The Closest Supernova Seen in the Modern Era, Examined by JWST

SN 1987a as seen by JWST's Near-Infrared Camera. Credit: NASA, ESA, CSA, M. Matsuura, R. Arendt, C. Fransson

In November of 1572, Tycho Brahe noticed a new star in the constellation Cassiopeia. It was the first supernova to be observed in detail by Western astronomers and became known as Tycho’s Supernova. Earlier supernovae had been observed by Chinese and Japanese astronomers, but Tycho’s observations demonstrated to the Catholic world that the stars were not constant and unchanging as Aristotle presumed. Just three decades later, in 1604, Johannes Kepler watched a supernova in the constellation Ophiuchus brighten and fade. There have been no observed supernovae in the Milky Way since then.

Continue reading “The Closest Supernova Seen in the Modern Era, Examined by JWST”

If Earth Was an Exoplanet, JWST Would Know There's an Intelligent Civilization Here

Sunrise over the Gulf of Saint Lawrence. Credit: NASA's Earth Observatory

Yesterday I presented a rather pessimistic view about our chances of finding evidence of alien civilizations. That work focused on detecting physical structures on an alien planet, which would take an optical telescope array the size of Saturn’s orbit. Today I’ll talk about a more optimistic view, one which focuses not on physical structures, but the fingerprint of molecules in an alien atmosphere. It’s a task that is not only much easier, it’s something we could do now using the James Webb Space Telescope (JWST).

Continue reading “If Earth Was an Exoplanet, JWST Would Know There's an Intelligent Civilization Here”

JWST Plucks One Single Star out of a Galaxy Seen 12.5 Billion Years Ago

The massive gravity of galaxy cluster MACS0647 acts as a cosmic lens to bend and magnify light from the more distant MACS0647-JD system. Credit: NASA/ESA/CSA/STScI

After years of build-up and anticipation, the James Webb Space Telescope finally launched into orbit on December 25th, 2021 (what a Christmas present, huh?). Since then, the stunning images and data it has returned have proven beyond a doubt that it was the best Christmas present ever! After its first year of operations, the JWST has lived up to one of its primary objectives: to observe the first stars and galaxies that populated the Universe. The next-generation observatory has accomplished that by setting new distance records and revealing galaxies that existed less than 1 billion years after the Big Bang!

These studies are essential to charting the evolution of the cosmos and resolving issues with our cosmological models, like the Hubble Tension and the mysteries of Dark Matter and Dark Energy. Well, hang onto your hats because things have reached a new level of awesome! In a recent study, an international team of scientists isolated a well-magnified star candidate in a galaxy that appears as it was almost 12.5 billion years ago. The detection of a star that existed when the Universe was only ~1.2 billion years old showcases the abilities of the JWST and offers a preview of what’s to come!

Continue reading “JWST Plucks One Single Star out of a Galaxy Seen 12.5 Billion Years Ago”

The Most Compelling Places to Search for Life Will Look Like “Anomalies”

Will it be possible someday for astrobiologists to search for life "as we don't know it"? Credit: NASA/Jenny Mottar

In the past two and a half years, two next-generation telescopes have been sent to space: NASA’s James Webb Space Telescope (JWST) and the ESA’s Euclid Observatory. Before the decade is over, they will be joined by NASA’s Nancy Grace Roman Space Telescope (RST), Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx), and the ESA’s PLAnetary Transits and Oscillations of stars (PLATO) and ARIEL telescopes. These observatories will rely on advanced optics and instruments to aid in the search and characterization of exoplanets with the ultimate goal of finding habitable planets.

Along with still operational missions, these observatories will gather massive volumes of high-resolution spectroscopic data. Sorting through this data will require cutting-edge machine-learning techniques to look for indications of life and biological processes (aka. biosignatures). In a recent paper, a team of scientists from the Institute for Fundamental Theory at the University of Florida (UF-IFL) recommended that future surveys use machine learning to look for anomalies in the spectra, which could reveal unusual chemical signatures and unknown biosignatures.

Continue reading “The Most Compelling Places to Search for Life Will Look Like “Anomalies””

When the Sun Dies, it Could Produce a Fantastic Ring in Space, Like This New Image From JWST

The Ring Nebula seen by JWST's Near-Infrared Camera (left) and Mid-Infrared Instrument (right). Credit: ESA/Webb, NASA, CSA, M. Barlow (University College London), N. Cox (ACRI-ST), R. Wesson (Cardiff University)

Planetary nebulae were first discovered in the 1700s. Legend tells us that through the small telescopes of the time, they looked rather planet-like, hence the name. Real history is a bit more fuzzy, and early objects categorized as planetary nebulae included things such as galaxies. But the term stuck when applied to circular emission nebulae centered around a dying star. As new observations show, planetary nebulae have a structure that is both simple and complex.

