The Most Distant Galactic Field Lines Ever Seen

Mapping of the magnetic field in the distant 9io9 galaxy. Credit: ALMA (ESO/NAOJ/NRAO)/J. Geach et al.

The galaxies in our local Universe all have magnetic fields. Galactic magnetic fields can be generated by ionized gas within a galaxy, and these same magnetic fields affect the evolution of galaxies. But while modern galaxies have magnetic fields, did early ones? Astronomers are still trying to understand how galactic magnetic fields arise in young galaxies, but this can be a challenge without observational data. Now a team using data from the Atacama Large Millimeter/submillimeter Array (ALMA) has observed the magnetic field of a galaxy when the Universe was just 2.5 billion years old. The galaxy is known as 9io9. It takes 11 billion years for its light to reach us, making it the most distant galaxy for which we have observed a magnetic field.

Continue reading “The Most Distant Galactic Field Lines Ever Seen”

A New Way to Measure the Expansion Rate of the Universe: Redshift Drift

Cosmological redshift depends upon a galaxy's distance. Credit: NASA/JPL-Caltech/R. Hurt (Caltech-IPAC)

In 1929 Edwin Hubble published the first solid evidence that the universe is expanding. Drawing upon data from Vesto Slipher and Henrietta Leavitt, Hubble demonstrated a correlation between galactic distance and redshift. The more distant a galaxy was, the more its light appeared shifted to the red end of the spectrum. We now know this is due to cosmic expansion. Space itself is expanding, which makes distant galaxies appear to recede away from us. The rate of this expansion is known as the Hubble parameter, and while we have a good idea of its value, there is still a bit of tension between different results.

Continue reading “A New Way to Measure the Expansion Rate of the Universe: Redshift Drift”

A Gamma Ray Burst Lasted So Long it Triggered a Satellite Twice

An artist's depiction of a gamma-ray burst's relativistic jet full of very-high-energy photons breaking out of a collapsing star. Credit: DESY, Science Communication Lab

Gamma Ray Bursts (GRBs) are the most powerful astrophysical phenomena in the universe. For a span of seconds to a few minutes, they can be the most powerful high-energy event in the sky, shining across billions of light years. But recently astronomers detected a GRB that lasted more than a thousand seconds, with two blasts of gamma rays that triggered the Fermi Gamma Ray Burst Monitor. It’s such a strange cosmic event that astronomers aren’t sure what caused it, but they do have a possible idea.

Continue reading “A Gamma Ray Burst Lasted So Long it Triggered a Satellite Twice”

Gravitational Waves Can Be Gravitationally Lensed, and This Could Provide Another Way to Measure the Expansion of the Universe

A simulation of merging black holes. Credit: NASA's Goddard Space Flight Center/Scott Noble

Gravitational waves don’t travel through space and time. They are ripples in the fabric of spacetime itself. This is why they are so difficult to detect. We can only observe them by closely watching how objects bent and stretched within spacetime. But despite their oddness, gravitational waves behave in many of the same ways as light, and astronomers can use that fact to study cosmic expansion.

Continue reading “Gravitational Waves Can Be Gravitationally Lensed, and This Could Provide Another Way to Measure the Expansion of the Universe”

Astronomers See the Same Supernova Four Times Thanks to a Gravitational Lens

A gravitational lens caused by a galaxy in the foreground leading to an "Einstein Cross." Credit: NASA/ESA/STScI
A gravitational lens caused by a galaxy in the foreground leading to an "Einstein Cross." Credit: NASA/ESA/STScI

Measuring cosmic distances is challenging, and astronomers rely on multiple methods and tools to do it – collectively referred to as the Cosmic Distance Ladder. One particularly crucial tool is Type Ia supernovae, which occur in binary systems where one star (a white dwarf) consumes matter from a companion (often a red giant) until it reaches the Chandrasekhar Limit and collapses under its own mass. As these stars blow off their outer layers in a massive explosion, they temporarily outshine everything in the background.

In a recent study, an international team of researchers led by Ariel Goobar of the Oskar Klein Centre at Stockholm University discovered an unusual Type Ia supernova, SN Zwicky (SN 2022qmx). In an unusual twist, the team observed an “Einstein Cross,” an unusual phenomenon predicted by Einstein’s Theory of General Relativity where the presence of a gravitational lens in the foreground amplifies light from a distant object. This was a major accomplishment for the team since it involved observing two very rare astronomical events that happened to coincide.

Continue reading “Astronomers See the Same Supernova Four Times Thanks to a Gravitational Lens”

Astronomers Have a New Way to Measure the Expansion of the Universe

Multiple observations of the Refsdal supernova. Credit: Kelly,et al

The cosmos is expanding at an ever-increasing rate. This cosmic acceleration is caused by dark energy, and it is a central aspect of the evolution of our universe. The rate of cosmic expansion can be expressed by a cosmological constant, commonly known as the Hubble constant, or Hubble parameter. But while astronomers generally agree this Hubble parameter exists, there is some disagreement as to its value.

