Crew-8 Arrives at the ISS, Despite a Crack in the Capsule

Launch of Crew 8

Space travel seems to be a fairly regular occurrence now with crews hopping up and down to the International Space Station. This week, another crew arrived on board a SpaceX Dragon capsule known as Endeavour.  On board were NASA astronauts Matthew Dominick, Michael Barratt and Jeanette Epps along with cosmonaut Alexander Grebenkin. The ISS already had seven people on board so this brought the total crew to eleven. The launch almost got cancelled due to a crack in the hatch seal. 

Continue reading “Crew-8 Arrives at the ISS, Despite a Crack in the Capsule”

The International Space Station’s Air Leaks are Increasing. No Danger to the Crew

International Space Station. Credit: NASA

Only the other week I had to fix my leaky tap. That was a nightmare.  I cannot begin to imagine how you deal with a leaky spacecraft! In August 2020 Russia announced that their Zvezda module had an air leak. An attempt was make to fix it but in November 2021 another leak was found. Earlier this week, Russia announced the segment is continuing to leak but the crew are in no danger. 

Continue reading “The International Space Station’s Air Leaks are Increasing. No Danger to the Crew”

Can We Survive in Space? It Might Depend on How Our Gut Microbiome Adapts

Researchers at Penn State University are developing a way to use microbes to turn human waste into food on long space voyages. Image: Yuri Gorby, Rensselaer Polytechnic Institute
Microbes play a critical role on Earth. Understanding how they react to space travel is crucial to ensuring astronaut health. Credit: Yuri Gorby, Rensselaer Polytechnic Institute

For over a century, people have dreamed of the day when humanity (as a species) would venture into space. In recent decades, that dream has moved much closer to realization, thanks to the rise of the commercial space industry (NewSpace), renewed interest in space exploration, and long-term plans to establish habitats in Low Earth Orbit (LEO), on the lunar surface, and Mars. Based on the progression, it is clear that going to space exploration will not be reserved for astronauts and government space agencies for much longer.

But before the “Great Migration” can begin, there are a lot of questions that need to be addressed. Namely, how will prolonged exposure to microgravity and space radiation affect human health? These include the well-studied aspects of muscle and bone density loss and how time in space can impact our organ function and cardiovascular and psychological health. In a recent study, an international team of scientists considered an often-overlooked aspect of human health: our microbiome. In short, how will time in space affect our gut bacteria, which is crucial to our well-being?

Continue reading “Can We Survive in Space? It Might Depend on How Our Gut Microbiome Adapts”

The International Space Station Celebrates 25 Years in Space

25 years of ISS
25 years of ISS

NASA recently celebrated the 25th anniversary of the International Space Station (ISS) with a space-to-Earth call between the 7-person Expedition 70 crew and outgoing NASA Associate Administrator, Bob Cabana, and ISS Program Manager, Joel Montalbano. On December 6, 1998, the U.S.-built Unity module and the Russian-built Zarya module were mated in the Space Shuttle Endeavour cargo bay, as Endeavour was responsible for launching Unity into orbit that same day, with Zarya having waited in orbit after being launched on November 20 from Kazakhstan.

Continue reading “The International Space Station Celebrates 25 Years in Space”

We Don't Know Enough About the Biomedical Challenges of Deep Space Exploration

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

Although humans have flown to space for decades, the missions have primarily been in low-Earth orbit, with just a handful of journeys to the Moon. Future missions with the upcoming Artemis program aim to have humans living and working on the Moon, with the hopes of one day sending humans to Mars.

However, the environments of the Moon and deep space present additional health challenges to astronauts over low-Earth orbit (LEO), such as higher radiation, long-term exposure to reduced gravity and additional acceleration and deceleration forces. A new paper looks at the future of biomedicine in space, with a sobering takeaway: We currently don’t know enough about the biomedical challenges of exploring deep space to have an adequate plan to ensure astronaut health and safety for the Artemis program.

Continue reading “We Don't Know Enough About the Biomedical Challenges of Deep Space Exploration”

The Space Station is Getting Gigabit Internet

NASA's ILLUMA-T payload communicating with LCRD over laser signals. Credit: NASA/Dave Ryan

Aboard the International Space Station (ISS), astronauts and cosmonauts from many nations are performing vital research that will allow humans to live and work in space. For more than 20 years, the ISS has been a unique platform for conducting microgravity, biology, agriculture, and communications experiments. This includes the ISS broadband internet service, which transmits information at a rate of 600 megabits per second (Mbps) – ten times the global average for internet speeds!

In 2021, NASA’s Space Communications and Navigation (SCaN) began integrating a technology demonstrator aboard the ISS that will test optical (laser) communications and data transfer. This system currently consists of Laser Communications Relay Demonstration (LCRD) and will soon be upgraded with the addition of the Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T). Once complete, this system will be the first two-way, end-to-end laser relay system, giving the ISS a gigabit internet connection!

