Gaia Finds Ancient Satellite Galaxy Pontus Embedded in Milky Way

Artist's impression of the ESA's Gaia Observatory. Credit: ESA

A recent study looked at stellar streams hidden in Gaia data, to uncover evidence of an ancient remnant dubbed Pontus.

Our home galaxy the Milky Way is a monster with a ravenous past. In its estimated 12 billion years of existence, our galaxy has swallowed smaller satellite galaxies whole, with collisions resulting in massive rounds of star formation. We see threads of these remnant mergers as streams of stars and clusters, strung out around the Milky Way.

Continue reading “Gaia Finds Ancient Satellite Galaxy Pontus Embedded in Milky Way”

A Detailed Scan of the Milky Way Finds Possible “Fossil” Spiral Arms

Looking deep into the Universe, the NASA/ESA Hubble Space Telescope catches a passing glimpse of the numerous arm-like structures that sweep around this barred spiral galaxy, known as NGC 2608. Appearing as a slightly stretched, smaller version of our Milky Way, the peppered blue and red spiral arms are anchored together by the prominent horizontal central bar of the galaxy. In Hubble photos, bright Milky Way stars will sometimes appear as pinpoints of light with prominent lens flares. A star with these features is seen in the lower right corner of the image, and another can be spotted just above the pale centre of the galaxy. The majority of the fainter points around NGC 2608, however, lack these features, and upon closer inspection they are revealed to be thousands of distant galaxies. NGC 2608 is just one among an uncountable number of kindred structures. Similar expanses of galaxies can be observed in other Hubble images such as the Hubble Deep Field which recorded over 3000 galaxies in one field of view.

As we learn more about the cosmos, it’s interesting how some of the greatest discoveries continue to happen close to home. This is expected to continue well into the future, where observations of Cosmic Dawn and distant galaxies will take place alongside surveys of the outer Solar System and our galaxy. In this latter respect, the ESA’s Gaia observatory will continue to play a vital role. As an astrometry mission, Gaia has been to determine the proper position and radial velocity of over a billion stars to create a three-dimensional map of the Milky Way.

Using data from Gaia’s third early Data Release (eDR3) and Legacy Survey data – from the Sloan Digital Sky Survey (SDSS) – an international team of astronomers created a new map of the Milky Way’s outer disk. In the process, they discovered evidence of structures in this region that include the remnants of fossil spiral arms. This discovery will shed new light on the formation and history of the Milky Way and may lead to a breakthrough in our understanding of galactic evolution.

Continue reading “A Detailed Scan of the Milky Way Finds Possible “Fossil” Spiral Arms”

Early Massive Galaxies ran out of gas, Shutting Down Their Star Formation

This image taken by the NASA/ESA Hubble Space Telescope shows the galaxy NGC 4237. Located about 60 million light-years from Earth in the constellation of Coma Berenices (Berenice's Hair), NGC 4237 is classified as a flocculent spiral galaxy. This means that its spiral arms are not clearly distinguishable from each other, as in “grand design” spiral galaxies, but are instead patchy and discontinuous. This gives the galaxy a fluffy appearance, somewhat resembling fluffed cotton. Image Credit: ESA/Hubble & NASA, P. Erwin et al.

Galaxies that formed within the first few billion years after the Big Bang should have lived long, healthy lives. After all, they were born with rich supplies of cold hydrogen gas, exactly the fuel needed to continue star formation. But new observations have revealed “quenched” galaxies that have shut off star formation. And astronomers have no idea why.

Continue reading “Early Massive Galaxies ran out of gas, Shutting Down Their Star Formation”

When Galaxies Collide, Black Holes Don’t Always Get the Feast They Were Hoping for

galaxies collide
This illustration shows a stage in the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy, as it will unfold over the next several billion years. In this image, representing Earth's night sky in 3.75 billion years, Andromeda (left) fills the field of view and begins to distort the Milky Way with tidal pull. (Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger)

What happens when galaxies collide? Well, if any humans are around in about a billion years, they might find out. That’s when our Milky Way galaxy is scheduled to collide with our neighbour the Andromeda galaxy. That event will be an epic, titanic, collision. The supermassive black holes at the center of both galaxies will feast on new material and flare brightly as the collision brings more gas and dust within reach of their overwhelming gravitational pull. Where massive giant stars collide with each other, lighting up the skies and spraying deadly radiation everywhere. Right?

