currently there are no known planets around WDs, but we have never looked at a sufficient number of WDs at high cadence to find them through transit observations.”

– Kilic et al.

Read the team’s full report here, and learn more about the Kepler mission here.

NASA’s Ames Research Center made an open call for proposals regarding Kepler’s future operations on August 2. Today is the due date for submissions, which will undergo a review process until Nov. 1, 2013.

Added 9/4: For another take on this, check out Paul Gilster’s write-up on Centauri Dreams.

Canada Unveils its Contributions to the JWST

Today Canada’s Minister of Industry Christian Paradis unveiled the technologies that comprise Canada’s contribution to the James Webb Space Telescope, a next-generation infrared observatory that’s seen as the successor to Hubble.


CSA will provide JWST with a two-in-one instrument: a Fine Guidance Sensor (FGS) Near-Infrared Imager and Slitless Spectrograph (NIRISS). Both were designed, built and tested by COM DEV International in Ottawa and Cambridge, Ontario, with technical contributions from the Université de Montréal and the National Research Council Canada.

Read: Watch the James Webb Being Built via “Webb-Cam”

“Canada has a proud legacy in space and we are once again pushing the frontier of what is possible. These two outstanding technologies are perfect examples of how Canada has secured its world-class reputation. Our Government is committed to ensuring the long-term competitiveness and prosperity of such a vital economic sector.”
– The Honourable Christian Paradis

The FGS consists of two identical cameras that are critical to Webb’s ability to “see.” Their images will allow the telescope to determine its position, locate its celestial targets, and remain pointed to collect high-quality data. The FGS will guide the telescope with incredible precision, with an accuracy of one millionth of a degree.

The NIRISS will have unique capabilities for finding the earliest and most distant objects in the Universe’s history. It will also peer through the glare of nearby young stars to unveil new Jupiter-like exoplanets. It will have the capability of detecting the thin atmosphere of small, habitable, earth-like planets and determine its chemical composition to seek water vapour, carbon dioxide and other potential biomarkers such as methane and oxygen.

The FGS/NIRISS instruments can be seen in this development video from CSA:

“Imagine the challenge at hand here: to design and deliver technology capable of unprecedented levels of precision to conduct breakthrough science on board the largest, most complex and most powerful telescope ever built,” said Steve MacLean, President of the CSA. “The Webb telescope will be located 1.5 million kilometers from Earth— too far to be serviced by astronauts like Hubble was. At that distance, the technology simply has to work. This is the outstanding level of excellence Canadians are capable of achieving. It’s something for all of us to be proud of.”

The instruments will be delivered to NASA on July 30.

Read more on the CSA press release here, and learn more about the James Webb here.

Images/video: CSA and NASA

Watch the James Webb Telescope Being Built Via “Webb-cam”

Want to watch the highly anticipated James Webb Space Telescope come together? NASA has set up a webcam – in this case a “Webb-cam” — for anyone to track the progress JWST inside a clean room at Goddard Space Flight Center. Recently, the Mid-Infrared Instrument (MIRI) was delivered and it will be integrated into the science instrument payload. Two cameras show the action, although the cameras will show just screen shots that are updated once every minute.

When is the best time to watch? The clean room is generally occupied Monday through Friday from 5 a.m. to 1:30 p.m. PDT (8 a.m. to 4:30 p.m. EDT).

Click the image above for access to the Webb-cams, or visit the Webb-cam website.

Of the James Webb Space Telescope’s four science instruments, only MIRI can see light in the mid-infrared region of the electromagnetic spectrum. This unique capability will allow the Webb telescope to study physical processes occurring in the cosmos that the other Webb instruments cannot see.

MIRI’s sensitive detectors will allow it to make unique observations of many things, including the light of distant galaxies, newly forming stars within our own Milky Way, and the formation of planets around stars other than our own, as well as planets, comets and the outermost debris disk in our own solar system.

Surprise! NASA Gets Two ‘Free’ Hubble-like Space Telescopes

[/caption]

NASA will be getting two unused space surveillance satellites from the US’s National Reconnaissance Office, which could possibly be used to search for dark energy. In articles in the Washington Post and the New York Times, NASA and NRO officials revealed the two unused and not-fully-built satellites are available for NASA to use as they see fit. While the satellites don’t have astronomical instruments and are still in a warehouse, they do have 2.4-meter (7.9 feet) mirrors, just like Hubble, with a wider field of view and a maneuverable secondary mirror that makes it possible to obtain better-focused images.

“This is a total game changer,” said David N. Spergel of Princeton, quoted in the New York Times, who is co-chairman of a committee on astronomy and astrophysics for the National Academy of Sciences.

Reportedly, the NRO contacted NASA in 2011 about the two spy satellites. Since taking over as head of the NASA Science Directorate early this year, former Hubble repairman John Grunsfeld has been working with scientists and other NASA officials to quietly study the possibility of using the two satellites as “repurposed telescopes.”

Originally designed to look at Earth for surveillance, the two telescopes could be turned to look at the heavens instead, as the National Reconnaissance Office said they no longer needed them for spy missions. Why two such spy telescopes were under construction and then scrapped is not clear.

Described as not fully built and some parts being in “bits and pieces,” NASA will have to decide on how they should be used, build additional instruments, launch them, and support the operations.

Reportedly, Grunsfeld and his secret team have come up with a plan to turn one of the telescopes to investigate the mysterious dark energy that is speeding up the expansion of the universe.

NASA officials stressed that they do not have a program or a budget to launch even one telescope at the moment, and that at the very earliest, under favorable budgets, it would be 2020 before even one of the two gifted telescopes could be ready for a mission.

The Washington Post asked Grunsfeld whether anyone at NASA was popping champagne, and he answered, “We never pop champagne here; our budgets are too tight.”

In the latest decadal survey the astronomical community had suggested a dark energy telescope as its top priority in astronomy and astrophysics, but the lack of funding – along with huge cost overruns by the James Webb Space Telescope — made it seem like such a telescope would be an impossibility.

The two telescopes could possibly be used for the proposed WFIRST project, which seemingly was not going anywhere with the latest budget proposal or as a ‘scout’ for the JWST.

“It would be a great discovery telescope for where Webb should look in addition to doing the work on dark energy,” Spergel said in the Washington Post.

Astronomers will be discussing the possibilities at a meeting at the National Academy of Sciences held on today in Washington, D.C. and how they could turn the two gifted telescopes into official missions.

Read more in the Washington Post and the New York Times.