Exoplanet-Hunters Detect Two New “Warm Jupiters”

Artist's concept of Jupiter-sized exoplanet that orbits relatively close to its star (aka. a "hot Jupiter"). Credit: NASA/JPL-Caltech)
Artist's concept of Jupiter-sized exoplanet that orbits relatively close to its star (aka. a "hot Jupiter"). Credit: NASA/JPL-Caltech)

The study of extra-solar planets has turned up some rather interesting candidates in the past few years. As of August 1st, 2017, a total of 3,639 exoplanets have been discovered in 2,729 planetary systems and 612 multiple planetary systems. Many of these discoveries have challenged conventional thinking about planets, especially where their sizes and distances from their suns are concerned.

According to a study by an international team of astronomers, the latest exoplanet discoveries are in keeping with this trend. Known as EPIC 211418729b and EPIC 211442297b, these two gas giants orbit stars that are located about 1569 and 1360 light-years from Earth (respectively) and are similar in size to Jupiter. Combined with their relatively close orbit to their stars, the team has designated them as “Warm Jupiters”.

The study, titled “EPIC 211418729b and EPIC 211442297b: Two Transiting Warm Jupiters“, recently appeared online. Led by Avi Shporer – a postdoctoral scholar with the Geological and Planetary Sciences (GPS) division at the California Institute of Technology (Caltech) – the team relied on data from the Kepler and K2 missions, and follow-up observations with multiple ground-based telescopes, to determine the sizes, masses and orbits of these planets.

Simulation of the turbulent atmosphere of a hot, gaseous planet, based on data from NASA’s Spitzer Space Telescope. Credits: NASA/JPL-Caltech/MIT/Principia College

As they indicate in their study, the two planets were initially identified as transiting planet candidates by the K2 mission. In other words, they were initially detected through the transit method, where astronomers measure dips in a star brightness to confirm that a planet is passing between the observer and the star. These observations took place during K2‘s Campaign 5 observations, which took place between April 27th and July 10th, 2015.

The team then conducted follow-up observations using the Keck II telescope (located at the W.M. Keck Observatory in Hawaii) and the Gemini North Telescope (at the Gemini Observatory, also in Hawaii). These observations, conducted from January 2016 to May 2017, were then combined with spectral data and radial velocity measurements from the High Resolution Echelle Spectrometer (HIRES) the on the Keck I telescope.

Finally, they added photometric data from the Cerro Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO), and the Siding Spring Observatory (SSO) in Australia. These follow-up observations confirmed the presence of these two exoplanets. As they wrote in the study:

“We have discovered two transiting warm Jupiter exoplanets initially identified as transiting candidates in K2 photometryBoth planets are among the longest period transiting gas giant planets with a measured mass, and they are orbiting relatively old host stars. Both planets are not inflated as their radii are consistent with theoretical expectations.”

The transit light curve of EPIC 211418729b. Credit: Shporer (et al.)

From their observations, the team was also able to produce estimates on the planets respective sizes, masses and orbital periods. Whereas EPIC 211418729 b measures 0.942 Jupiter radii, has approximately 1.85 Jupiter masses and orbital period of 11.4 days, EPIC 211442297 b measures 1.115 Jupiter radii, has approximately 0.84 Jupiter masses and an orbital period of 20.3 days.

Based on their estimates, these planets experience surface temperatures of up to 719 K (445.85 °C; 834.5 °F) and 682 K (408.85°C; 768 °F), respectively. As such, they classified these planets as “Warm Jupiters”, since they fall short of what is considered typical for “Hot Jupiters” – which have exotic atmosphere’s that experience temperatures as high as several thousand kelvin.

The researchers noted that based on their orbital periods, these two planets have some of the longest orbital periods of any transiting gas giant (i.e. those that have been detected using the transit method) detected to date. Or as they state in their study:

“Both EPIC 211418729b and EPIC 211442297b are among the longest period transiting gas giant planets with a measured mass. In fact, according to the NASA Exoplanet Archive (Akeson et al. 2013) EPIC 211442297b is currently the longest period K2 transiting exoplanet with a well constrained mass.”