Continue reading “The Space Station is Getting Gigabit Internet”

Russia's Luna 25 Lander Crashed Into the Moon

The Luna-25 mission lifting off from the Vostochny Cosmodrome on Aug. 11th. Credit: Roscosmos/Reuters

On August 10th, 2023, Roscosmos’ Luna-25 mission launched from the Vostochny Cosmodrome atop a Soyuz-2 rocket. This mission was the first lunar mission to launch from Russia since the 1970s and would be the first Russian lander to touch down in the South-Pole Aitken basin. This mission was part of Roscosmos’ partnership with China to develop an International Lunar Research Station (ILRS) in the region by 2030. Unfortunately, Russia announced on Saturday, August 19th, that the lander spun out of control and crashed into the surface.

Continue reading “Russia's Luna 25 Lander Crashed Into the Moon”

The Final Flight of Ariane 5 Means That Europe is Out of Rockets

The Ariane 5 rocket taking off from Europe's Spaceport in French Guyana. Credit: ESA-CNES

The Ariane 5 rocket, developed by Arianespace for the European Space Agency (ESA), has had a good run! The rocket series made its debut in 1996 and has been the workhorse of the ESA for decades, performing a total of 117 launches from Europe’s Spaceport in French Guiana. The many payloads it has sent to space include resupply missions to the International Space Station (ISS), the BepiColombo probe, the comet-chasing Rosetta spacecraft, the James Webb Space Telescope (JWST), the JUpiter ICy moons Explorer (JUICE), and countless communication and science satellites.

Alas, all good things must come to an end. In 2020, Arianespace and the ESA signed contracts for the rocket’s last eight launches before the Ariane 6 (a heavier two-stage launcher) would succeed it. The Ariane 5‘s final flight (VA261) lifted off from Europe’s Spaceport at 06:00 PM EST (03:00 PM PST) on July 5th, 2023, and placed two payloads into their planned geostationary transfer orbits (GTO) about 33 minutes later. On the downside, this means that the ESA is effectively out of launch vehicles until the Ariane 6 makes its debut next year.

Continue reading “The Final Flight of Ariane 5 Means That Europe is Out of Rockets”

Good News! Astronauts are Drinking Almost all of Their Own Urine

Just a sample of Chris Hadfield's creativity in sharing his space experience. 'Weightless water. This picture is fun no matter what direction you spin it,' he said via Twitter.

In the near future, NASA and other space agencies plan to send crews beyond Low Earth Orbit (LEO) to perform long-duration missions on the Moon and Mars. To meet this challenge, NASA is developing life support systems that will sustain crew members without the need for resupply missions from Earth. These systems must be regenerative and closed-loop in nature, meaning they will recycle consumables like food, air, and water without zero waste. Currently, crews aboard the International Space Station (ISS) rely on an Environmental Control and Life Support System (ECLSS) to meet their needs.

This system recycles air aboard the station by passing it through filters that scrub excess carbon dioxide produced by the crew’s exhalations. Meanwhile, the system uses advanced dehumidifiers to capture moisture from the crew’s exhalation and perspiration and sends this to the Water Purification Assembly (WPA). Another subsystem, called Urine Processor Assembly (UPA), recovers and distills water from astronaut urine. To boost the WPA’s efficiency, the crew integrated a new component called the Brine Processor Assembly (BPA), which recently passed an important milestone.

Continue reading “Good News! Astronauts are Drinking Almost all of Their Own Urine”

Artificial Gravity Tests on Earth Could Improve Astronaut Health in Space

The centrifuge at the MEDES center. Credit: MEDES–R. Gaboriaud

They’re affectionately known as “pillownauts,” volunteers who commit to spending weeks in bed to advance research into astronaut health. While bedridden, the pillownauts will lie with their heads tilted at 6° below the horizontal with their feet up to increase blood flow to their heads. They also perform work-related tasks, are subject to regular medical exams, and take their meals, showers, and bathroom breaks, all while remaining in bed. The purpose of this research is to simulate the effects of weightlessness on the human body, including muscle atrophy, bone density loss, and cognitive effects.

The European Space Agency (ESA) recently kicked off another round of pillownaut research, the Bed Rest with Artificial gravity and Cycling Exercise (BRACE) study, at the Institute for Space Medicine and Physiology (MEDES) in Toulouse, France. For this study, twelve volunteers will remain inclined (with their heads below their feet) for sixty days and exercise using cycles adapted to their beds and centrifuges that simulate gravity. Beyond measuring the effects of microgravity on astronaut health, this study also aims to measure the effectiveness of countermeasures used to address them.

Continue reading “Artificial Gravity Tests on Earth Could Improve Astronaut Health in Space”