Maybe not. In fact, there might be no feasting at all, and hardly anything titanic about it.

Continue reading “When Galaxies Collide, Black Holes Don’t Always Get the Feast They Were Hoping for”

This galaxy took only 500 million years to form

C1-23152 grew to 200 billion suns in just 500 million years. Image via INAF/ HST/ NASA/ ESA.

Galaxies are supposed to build up a very slowly, taking billions of years to acquire their vast bulk. But a newfound galaxy, appearing in the universe when it was only 1.8 billion years old, tells a different tale. It formed stars at a rate hundreds of times greater than the Milky Way, and was able to build itself up to host 200 billion stars in less than 500 million years – perhaps the universe’s greatest speed run.

Continue reading “This galaxy took only 500 million years to form”

Extreme galaxies depend on extreme conditions for their formation

The spiral pattern shown by the galaxy NGC 2275 in this image from the NASA/ESA Hubble Space Telescope is striking because of its delicate, feathery nature. Credit: ESA/Hubble & NASA, J. Lee and the PHANGS-HST Team; Acknowledgment: Judy Schmidt (Geckzilla)

Some galaxies are too small, and some galaxies are too big, while others are just right. A new survey of the nearby Virgo cluster has potentially revealed why extreme galaxies are the wrong size, and how they might be connected.

Continue reading “Extreme galaxies depend on extreme conditions for their formation”

Hubble Captured a Photo of This Huge Spiral Galaxy, 2.5 Times Bigger than the Milky Way With 10 Times the Stars

This Hubble Space Telescope photograph showcases the majestic spiral galaxy UGC 2885, located 232 million light-years away in the northern constellation Perseus. The galaxy is 2.5 times wider than our Milky Way and contains 10 times as many stars. A number of foreground stars in our Milky Way can be seen in the image, identified by their diffraction spikes. The brightest star photobombs the galaxy's disk. The galaxy has been nicknamed "Rubin's galaxy," after astronomer Vera Rubin (1928 – 2016), who studied the galaxy's rotation rate in search of dark matter. Credits: NASA, ESA and B. Holwerda (University of Louisville)

This galaxy looks a lot like our own Milky Way galaxy. But while our galaxy is actively forming lots of new stars, this one is birthing stars at only half the rate of the Milky Way. It’s been mostly quiet for billions of years, feeding lightly on the thin gas in intergalactic space.

Continue reading “Hubble Captured a Photo of This Huge Spiral Galaxy, 2.5 Times Bigger than the Milky Way With 10 Times the Stars”

The First Results From The IllustrisTNG Simulation Of The Universe Has Been Completed, Showing How Our Cosmos Evolved From The Big Bang

IllustrisTNG is a new simulation model for the Universe. It used over 24,000 processors over the course of more than two months to produce the largest hydrodynamic simulation project to date for the emergence of cosmic structures. Image: IllustrisTNG

The first results of the IllustrisTNG Project have been published in three separate studies, and they’re shedding new light on how black holes shape the cosmos, and how galaxies form and grow. The IllustrisTNG Project bills itself as “The next generation of cosmological hydrodynamical simulations.” The Project is an ongoing series of massive hydrodynamic simulations of our Universe. Its goal is to understand the physical processes that drive the formation of galaxies.

At the heart of IllustriousTNG is a state of the art numerical model of the Universe, running on one of the most powerful supercomputers in the world: the Hazel Hen machine at the High-Performance Computing Center in Stuttgart, Germany. Hazel Hen is Germany’s fastest computer, and the 19th fastest in the world.

The Hazel Hen Supercomputer is based on Intel processors and Cray network technologies. Image: IllustrisTNG

Our current cosmological model suggests that the mass-energy density of the Universe is dominated by dark matter and dark energy. Since we can’t observe either of those things, the only way to test this model is to be able to make precise predictions about the structure of the things we can see, such as stars, diffuse gas, and accreting black holes. These visible things are organized into a cosmic web of sheets, filaments, and voids. Inside these are galaxies, which are the basic units of cosmic structure. To test our ideas about galactic structure, we have to make detailed and realistic simulated galaxies, then compare them to what’s real.