Artist’s conception of a “Hot Jupiter” orbiting close to its star. Credit: NASA/JPL-Caltech/T. Pyle (SSC)

Another interesting observation was the fact that neither of these exoplanets were inflated, which is something they did not anticipate. In the case of Hot Jupiters, the atmospheres undergo expansion as a result of the amount of solar irradiation they receive, resulting in what the team refers to as a “radius-irradiation correlation” in their paper. In other words, Hot Jupiters are massive, but are also known to have low densities compared to cooler gas giants.

Instead, the team found that both EPIC 211418729b and EPIC 211442297b had radii that were consistent with what theoretical models predict for gas giants of their mass. Their results also led them to make some tentative conclusions about the planets’ structures and compositions. As they wrote:

“Both planets are not inflated compared to theoretical expectations, unlike many other planets in the diagram. Their positions are close to or consistent with theoretical expectations for a planet with little to no rocky core, for EPIC 211442297b, and a planet with a significant rocky core for EPIC 211418729b.”

These results suggest that solar irradiation does not play a significant role in determining the radius of Warm Jupiters. It also raises some interesting questions about the correlation between radii and irradiation with other gas giants. In the future, EPIC 211418729b and EPIC 211442297b will be targets of future K2 observations during the mission’s Campaign 18 – which will run from May to August 2018.

These observations are sure to offer some additional insight into these planets and the mysteries this study has raised. Future surveys of transiting exoplanets – conducting by next-generation instruments like the Transiting Exoplanet Survey Satellites (TESS) – and direct-imaging surveys conducted by the James Webb Space Telescope (JWST) are sure to reveal even more about distant, exotic exoplanets.

Further Reading: arXiv

Watch Asteroid 3122 Florence Zip Past Earth This Weekend

NEO asteroid
An artist's conception of an NEO asteroid orbiting the Sun. Credit: NASA/JPL.
NEO asteroid
An artist’s conception of an NEO asteroid similar to 3122 Florence orbiting the Sun. Credit: NASA/JPL.

Ready to hunt for low-flying space rocks? We’ve got an interesting pass of a Near Earth Asteroid (NEA) this upcoming U.S. Labor Day weekend, one that just slides over the +10th magnitude line into binocular range.

We’re talking about asteroid 3122 Florence, which passes 4.4 million miles from our fair planet (that’s 7 million kilometers, about 18 times the distance from Earth to the Moon) this Friday on September 1st at 12:06 Universal Time (UT)/ 8:06 AM Eastern Daylight Saving Time (EDT).

Universe Today ran an article on the close pass about a week ago. Now, we’d like to show you how to see this asteroid as it glides by.

Ordinarily, a four million mile pass (about 4.7% of an astronomical unit, just under the criterion to make 3122 Florence a Near Earth Object) isn’t enough to grab our attention. Lots of asteroids pass closer weekly, and 3122 Florence is certainly no danger to the Earth this or any week in the near future. What makes this asteroid an attractive target is its size: NASA’s NEOWISE and Spitzer infrared telescope missions estimate that 3122 Florence is about 2.7 miles (4.4 kilometers) in diameter, a pretty good-sized chunk of rock as near Earth asteroids go.

Florence orbit
The inclined orbit of 3122 Florence. Credit: NASA/JPL.

The last large asteroid with a similar close approach was 4179 Toutatis, which passed just under four lunar distances (a little under a million miles) from the Earth on September 29th, 2004.

Asteroid 3122 Florence (1981 ET3) was discovered by prolific asteroid hunter Schelte J. Bus from Siding Spring observatory in Australia on the night of March 2nd, 1981. Named after social reformer and founder of modern nursing Florence Nightingale, this weekend’s pass is the closest 3122 Florence gets to Earth over a 600 year plus span, running from 1890 (well before its discovery) out past 2500 AD.

Plans are afoot to ping 3122 Florence using Goldstone and Arecibo radars as it passes by the weekend. we might just see if it has a any attending moonlets or a strange bifurcated shape like comets 67/P Churyumov-Gerasimenko or Comet 45/P Honda-Mrkos-Pajdušáková very soon.

2014 JO25
Asteroid 2014 JO25 imaged by Arecibo earlier this year… are contact binary ‘rubber-duck’ shaped asteroids and comets a thing? Credit: NASA/Arecibo/NSF.