Continue reading “When the Sun Dies, it Could Produce a Fantastic Ring in Space, Like This New Image From JWST”

JWST is the Perfect Machine to Resolve the Hubble Tension

The cosmic distance ladder sets the scale of the universe. Credit: NASA/JPL-Caltech

You’ve just found the perfect work desk at a garage sale, and you measure it to see if it will fit in your apartment. You brought a tape measure to size it up and find it’s 180 cm. Perfect. But your friend also brought a tape measure, and they find it’s 182 cm, which would be a smidge too long. You don’t know which tape measure is right, so you have a conundrum. Astronomers also have a conundrum, and it’s known as the Hubble tension.

Continue reading “JWST is the Perfect Machine to Resolve the Hubble Tension”

Jupiter’s Moons Get the JWST Treatment

Spectroscopic map of Ganymede (left) obtained from JWST’s Near-Infrared Spectrograph (NIRSpec) instrument displaying light absorption in the polar regions distinctive of the molecule hydrogen peroxide. A JWST NIRSpec infrared image of Io (right) displaying volcanic eruptions at Kanehekili Fluctus (center) and Loki Patera (right) with temperatures up to 1200 Kelvin (926.85 degrees Celsius/1700 degrees Fahrenheit). Circles indicate the surfaces of both moons. (Credit: Ganymede: Cornell/Dr. Samantha Trumbo; Io: UC Berkeley/Dr. Imke de Pater)

A pair of studies published in JGR: Planets and Science Advances discuss new findings from NASA’s James Webb Space Telescope (JWST) regarding Jupiter’s first and third Galilean Moons, Io and Ganymede, and more specifically, how the massive Jupiter is influencing activity on these two small worlds. For Io, whose mass is about 21 percent larger than Earth’s Moon, the researchers made the first discovery of sulfur monoxide (SO) gas on the volcanically active moon. For Ganymede, which is the largest moon in the solar system and boasts twice the mass of the Earth’s Moon, the researchers made the first discovery of hydrogen peroxide, which exists in Ganymede’s polar regions.

Continue reading “Jupiter’s Moons Get the JWST Treatment”

Have We Seen the First Glimpse of Supermassive Dark Stars?

Three dark star candidates, JADES-GS-z13-0 (top), JADES-GS-z12-0 (middle), and JADES-GS-z11-0 (bottom) were originally identified as galaxies by the JWST Advanced Deep Extragalactic Survey (JADES) team. Recently, a team of researchers have hypothesized these candidates could be “dark stars,” which are theoretical objects far more massive and brighter than our sun, and allegedly powered by demolishing particles of dark matter. (Credit: NASA/European Space Agency)

A recent study published in the Proceedings of the National Academy of Sciences (PNAS) examines what are known as dark stars, which are estimated to be much larger than our Sun, are hypothesized to have existed in the early universe, and are allegedly powered by the demolition of dark matter particles. This study was conducted using spectroscopic analysis from NASA’s James Webb Space Telescope (JWST), and more specifically, the JWST Advanced Deep Extragalactic Survey (JADES), and holds the potential to help astronomers better understand dark stars and the purpose of dark matter, the latter of which continues to be an enigma for the scientific community, as well as how it could have contributed to the early universe.

Continue reading “Have We Seen the First Glimpse of Supermassive Dark Stars?”

Celebrate a Year of JWST With This Ludicrous Image of Rho Ophiuchi

JWST image of the star forming region Rho Ophiuchi. Credit: NASA, ESA, CSA, STScI, Klaus Pontoppidan (STScI)

Astronomy is driven by data. We take spectra of distant galaxies, plot the temperatures and brightness of main sequence stars, and graph the gravitational chirps of merging black holes. All of this data allows us to understand the universe around us. We don’t need images to do that, just data. But we still capture images even when we already have the data. We value them for their wondrous beauty, and for the stories they tell. This is why to celebrate a year of gathering data the James Webb Space Telescope (JWST) released a stunningly beautiful image that also tells a wondrous tale.

Continue reading “Celebrate a Year of JWST With This Ludicrous Image of Rho Ophiuchi”

James Webb is a GO for Cycle 2 Observations!

Artist conception of the James Webb Space Telescope. Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez

The James Webb Space Telescope (JWST) has accomplished some amazing things during its first year of operations! In addition to taking the most detailed and breathtaking images ever of iconic celestial objects, Webb completed its first deep field campaign, turned its infrared optics on Mars and Jupiter, obtained spectra directly from an exoplanet’s atmosphere, blocked out the light of a star to reveal the debris disk orbiting it, detected its first exoplanet, and spotted some of the earliest galaxies in the Universe – those that existed at Cosmic Dawn.

Well, buckle up! The Space Telescope Science Institute (STScI) has just announced what Webb will be studying during its second year of operations – aka. Cycle 2! According to a recent STScI statement, approximately 5,000 hours of prime time and 1,215 hours of parallel time were awarded to General Observer (GO) programs. The programs allotted observation time range from studies of the Solar System and exoplanets to the interstellar and intergalactic medium, from supermassive black holes and quasars to the large-scale structure of the Universe.

Continue reading “James Webb is a GO for Cycle 2 Observations!”