Astrophysicists in the USA and Germany used IllustrisTNG to create their own universe, which could then be studied in detail. IllustrisTNG correlates very strongly with observations of the real Universe, but allows scientists to look at things that are obscured in our own Universe. This has led to some very interesting results so far, and is helping to answer some big questions in cosmology and astrophysics.

How Do Black Holes Affect Galaxies?

Ever since we’ve learned that galaxies host supermassive black holes (SMBHs) at their centers, it’s been widely believed that they have a profound influence on the evolution of galaxies, and possibly on their formation. That’s led to the obvious question: How do these SMBHs influence the galaxies that host them? Illustrious TNG set out to answer this, and the paper by Dr. Dylan Nelson at the Max Planck Institute for Astrophysics shows that “the primary driver of galaxy color transition is supermassive blackhole feedback in its low-accretion state.”

“The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers.” – Dr. Dylan Nelson, Max Planck Institute for Astrophysics,

Galaxies that are still in their star-forming phase shine brightly in the blue light of their young stars. Then something changes and the star formation ends. After that, the galaxy is dominated by older, red stars, and the galaxy joins a graveyard full of “red and dead” galaxies. As Nelson explains, “The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers.” But how do they do that?

Nelson and his colleagues attribute it to supermassive black hole feedback in its low-accretion state. What that means is that as a black hole feeds, it creates a wind, or shock wave, that blows star-forming gas and dust out of the galaxy. This limits the future formation of stars. The existing stars age and turn red, and few new blue stars form.

This is a rendering of gas velocity in a massive galaxy cluster in IllustrisTNG. Black areas are hardly moving, and white areas are moving at greater than 1000km/second. The black areas are calm cosmic filaments, the white areas are near super-massive black holes (SMBHs). The SMBHs are blowing away the gas and preventing star formation. Image: IllustrisTNG

How Do Galaxies Form and How Does Their Structure Develop?

It’s long been thought that large galaxies form when smaller galaxies join up. As the galaxy grows larger, its gravity draws more smaller galaxies into it. During these collisions, galaxies are torn apart. Some stars will be scattered, and will take up residence in a halo around the new, larger galaxy. This should give the newly-created galaxy a faint background glow of stellar light. But this is a prediction, and these pale glows are very hard to observe.

“Our predictions can now be systematically checked by observers.” – Dr. Annalisa Pillepich (Max Planck Institute for Astrophysics)

IllustrisTNG was able to predict more accurately what this glow should look like. This gives astronomers a better idea of what to look for when they try to observe this pale stellar glow in the real Universe. “Our predictions can now be systematically checked by observers,” Dr. Annalisa Pillepich (MPIA) points out, who led a further IllustrisTNG study. “This yields a critical test for the theoretical model of hierarchical galaxy formation.”

A composite image from IllustrisTNG. Panels on the left show galaxy-galaxy interactions and the fine-grained structure of extended stellar halos. Panels on the right show stellar light projections from two massive central galaxies at the present day. It’s easy to see how the light from massive central galaxies overwhelms the light from stellar halos. Image: IllustrisTNG

IllustrisTNG is an on-going series of simulations. So far, there have been three IllustrisTNG runs, each one creating a larger simulation than the previous one. They are TNG 50, TNG 100, and TNG 300. TNG300 is much larger than TNG50 and allows a larger area to be studied which reveals clues about large-scale structure. Though TNG50 is much smaller, it has much more precise detail. It gives us a more detailed look at the structural properties of galaxies and the detailed structure of gas around galaxies. TNG100 is somewhere in the middle.

TNG 50, TNG 100, and TNG 300. Image: IllustrisTNG

IllustrisTNG is not the first cosmological hydrodynamical simulation. Others include Eagle, Horizon-AGN, and IllustrisTNG’s predecessor, Illustris. They have shown how powerful these predictive theoretical models can be. As our computers grow more powerful and our understanding of physics and cosmology grow along with them, these types of simulations will yield greater and more detailed results.

What is Galactic Evolution?