Continue reading “Astronomers Have a New Way to Measure the Expansion of the Universe”

Gravitational Lensing is Helping to Nail Down Dark Matter

Using the gravitational lensing technique, a team was able to examine how light from distant quasar was affected by intervening small clumps of dark matter. Credit: NASA/ESA/D. Player (STScI)

According to the most widely-accepted cosmological model, the majority of the mass in our Universe (roughly 85%) consists of “Dark Matter.” This elusive, invisible mass is theorized to interact with “normal” (or “visible”) matter through gravity alone and not electromagnetic fields, neither absorbing nor emitting light (hence the name “dark”). The search for this matter is ongoing, with candidate particles including Weakly-Interacting Massive Particles (WIMPs) or ultralight bosons (axions), which are at opposite extremes of the mass scale and behave very differently (in theory).

This matter’s existence is essential for our predominant theories of gravity (General Relativity) and particle physics (The Standard Model) to make sense. Otherwise, we may need to radically rethink our theories on how gravity behaves on the largest of scales (aka. Modified Gravity). However, according to new research led by the University of Hong Kong (HKU), the study of “Einstein Rings” could bring us a step closer to understanding Dark Matter. According to their paper, the way Dark Matter alters the curvature of spacetime leaves signatures that suggest it could be made up of axions!

Continue reading “Gravitational Lensing is Helping to Nail Down Dark Matter”

Gravitational Waves From Pulsars Could Be Used to Probe the Interior of the Sun

A solar flare, as it appears in extreme ultra-violet light. Credit: NASA/SFC/SDO

Gravitational wave astronomy is still in its early stages. So far it has focused on the most energetic and distinct sources of gravitational waves, such as the cataclysmic mergers of black holes and neutron stars. But that will change as our gravitational telescopes improve, and it will allow astronomers to explore the universe in ways previously impossible.

Continue reading “Gravitational Waves From Pulsars Could Be Used to Probe the Interior of the Sun”

This JWST Image Shows Gravitational Lensing at its Finest

. Credit: ESA/Webb, NASA & CSA, J. Rigby

One of the more intriguing aspects of the cosmos, which the James Webb Space Telescope (JWST) has allowed astronomers to explore, is the phenomenon known as gravitational lenses. As Einstein’s Theory of General Relativity describes, the curvature of spacetime is altered by the presence of massive objects and their gravity. This effect leads to objects in space (like galaxies or galaxy clusters) altering the path light travels from more distant objects (and amplifying it as well). By taking advantage of this with a technique known as Gravitational Lensing, astronomers can study distant objects in greater detail.

Consider the image above, the ESA’s picture of the month acquired by the James Webb Space Telescope (JWST). The image shows a vast gravitational lens caused by SDSS J1226+2149, a galaxy cluster located roughly 6.3 billion light-years from Earth in the constellation Coma Berenices. The lens these galaxies created greatly amplified light from the more distant Cosmic Seahorse galaxy. Combined with Webb‘s incredible sensitivity, this technique allowed astronomers to study the Cosmic Seahorse in the hopes of learning more about star formation in early galaxies.

Continue reading “This JWST Image Shows Gravitational Lensing at its Finest”

Astronomers Think They've Found One of the Biggest Black Holes Ever Seen

Artist's impression of an ultramassive black hole (UBH). Credit: ESA/Hubble/DSS/Nick Risinger/N. Bartmann

In 1931, Indian-American physicist Subrahmanyan Chandrasekhar proposed a resolution to Einstein’s Theory of General Relativity that postulated the existence of black holes. By 1972, astronomers obtained the first conclusive evidence that these objects existed in our Universe. Observations of quasars and the center of the Milky Way also revealed that most massive galaxies have supermassive black holes (SMBHs) at their cores. Since then, the study of black holes has revealed that these objects vary in size and mass, ranging from micro black holes (MBHs) and intermediate black holes (IMBHs) to SMBHs.

Using astronomical simulations and a technique known as Gravitational Lensing, an international team of astrophysicists detected what could be the largest black hole ever observed. This ultramassive black hole (UMBH) has a mass roughly 30 billion times that of our Sun and is located near the center of the Abell 1201 galaxy cluster, roughly 2.7 billion light-years from Earth. This is the first time a black hole has been found using Gravitational Lensing, and it could enable studies that look farther into space to find black holes and deepen our understanding of their size and scale.

Continue reading “Astronomers Think They've Found One of the Biggest Black Holes Ever Seen”