Airbus Designs a Space Station With Artificial Gravity

Airbus LOOP concept art. Credit: © Airbus 2023

The International Space Station (ISS) is nearing the end of its service. While NASA and its partners have committed to keeping it in operation until 2030, plans are already in place for successor space stations that will carry on the ISS’ legacy. China plans to assume a leading role with Tiangong, while the India Space Research Organization (ISRO) plans to deploy its own space station by mid-decade. NASA has also contracted with three aerospace companies to design commercial space stations, including Blue Origin’s Orbital Reef, the Axiom Space Station (AxS), and Starlab.

Well, buckle up! The European multinational aerospace giant Airbus has thrown its hat into the ring! In a recently-released video, the company detailed its proposal for a Multi-Purpose Orbital Module (MPOP) called the Airbus LOOP. This modular space segment contains three decks, a centrifuge, and enough volume for a crew of four, making it suitable for future space stations and long-duration missions to Mars. The LOOP builds on the company’s long history of human spaceflight programs, like the ISS Columbus Module, the Automated Transfer Vehicle (ATV), and the Orion European Service Module (ESM).

Continue reading “Airbus Designs a Space Station With Artificial Gravity”

What Can Be Done to Help Astronaut Vision in Space?

Astronauts Kate Rubins (left) and Jeff Williams (right) looking out of the ISS' cupola at a SpaceX Dragon supply spacecraft. Until recently, the effects of long-duration missions on eyesight was something of a mystery. Credit: NASA

Spaceflight takes a serious toll on the human body. As NASA’s Twin Study demonstrates, long-duration stays in space lead to muscle and bone density loss. There are also notable effects on the cardiovascular, central nervous, and endocrine systems, as well as changes in gene expression and cognitive function. There’s also visual impairment, known as Spaceflight-Associated Neuro-ocular Syndrome (SANS), which many astronauts reported after spending two months aboard the International Space Station (ISS). This results from increased intracranial pressure that places stress on the optic nerve and leads to temporary blindness.

Researchers are looking for ways to diagnose and treat these issues to prepare for future missions that will involve long-duration stays beyond Earth and transits in deep space. A cross-disciplinary team of researchers led by the University of Western Australia (UWA) has developed a breakthrough method for measuring brain fluid pressure that could reduce the risk of SANS for astronauts on long-duration spaceflights. This research could have applications for the many efforts to create a human presence on the Moon in this decade and crewed missions to Mars in the next.

Continue reading “What Can Be Done to Help Astronaut Vision in Space?”

Leaky Soyuz Capsule Returns to Earth

The Soyuz MS-22 crew ship is pictured docked to the Rassvet module. In the background, the Prichal docking module is attached to the Nauka multipurpose laboratory module. Credit: NASA

Roscosmos has had quite the run of bad luck lately. In addition to sanctions putting pressure on their space program and the cancellation of agreements (all due to the war in Ukraine), the Russian space agency has experienced several problems in space. On December 14th, 2022, and February 11th, 2023, two space capsules reportedly suffered radiator coolant leaks (Soyuz MS-22 and Progress 82). In addition to delivering fresh supplies to the International Space Station (ISS), one of the spacecraft (M-22) was slated to bring three members of Expedition 68 back to Earth.

Luckily, on February 25th, Russia announced it was sending another Soyuz capsule to replace the M-22 (Soyuz M-23) and retrieve the three crew members, cosmonauts Sergey Prokopyev and Dmitri Petelin, and astronaut Frank Rubio (who will return to Earth now on September 27th). In addition, Tuesday, March 28th, Russia undocked the M-22 from the ISS and successfully brought it home without crew. NASA provided live coverage of the undocking and departure of the uncrewed spacecraft via NASA TV, the agency website, and the NASA app.

Continue reading “Leaky Soyuz Capsule Returns to Earth”

Another Russian Spacecraft is Leaking Coolant

The Soyuz MS-22 crew ship approaches the space station above the Mediterranean Sea with three new crew members for a docking to the Rassvet module. Credit: NASA

Roscosmos appears to be having some issues with a spacecraft again. In December, the Soyuz MS-22 spacecraft that delivered three crewmembers of Expedition 68 to the International Space Station (ISS) reported a leak in its coolant loop. On February 11th, engineers at the Russian Mission Control Center outside Moscow recorded a depressurization in Progress 82, an uncrewed cargo craft docked with the Poisk laboratory module. The cause of these leaks remains unknown, but Roscosmos engineers (with support from their NASA counterparts) will continue investigating.