Whirlpool Galaxy M51 (NGC 5194). Credit: Hubble Heritage Team (STScI/AURA) N. Scoville (Caltech)

On a clear night, you can make out the band of the Milky Way in the night sky. For millennia, astronomers looked upon it in awe, slowly coming to the realization that our Sun was merely one of billions of stars in the galaxy. Over time, as our instruments and methods improved, we came to realize that the Milky Way itself was merely one of billions of galaxies that make up the Universe.

Thanks to the discovery of Relativity and the speed of light, we have also come to understand that when we look through space, we are also looking back in time. By seeing an object 1 billion light-years away, we are also seeing how that object looked 1 billion years ago. This “time machine” effect has allowed astronomers to study how galaxies came to be (i.e. galactic evolution).

The process in which galaxies form and evolve is characterized by steady growth over time, which began shortly after the Big Bang. This process, and the eventual fate of galaxies, remain the subject of intense fascination, and is still fraught with its share of mysteries.

Illustration of the depth by which Hubble imaged galaxies in prior Deep Field initiatives, in units of the Age of the Universe. The goal of the Frontier Fields is to peer back further than the Hubble Ultra Deep Field and get a wealth of images of galaxies as they existed in the first several hundred million years after the Big Bang. Note that the unit of time is not linear in this illustration. Illustration Credit: NASA and A. Feild (STScI)
Illustration of the depth by which Hubble imaged galaxies in prior Deep Field initiatives, in units of the Age of the Universe. Credit: NASA and A. Feild (STScI)

Galaxy Formation:

The current scientific consensus is that all matter in the Universe was created roughly 13.8 billion years ago during an event known as the Big Bang. At this time, all matter was compacted into a very small ball with infinite density and intense heat called a Singularity. Suddenly, the Singularity began expanding, and the Universe as we know it began.

After rapidly expanding and cooling, all matter was almost uniform in distribution. Over the course of the several billion years that followed, the slightly denser regions of the Universe began to become gravitationally attracted to each other. They therefore grew even denser, forming gas clouds and large clumps of matter.

These clumps became primordial galaxies, as the clouds of hydrogen gas within the proto-galaxies underwent gravitational collapse to become the first stars. Some of these early objects were small, and became tiny dwarf galaxies, while others were much larger and became the familiar spiral shapes, like our own Milky Way.

Galactic Mergers:

Once formed, these galaxies evolved together in larger galactic structures called groups, clusters and superclusters. Over time, galaxies were attracted to one another by the force of their gravity, and collided together in a series of mergers. The outcome of these mergers depends on the mass of the galaxies in the collision.

Small galaxies are torn apart by larger galaxies and added to the mass of larger galaxies. Our own Milky Way recently devoured a few dwarf galaxies, turning them into streams of stars that orbit the galactic core. But when large galaxies of similar size come together, they become giant elliptical galaxies.

When this happens, the delicate spiral structure is lost, and the merged galaxies become large and elliptical. Elliptical galaxies are some of the largest galaxies ever observed. Another consequence of these mergers is that the supermassive black holes (SMBH) at their centers become even larger.

Not all mergers will result in elliptical galaxies, mind you. But all mergers result in a change in the structure of the merged galaxies. For example, it is believed that the Milky Way is experiencing a minor merger event with the nearby Magellanic Clouds; and in recent years, it has been determined that the Canis Major dwarf galaxy has merged with our own.

While mergers are seen as violent events, actual collisions are not expected to happen between star systems, given the vast distances between stars. However, mergers can result in gravitational shock waves, which are capable of triggering the formation of new stars. This is what is predicted to happen when our own Milky Way galaxy merges with the Andromeda galaxy in about 4 billion years time.

Galactic Death:

Ultimately, galaxies cease forming stars once they deplete their supply of cold gas and dust. As the supply runs out, star forming slows over the course of billions of years until it ceases entirely. However, ongoing mergers will ensure that fresh stars, gas and dust are deposited in older galaxies, thus prolonging their lives.

At present, it is believed that our galaxy has used up most of its hydrogen, and star formation will slow down until the supply is depleted. Stars like our Sun can only last for 10 billion years or so; but the smallest, coolest red dwarfs can last for a few trillion years. However, thanks to the presence of dwarf galaxies and our impending merger with Andromeda, our galaxy could exist even longer.

