An Extreme Simulation of the Universe’s First Stars

For astronomers, astrophysicists, and cosmologists, the ability to spot the first stars that formed in our Universe has always been just beyond reach. On the one hand, there are the limits of our current telescopes and observatories, which can only see so far. The farthest object ever observed was MACS 1149-JD, a galaxy located 13.2 billion light-years from Earth that was spotted in the Hubble eXtreme Deep Field (XDF) image.

On the other, up until about 1 billion years after the Big Bang, the Universe was experiencing what cosmologists refer to as the “Dark Ages” when the Universe was filled with gas clouds that obscured visible and infrared light. Luckily, a team of researchers from Georgia Tech’s Center for Relativistic Astrophysics recently conducted simulations that show what the formation of the first stars looked like.

Continue reading “An Extreme Simulation of the Universe’s First Stars”

The Intense Heat from the Sun Helps Ice Form on Mercury. Wait… What?

While the scorching planet Mercury might not be the first place you’d think to look for ice, the MESSENGER mission confirmed in 2012 that the planet closest to the Sun does indeed hold water ice in the permanently-shadowed craters around its poles.  But now a new study regarding Mercury’s ice provides even more counter-intuitive details about how this ice is formed. Scientists say heat likely helps create some of the ice.

Continue reading “The Intense Heat from the Sun Helps Ice Form on Mercury. Wait… What?”