3122 Florence has an inclined orbit, tilted 22 degrees in respect to the ecliptic plane. Orbiting the Sun once every 859 days, 3122 Florence travels from around 1 to 2.5 AUs from the Sun, making it an Amor class asteroid which journeys beyond the orbit of Mars and approaches but doesn’t pass interior to the orbit of the Earth.

This week’s pass sees 3122 Florence rapidly vaulting up from the southern to northern hemisphere.

This apparition culminates on Friday, September 1st, at 12:06 UT as the asteroid crosses the along the border of the constellations Equuleus and Delphinus at closest approach, reaching +9th magnitude. 3122 Florence will be moving at 20′ per hour (that’s about 2/3rds the diameter of the Full Moon) at closest approach, fast enough that you’ll notice its motion against the background stars in a low power field of view after about 10 minutes or so.

Path of Florence
The path of 3122 Florence through the sky this week, times for the tick marks are in EDT (UT-4 hours). Credit: Starry Night Education software.

3122 Florence crosses through the constellations Piscis Austrinus, Capricornus, Aquarius, Equuleus and Delphinus this week. Keep in mind, the Moon is headed towards Full next week on September 6th, making the next few evenings a good time to track this fleeting space rock down.

3122 Florence from August 28th, about 8 million kilometers from the Earth. The asteroid is the center dot, while the streak to the left is the geostationary satellite AMC-14. Credit: the Virtual Telescope Project.

Finding 3122 Florence

3122 Florence races across the ecliptic northward on the night of August 29th and also crosses the celestial equator on September 1st

Tonight is also a good time to track down 3122 Florence, as it passes just 16′ from +3.8 magnitude star Zeta Capricorni. It also threads its way through the tiny the diamond-shaped asterism of Delphinus the Dolphin just over week after its closest pass on the evening of Saturday, September 9th.

Currently, 3122 Florence is 45 degrees above the southern horizon around local midnight for observers based along 30 degrees north latitude. The best view during Friday’s pass is from the Pacific Rim, including Australia, New Zealand and surrounding regions at closest approach.

Earth view
The orientation of the Earth as seen from asteroid 3122 Florence during Friday’s closest approach. Credit: Starry Night Education software.

North American viewers will get a good view at local midnight just about eight hours prior to closest approach on the night of August 31st/September 1st, about 60 degrees above the southern horizon. The next good views occur the following evening about 16 hours after closest approach, as the asteroid is receding but 10 degrees higher above the southern horizon.

The 24 hour celestial path of of 3122 Florence through the night sky, centered on the September 1st closest approach. Tick mark times are in EDT (UT-4 hours). Created using Starry Night Education software.

A series short wide field exposures over about an hour revealing stars down to +10 magnitude should reveal the motion of 3122 Florence against the starry background. A good visual alternative is to sketch the suspect star field about 10 minutes apart, carefully looking for a ‘star’ that has moved during the intervening time.

JPL Horizons is a good place to generate accurate right ascension and declination coordinates for 3122 Florence to aid you in your quest. This one is distant enough to simple geocentric coordinates should suffice, and observer parallax shouldn’t shift the position of the asteroid significantly.

Clouded out? The good folks over at the Virtual Telescope Project will be featuring 3122 Florence during a live webcast starting on Thursday, August 31st at 19:30 UT/3:30 PM EDT.

We can be thankful that 3122 Florence isn’t headed Earthward, as it’s perhaps about half the size of the 10-15 kilometer diameter Chicxulub impactor that hit the Yucatan 65 million years ago, causing a very bad day for the dinosaurs. Plus, it would just be weird if an asteroid named after humanitarian Florence Nightingale caused the extinction of humanity…

And this is a great pre-show for a smaller and closer anticipated asteroid pass coming up in a few short weeks, as 2012 TC4 buzzes the Earth on October 12th, 2017.

Good luck in your quest to find 3122 Florence… let us know what you see!

Settle the Moon Before Mars, Says Astronaut Chris Hadfield

Chris Hadfield recently explained how humanity should create a Moon base before attempting to colonize Mars. Credit: Foster + Partners is part of a consortium set up by the European Space Agency to explore the possibilities of 3D printing to construct lunar habitations. Credit: ESA/Foster + Partners

In the coming decades, NASA has some rather bold plans for space exploration. By the 2030s, they hope to mount their “Journey to Mars“. a crewed mission that will see astronauts traveling beyond Earth for the first time since the Apollo era. At the same time, private companies and organizations like SpaceX and MarsOne are hoping to start colonizing Mars within a decade or so.

