A Gravity Map of Mars Uncovers Subsurface Mysteries

In this new gravity map of Mars, the red circles show prominent volcanoes and the black circles show impact craters with a diameter larger than a few 100 km. A gravity high signal is located in the volcanic Tharsis Region (the red area in the center right of the image), which is surrounded by a ring of negative gravity anomaly (shown in blue). Credit: Root et al.

A team of scientists presented a new gravity map of Mars at the Europlanet Science Congress 2024. The map shows the presence of dense, large-scale structures under Mars’ long-gone ocean and that mantle processes are affecting Olympus Mons, the largest volcano in the Solar System.

Continue reading “A Gravity Map of Mars Uncovers Subsurface Mysteries”

A Swarm of Robots to Explore Mars’ Valles Marineris

This image of Mars' Valles Marineris, the 'Grand Canyon of Mars' is a mosaic of 102 Viking Orbiter images. The Tharsis volcanoes are visible to the west. Image Credit: NASA/JPL-Caltech

Mars is known for its unique geological features. Olympus Mons is a massive shield volcano 2.5 times taller than Mt. Everest. Hellas Planitia is the largest visible impact crater in the Solar System. However, Mars’ most striking feature is Valles Marineris, the largest canyon in the Solar System.

This fascinating geological feature begs to be explored, and a team of German researchers think that a swarm of robots is best suited to the task.

Continue reading “A Swarm of Robots to Explore Mars’ Valles Marineris”

Ancient Rocks in Mars’ Jezero Crater Confirm Habitability

This Mars Reconnaissance Orbiter image shows Jezero Crater, with Perseverance's landing site and the Fan Front feature. Rocks from the Fan Front sampled in 2022 show evidence of water that predates life on Earth. Image Credit: NASA/JPL-Caltech/MSSS/JHU-APL

According to NASA’s Perseverance rover, ancient rocks in Jezero Crater formed in the presence of water. These sedimentary rocks are more than 3.5 billion years old and may predate the appearance of life on Earth. When and if these samples are returned to Earth, scientists hope to determine if they hold evidence of ancient Martian life.

Continue reading “Ancient Rocks in Mars’ Jezero Crater Confirm Habitability”

Cosmochemistry: Why study it? What can it teach us about finding life beyond Earth?

Credit: NASA/FUSE/Lynette Cook

Universe Today has had some fantastic discussions with researchers on the importance of studying impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, planetary atmospheres, and planetary geophysics, and how these diverse scientific fields can help researchers and the public better understand the search for life beyond Earth. Here, we will investigate the unique field of cosmochemistry and how it provides researchers with the knowledge pertaining to both our solar system and beyond, including the benefits and challenges, finding life beyond Earth, and suggestive paths for upcoming students who wish to pursue studying cosmochemistry. But what is cosmochemistry and why is it so important to study it?

Continue reading “Cosmochemistry: Why study it? What can it teach us about finding life beyond Earth?”

Europa Might Not Be Able to Support Life in its Oceans

Natural color image of Europa obtained by NASA's Juno spacecraft. (Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill)

Can Europa’s massive, interior ocean contain the building blocks of life, and even support life as we know it? This question is at the forefront of astrobiology discussions as scientists continue to debate the possibility for habitability on Jupiter’s icy moon. However, a recent study presented at the 55th Lunar and Planetary Science Conference (LPSC) might put a damper in hopes for finding life as a team of researchers investigate how Europa’s seafloor could be lacking in geologic activity, decreasing the likelihood of necessary minerals and nutrients from being recycled that could serve as a catalyst for life.

Continue reading “Europa Might Not Be Able to Support Life in its Oceans”

Planetary Geophysics: What is it? What can it teach us about finding life beyond Earth?

Artist's illustration of terrestrial (rocky) planet interiors. (Credit: NASA)

Universe Today has examined the importance of studying impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, and planetary atmospheres, and how these intriguing scientific disciplines can help scientists and the public better understand how we are pursuing life beyond Earth. Here, we will look inward and examine the role that planetary geophysics plays in helping scientists gain greater insight into our solar system and beyond, including the benefits and challenges, finding life beyond Earth, and how upcoming students can pursue studying planetary geophysics. So, what is planetary geophysics and why is it so important to study it?

Continue reading “Planetary Geophysics: What is it? What can it teach us about finding life beyond Earth?”

There Were Glaciers… on Mercury?

A view of Mercury’s north polar chaotic terrain (Borealis Chaos) and the Raditladi and Eminescu craters where evidence of possible glaciers has been identified. Red areas identified regions of potential salt glaciers
A view of Mercury’s north polar chaotic terrain (Borealis Chaos) and the Raditladi and Eminescu craters where evidence of possible glaciers has been identified (Credit: NASA)

I have lost count of how many times I have given public lectures and explained the temperature differences between Mercury and Venus. How Mercury, surprisingly isn’t the hottest planet in the Solar System and how that badge goes to Venus, thick atmosphere blah blah blah.  Mercury and its complex surface geology does of course get a good chunk of time but a recent paper has rather caught my attention and turned what I thought I knew about Mercury on its head! In short, a team of scientists have announced evidence for salt glaciers on Mercury!

Continue reading “There Were Glaciers… on Mercury?”

A Day on Earth Used to Only Be 19 Hours

Meteosat
A full disk view of the Earth, courtesy of Meteosat-I 1. Credit: ESA/Meteosat

On Earth, a single solar day lasts 24 hours. That is the time it takes for the Sun to return to the same place in the sky as the day before. The Moon, Earth’s only natural satellite, takes about 27 days to complete a single circuit around our planet and orbits at an average distance of 384,399 km (~238,854.5 mi). Since time immemorial, humans have kept track of the Sun, the Moon, and their sidereal and synodic periods. To the best of our knowledge, the orbital mechanics governing the Earth-Moon system have been the same, and we’ve come to take them for granted.

But there was a time when the Moon orbited significantly closer to Earth, and the average day was much shorter than today. According to a recent study by a pair o researchers from China and Germany, an average day lasted about 19 hours for one billion years during the Proterozoic Epoch – a geological period during the Precambrian that lasted from 2.5 billion years to 541 million years ago. This demonstrates that rather than gradually increasing over time (as previously thought), the length of a day on Earth remained constant for an extended period.

Continue reading “A Day on Earth Used to Only Be 19 Hours”

Venus’ Outer Shell is Thinner and “Squishier” Than Previously Believed

Artist's illustration of Quetzalpetlatl Corona on Venus displaying both active volcanism and a subduction zone. (Credit: NASA/JPL-Caltech/Peter Rubin)

While Earth and Venus are approximately the same size and both lose heat at about the same rate, the internal mechanisms that drive Earth’s geologic processes differ from its neighbor. It is these Venusian geologic processes that a team of researchers led by NASA’s Jet Propulsion Laboratory (JPL) and the California Institute of Technology hope to learn more about as they discuss both the cooling mechanisms of Venus and the potential processes behind it.

Continue reading “Venus’ Outer Shell is Thinner and “Squishier” Than Previously Believed”