Continue reading “Another Russian Spacecraft is Leaking Coolant”

Study Shows How Cells Could Help Artemis Astronauts Exercise

NASA’s Orion spacecraft will carry astronauts further into space than ever before using a module based on Europe’s Automated Transfer Vehicles (ATV). Credit: NASA

In 2033, NASA and China plan to send the first crewed missions to Mars. These missions will launch every two years when Earth and Mars are at the closest points in their orbits (Mars Opposition). It will take these missions six to nine months to reach the Red Planet using conventional technology. This means that astronauts could spend up to a year and a half in microgravity, followed by months of surface operations in Martian gravity (roughly 40% of Earth gravity). This could have drastic consequences for astronaut health, including muscle atrophy, bone density loss, and psychological effects.

Aboard the International Space Station (ISS), astronauts maintain a strict exercise regimen to mitigate these effects. However, astronauts will not have the same option while in transit to Mars since their vehicles (the Orion spacecraft) have significantly less volume. To address this challenge, Professor Marni Boppart and her colleagues at the Beckman Institute for Advanced Science and Technology are developing a process using regenerative cells. This work could help ensure that astronauts arrive at Mars healthy, hearty, and ready to explore!

Continue reading “Study Shows How Cells Could Help Artemis Astronauts Exercise”

China Launches Mengtian, the Last Major Module to its Space Station

Artist's rendering of the completed Tiangong space station. Credit: Shujianyang/Wikimedia

On the afternoon of Monday, October 31st, 2022 (Halloween!), China launched the Mengtian laboratory cabin module into space, where it will join the Tiangong modular space station. This module, whose name translates to “Dreaming of the Heavens,” is the second laboratory and final addition to Tiangong (“Palace in the Sky”). This successful launch places China one step closer to completing its first long-term space station, roughly one-fifth the mass of the International Space Station (ISS) and comparable in size to Russia’s decommissioned Mir space station.

Continue reading “China Launches Mengtian, the Last Major Module to its Space Station”

Clearing the Air on a Trip to Mars: the NASA Particle Partition Challenge!

NASA is seeking innovative ideas for its Particle Partition Challenge. Credit: NASA/HeroX

In the coming decade, NASA and the China National Space Agency (CNSA) will send the first astronaut crews to Mars. Unlike missions to the International Space Station (ISS) or the Moon, crewed missions to Mars present several unique challenges because of the distance and transit times involved. For instance, it is only practical to send missions to Mars when our two planets are closest to each other in their orbits (known as “Opposition“), which occurs every 26 months. Even then, it can take up to nine months for spacecraft to reach Mars, creating all kinds of logistics headaches.

On top of that, there’s the need for life support systems that will maintain a breathable atmosphere inside the spacecraft. Like the system that allows astronauts to live aboard the ISS for extended periods, methods are needed to scrub waste carbon from the air and safely sequester it. HeroX, the world’s leading platform for crowdsourced solutions, has launched the NASA Particle Partition Challenge. With a total prize purse of $45,000, this competition is looking for innovative ideas on how to ensure that astronauts can breathe comfortably on the way to Mars!

Continue reading “Clearing the Air on a Trip to Mars: the NASA Particle Partition Challenge!”

Want to Stay Healthy in Space? Then you Want Artificial Gravity

A close up of three fruit flies, used for scientific research both on Earth and in space. Credits: NASA Ames Research Center/Dominic Hart

Space travel presents numerous challenges, not the least of which have to do with astronaut health and safety. And the farther these missions venture from Earth, the more significant they become. Beyond Earth’s protective atmosphere and magnetosphere, there’s the threat of long-term exposure to solar and cosmic radiation. But whereas radiation exposure can be mitigated with proper shielding, there are few strategies available for dealing with the other major hazard: long-term exposure to microgravity.

Aboard the International Space Station (ISS), astronauts rely on a strict regimen of exercise and resistance training to mitigate the physiological effects. These include muscle atrophy, bone density loss, organ function, eyesight, and effects on cardiovascular health, gene expression, and the central nervous system. But as a recent NASA study revealed, long-duration missions to Mars and other locations in deep space will need to be equipped with artificial gravity. This study examined the effects of microgravity on fruit flies aboard the ISS and demonstrated artificial gravity provides partial protection against those changes.

Continue reading “Want to Stay Healthy in Space? Then you Want Artificial Gravity”

Socks, The Final Frontier

ISS026-E-011334 (18 Dec. 2010) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, is pictured with a stowage container and its contents in the Harmony node of the International Space Station.
ISS026-E-011334 (18 Dec. 2010) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, is pictured with a stowage container and its contents in the Harmony node of the International Space Station.

What is the greatest challenge facing humans as we prepare for the first crewed missions to Mars? Solar and cosmic radiation? Atrophying bone and muscle? Growing food? How about laundry? It’s strange but true, right now we don’t have a way to clean laundry in space.

Continue reading “Socks, The Final Frontier”