According to Chris Hadfield, these mission concepts are all fine and good. But as he explained in a recent interview, our efforts should be focused on renewed exploration of the Moon and the creation of a lunar settlement before we do the same for Mars. In this respect, he is joined by organizations like the European Space Agency (ESA), Roscosmos, the Chinese National Space Agency (CNSA), and others.

When it comes to establishing a base on the Moon, the benefits are rather significant. For starters, a lunar outpost could serve as a permanent research base for teams of astronauts. In the same respect, it would present opportunities for scientific collaboration between space agencies and private companies – much in the same way the International Space Station does today.

On top of that, a lunar outpost could serve as a refueling station, facilitating missions deeper into the Solar System. According to estimates prepared by NexGen Space LLC (a consultant company for NASA), such a base could cut the cost of any future Mars missions by about $10 billion a year. Last, but not least, it would leverage key technologies that have been developed in recent years, from reusable rockets to additive manufacturing (aka. 3D printing).

And as Chris Hadfield stated in an interview with New Scientist, there are also a number of practical reasons for back to the Moon before going to Mars – ranging from distance to the development of “space expertise”. For those interested in science and space exploration, Chris Hadfield has become a household name in recent years. Before becoming an astronaut, he was a pilot with the Royal Canadian Air Force (RCAF) and flew missions for NORAD.

After joining the Canadian Space Agency (CSA) in 1992, he participated in two space missions – STS-74 and STS-100 in 1995 and 2001, respectively – as a Mission Specialist. These missions involved rendezvousing with the Russian space station Mir and the ISS. However, his greatest accomplishment occurred in 2012, when he became the first Canadian astronaut to command an ISS mission – Expedition 35.

During the course of this 148-day mission, Hadfield attracted significant media exposure due to his extensive use of social media to promote space exploration. In fact, Forbes described Hadfield as “perhaps the most social media savvy astronaut ever to leave Earth”. His promotional activities included a collaboration with Ed Robertson of The Barenaked Ladies and the Wexford Gleeks, singing “Is Somebody Singing? (I.S.S.) via Skype.

Canadian astronaut Chris Hadfield, the first Canadian to serve as commander of the ISS. Credit: CTV

The broadcast of this event was a major media sensation, as was his rendition of David Bowie’s Space Oddity“, which he sung shortly before departing the station in May 2013. Since retiring from the Canadian Space Agency, Hadfield has become a science communicator and advocate for space exploration. And when it comes to the future, he was quite direct in his appraisal that the we need to look to the Moon first.

According to Hadfield, one of the greatest reasons for establishing a base on the Moon has to do with its proximity and the fact that humans have made this trip before. As he stated:

“With long-haul space exploration there is a whole smorgasbord of unknowns. We know some of the threats: the unreliability of the equipment, how to provide enough food for that length of time. But there are countless others: What are the impacts of cosmic rays on the human body? What sort of spacecraft do you need to build? What are the psychological effects of having nothing in the window for months and months? And going to a place that no one has ever been before, that can’t be discounted.”

In that, he certainly has a point. At their closest – i.e. when it is at “opposition with the Sun”, which occurs approximately every two years – Mars and Earth are still very far from each othre. In fact, the latest closest-approach occurred in 2003, when the two planets were roughly 56 million km (33.9 million miles) apart. This past July, the planets were again at opposition, where they were about 57.6 million km (35.8 million miles) apart.

Using conventional methods, it would take a mission between 150 and 300 days to get from the Earth to Mars. Whereas a more fuel-efficient approach (like ion engines) would cost less but take much longer, a more rapid method like chemical rockets would could cost far more. Even with Nuclear Thermal Propulsion (NTP) or the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept, the journey could still take 5 to 7 months.

During this time, astronauts would not only be subjected to a great deal of cosmic radiation, they would have to contend with the affects of microgravity. As studies that have been conducted aboard the ISS that have shown, long-term exposure to a microgravity environment can lead to losses in bone density, muscular atrophy, diminished eyesight, and organ damage.