However, all galaxies in this vicinity of the Universe will eventually become gravitationally bound to each other and merge into a giant elliptical galaxy. Astronomers have seen examples of these sorts of “fossil galaxies”, a good of which is Messier 49 – a supermassive elliptical galaxy.

These galaxies have used up all their reserves of star forming gas, and all that’s left are the longer lasting stars. Eventually, over vast lengths of time, those stars will wink out one after the other, until the whole thing is the background temperature of the Universe.

After our galaxy merges with Andromeda, and goes on to merge with all other nearby galaxies in the local group, we can expect that it too will undergo a similar fate. And so, galaxy evolution has been occurring over billions of years, and it will continue to happen for the foreseeable future.

We have written many articles about galaxies for Universe Today. Here’s What is the Milky Way?, How did the Milky Way Form?, What Happens When Galaxies Collide?, What Happens When Galaxies Die?, A New Spin on Galactic Evolution, and Supercomputer will Study Galaxy Evolution,

If you’d like more info on galaxies, check out Hubblesite’s News Releases on Galaxies, and here’s NASA’s Science Page on Galaxies.

We have also recorded an episode of Astronomy Cast about galaxies – Episode 97: Galaxies.

Sources:

Milky Way Shakes, Rattles and Rolls…

Three stages of the evolution of the galaxy simulation used to model the Milky Way. (Credit: AIP)

For decades astronomers have puzzled over the many details concerning the formation of the Milky Way Galaxy. Now a group of scientists headed by Ivan Minchev from the Leibniz Institute for Astrophysics Potsdam (AIP) have managed to retrace our galaxy’s formative periods with more detail than ever before. This newly published information has been gathered through careful observation of stars located near the Sun and points to a rather “moving” history.

To achieve these latest results, astronomers observed stars perpendicular to the galactic disc and their vertical motion. Just to shake things up, these stars also had their ages considered. Because it is nearly impossible to directly determine a star’s true age, they rattled the cage of chemical composition. Stars which show an increase in the ratio of magnesium to iron ([Mg/Fe]) appear to have a greater age. These determinations of stars close to the Sun were made with highly accurate information gathered by the RAdial Velocity Experiment (RAVE). According to previous findings, “the older a star is, the faster it moves up and down through the disc”. This no longer seemed to be true. Apparently the rules were broken by stars with the highest magnesium-to-iron ratios. Despite what astronomers thought would happen, they observed these particular stars slowing their roll… their vertical speed decreasing dramatically.

So what’s going on here? To help figure out these curious findings, the researchers turned to computer modeling. By running a simulation of the Milky Way’s evolutionary patterns, they were able to discern the origin of these older, slower stars. According to the simulation, they came to the conclusion that small galactic collisions might be responsible for the results they had directly observed.

Smashing into, or combining with, a smaller galaxy isn’t new to the Milky Way. It is widely accepted that our galaxy has been the receptor of galactic collisions many times during its course of history. Despite what might appear to be a very violent event, these incidents aren’t very good at shaking up the massive regions near the galactic center. However, they stir things up in the spiral arms! Here star formation is triggered and these stars move away from the core towards our galaxy’s outer edge – and near our Sun.

In a process known as “radial migration”, older stars, ones with high values of magnesium-to-iron ratio, are pushed outward and display low up-and-down velocities. Is this why the elderly, near-by stars have diminished vertical velocities? Were they forced from the galactic center by virtue of a collision event? Astronomers speculate this to be the best answer. By comparison, the differences in speed between stars born near the Sun and those forced away shows just how massive and how many merging galaxies once shook up the Milky Way.

Says AIP scientist Ivan Minchev: “Our results will enable us to trace the history of our home galaxy more accurately than ever before. By looking at the chemical composition of stars around us, and how fast they move, we can deduce the properties of satellite galaxies interacting with the Milky Way throughout its lifetime. This can lead to an improved understanding of how the Milky Way may have evolved into the galaxy we see today.”

Original Story Source: Leibniz Institute for Astrophysics Potsdam News Release. For further reading: A new stellar chemo-kinematic relation reveals the merger history of the Milky Way.