Recent studies have also shown that exposure to radiation while on the surface of Mars would be quite significant. During its journey to Mars, the Curiosity rover recorded that it was subjected to average dose of 1.8 millisieverts (mSv) per day from inside its spaceship – the Mars Science Laboratory. During its first three hundred days on the surface, it was exposed to about 0.67 millisieverts (mSv) per day.

This is about half and one-fifth (respectively) of what people are exposed to during an average here on Earth. While this falls outside of NASA’s official guidelines, it is still within the guidelines of other space agencies. But to make matter worse, a new study from the University of Nevada, Las Vegas, concluded that exposure to cosmic rays could cause cell damage that would spread to other cells in the body, effectively doubling the risk of cancer.

The risks of going to the Moon, in contrast, are easy to predict. Thanks to the Apollo missions, we know that it takes between two and three days to travel from the Earth to the Moon. The Apollo 11 mission, for example, launched from the Cape Kennedy on July 16th, 1969, and arrived in lunar orbit by July 19th, 1969 – spending a total of 51 hours and 49 minutes in space. Astronauts conducting this type of mission would therefore be subject to far less radiation.

Artist’s impression of a lunar base created with 3-d printing techniques. Credits: ESA/Foster + Partners

Granted, the surface of the Moon is still exposed to significant amounts of radiation since the Moon has no atmosphere to speak of. But NASA estimates that walls which are 2.5 meters in thickness (and made from lunar regolith) will provide all the necessary shielding to keep astronauts or colonists safe. Another good reason to go to the Moon first, according to Hadfield, is because expertise in off-world living is lacking.

“There are six people living on the International Space Station, and we have had people there continuously for nearly 17 years,” he said. “But the reality is we have not yet figured out how to live permanently off-planet. So I think if we follow the historically driven pattern then the moon would be first. Not just to reaffirm that we can get there, but to show that we can also live there.”

But perhaps the best reason to settle the Moon before moving onto Mars has to do with the fact that exploration has always been about taking the next step, and then the next. One cannot simply leap from one location to the next, and expect successful results. What are required is baby-steps. And in time, sufficient traction can be obtained and the process will build up speed, enabling steps that are greater and more far-reaching. Or as Hadfield put it:

“For tens of thousands of years humans have followed a pattern on Earth: imagination, to technology-enabled exploration, to settlement. It’s how the first humans got to Australia 50,000 or 60,000 years ago, and how we went from Yuri Gagarin and Alan Shepherd orbiting Earth to the first people putting footprints on the moon, to people living in orbit.

Based on this progression, one can therefore see why Hadfield and others beleive that the next logical step is to return to the Moon. And once we establish a foothold there, we can then use it to launch long-range missions to Mars, Venus, and beyond. Incremental steps that eventually add up to human beings setting foot on every planet, moon, and larger body in the Solar System.

On the subject of lunar colonization, be sure to check out our series on Building a Moon Base, by Universe Today’s own Ian O’Neill.

Further Reading: New Scientist

Messier 55 – the NGC 6809 Globular Star Cluster

The globular star cluster Messier 55 in the constellation of Sagittarius (The Archer) was obtained in infrared light with the VISTA survey telescope at ESO’s Paranal Observatory in Chile. This vast ball of ancient stars is located at a distance of about 17 000 light-years from Earth. Credit: ESO/J. Emerson/VISTA

Welcome back to Messier Monday! We continue our tribute to our dear friend, Tammy Plotner, by looking at the “Summer Rose Star”, other known as the globular star cluster of Messier 55. Enjoy!

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects in the night sky. In time, he would come to compile a list of approximately 100 of these objects, with the purpose of making sure that astronomers did not mistake them for comets. However, this list – known as the Messier Catalog – would go on to serve a more important function.

One of these objects is Messier 55, a globular star cluster located in the Sagittarius Constellation. Also known as the “Summer Rose Star”, this cluster is located 17,600 light-years from Earth and spans about 100 light-years in diameter. While it can be seen with binocular, resolving its individual stars can only be done with a small telescope and finderscope.

Description:

Located some 17,300 light years from planet Earth and spanning nearly 100 light years in diameter, this loose appearing ball of stellar points may not seem concentrated – but its home to tens of thousands stars. Does anyone really take the time to count them? You bet. M.J. Irwin and V. Trimble did just that during their 1984 study of Messier 55:

“We report star counts, as a function of position and apparent magnitude, in the rich, relatively open southern globular cluster NGC 6809 (M55). Three AAO 150arcsec plates were scanned by the Automatic Plate Measuring System (APM) at the Institute of Astronomy, Cambridge, and 20825 images were counted by its associated software. Previously known features of rich globular clusters which appear in the raw counts include a flattening of the luminosity function, increased central concentration of bright stars relative to faint ones (normally interpreted as mass segregation), and mild deviations in radial profile from King models. Crowding of the field, which causes the counting procedure to miss faint stars preferentially near the cluster center, contributes to all of these, and may be responsible for all of the apparent mass segregation, but not for all of the other two effects.”

Globular cluster Messier 55 (M55, or NGC 6809) in the constellation Sagittarius, as imaged by the ESO 3.6-metre telescope on La Silla. Release date: 3 December 2009. Credit: ESO

But just want good does counting the stars do? Well, knowing how many stars are within a given area helps astronomers compute other things as well, like chemical abundances. Said Carlos Alvarez and Eric Sandquist in their 2004 study:

“We have compiled the asymptotic giant, horizontal, and upper red giant branch (AGB, HB, and RGB) stars in the globular cluster M55 (NGC 6809). Using the star counts and the R-parameter we compute the initial helium abundance. The ratio is unusually high for a globular cluster, being almost 2 away from the predicted values, and the highest recorded for a massive globular cluster. We argue that M55’s particular HB morphology and metallicity have produced long-lived HB stars that are not too blue to avoid producing AGB stars. This result hints that we are able to map evolutionary effects on the HB. Finally, although we find no evidence of variations in HB morphology with distance from the center of the cluster, the red HB stars are significantly less concentrated than the majority of HB stars, and the bluest HB stars are more centrally concentrated.”

Studying globular clusters photometrically also gives astronomers the advantage of comparing them to others, to see how each evolves. As P. Richter (et al) indicated in their 1999 study:

“We present Stroemgren CCD photometry for the two galactic globular clusters M55 (NGC 6809) and M22 (NGC 6656). The difference between M55 and M22 may resemble the difference in integral CN band strength between M31 globular clusters and the galactic system. The colour-magnitude diagram of M55 shows the presence of a population of 56 blue-straggler stars that are more centrally concentrated than the red giant-branch stars.”

And viewing globular clusters like Messier 55 in a different wavelength of light other than optical reveals even more stunning details – like the vision of the XMM-Newton. As N.A. Webb (et al) said in their 2006 study:

“Using the new generation of X-ray observatories, we are now beginning to identify populations of close binaries in globular clusters, previously elusive in the optical domain because of the high stellar density. These binaries are thought to be, at least in part, responsible for delaying the inevitable core collapse of globular clusters and their identification is therefore essential in understanding the evolution of globular clusters, as well as being valuable in the study of the binaries themselves. Here, we present observations made with XMM-Newton of globular clusters, in which we have identified neutron star low mass X-ray binaries and their descendants (millisecond pulsars), cataclysmic variables and other types of binaries. We discuss not only the characteristics of these binaries, but also their formation and evolution in globular clusters and their use in tracing the dynamical history of these clusters.”

History of Observation:

M55 was originally discovered by Abbe Lacaille on June 16th, 1752, when he was observing in South Africa. In his notes, he wrote: “It resembles an obscure nucleus of a big comet.” Of course, our own comet hunter, Charles Messier, would search for a good many years before he recovered it to add to his own catalog. By July 24th, 1778, he found the object and recorded it as follows in his notes:

“A nebula which is a whitish spot, of about 6′ extension, its light is even and does not appear to contain any star. Its position has been determined from zeta Sagittarii, with the use of an intermediate star of 7th magnitude. This nebula has been discovered by M. l’Abbe de LaCaille, see Mem. Acad. 1755, p. 194. M. Messier has looked for it in vain on July 29, 1764, as reported in his memoir.”

Messier 55 in Sagittarius. Credit: Hewholooks/Wikipedia Commons

Johann Elert Bode, Dunlop and Caroline Herschel would follow, but it would be Sir William Herschel who would be first to glimpse the resolvability of this great globular cluster. In his private notes he writes:

“A rich cluster of very compressed stars, irregularly round, about 8 minutes long. By the observation of the small 20 feet telescope, which could reach stars 38.99 times as far as the eye, the profundity of this cluster cannot be much less than of the 467th order: I have taken it to be of the 400th order.”

Locating Messier 55:

M55 is by no means easy to find. One of the best ways to locate it is to begin at Theta 1 and Theta 2 Sagittarius, where you’ll find it approximately two finger widths northwest of this pair approximately four degrees. Both Thetas are on the dim side for the unaided eye – about magnitude 4 and 5 respectively, but you’ll recognize them when you find two stars separated by less than half a degree and oriented north/south.

For average binoculars, this will put M55 about a binocular field away to the northwest. For average image correct finderscopes, place the Thetas in the 8:00 position at the edge of the finderscope field and go to the eyepiece with the lowest possible magnification to locate it.

Messier 55 location. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Although it has a high visual brightness, M55 has low surface brightness so it isn’t suitable to urban or light polluted skies. With dark sky conditions, binoculars will see it as a round hazy patch – like a diffuse comet, while small telescopes can begin to resolve individual stars. Larger aperture telescopes will pick out the fine grain of low magnitude stars quite easily!

Enjoy your own resolvability of this great globular cluster!

And as always, here are the quick facts on this Messier Object:

Object Name: Messier 55
Alternative Designations: M55, NGC 6809
Object Type: Class XI Globular Cluster
Constellation: Sagittarius
Right Ascension: 19 : 40.0 (h:m)
Declination: -30 : 58 (deg:m)
Distance: 17.3 (kly)
Visual Brightness: 6.3 (mag)
Apparent Dimension: 19.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier ObjectsM1 – The Crab Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

NASA Says James Webb Telescope will Study Solar System’s “Ocean Worlds”

The moons of Europa and Enceladus, as imaged by the Galileo and Cassini spacecraft. Credit: NASA/ESA/JPL-Caltech/SETI Institute

In October of 2018, the James Webb Space Telescope (JWST) will be launched into orbit. As part of NASA’s Next Generation Space Telescope program, the JWST will spend the coming years studying every phase of cosmic history. This will involve probing the first light of the Universe (caused by the Big Bang), the first galaxies to form, and extra-solar planets in nearby star systems.

In addition to all of that, the JWST will also be dedicated to studying our Solar System. As NASA recently announced, the telescope will use its infrared capabilities to study two “Ocean Worlds” in our Solar System – Jupiter’s moon Europa and Saturn’s moon Enceladus. In so doing, it will add to observations previously made by NASA’s Galileo and Cassini orbiters and help guide future missions to these icy moons.

The moons were chosen by scientist who helped to develop the telescope (aka. guaranteed time observers) and are therefore given the privilege of being among the first to use it. Europa and Enceladus were added to the telescope’s list of targets since one of the primary goals of the telescope is to study the origins of life in the Universe. In addition to looking for habitable exoplanets, NASA also wants to study objects within our own Solar System.

Artist rendering showing an interior cross-section of the crust of Enceladus, which shows how hydrothermal activity may be causing the plumes of water at the moon’s surface. Credits: NASA-GSFC/SVS, NASA/JPL-Caltech/Southwest Research Institute

One of the main focuses will be on the plumes of water that have been observed breaking through the icy surfaces of Enceladus and Europa. Since 2005, scientists have known that Enceladus has plumes that periodically erupt from its southern polar region, spewing water and organic chemicals that replenish Saturn’s E-Ring. It has since discovered that these plumes reach all the way into the interior ocean that exists beneath Enceladus’ icy surface.

In 2012, astronomers using the Hubble Space Telescope detected similar plumes coming from Europa. These plumes were spotted coming from the moon’s southern hemisphere, and were estimated to reach up to 200 km (125 miles) into space. Subsequent studies indicated that these plumes were intermittent, and presumably rained water and organic materials from the interior back onto the surface.

These observations were especially intriguing since they bolstered the case for Europa and Enceladus having interior, warm-water oceans that could harbor life. These oceans are believed to be the result of geological activity in the interior that is caused by tidal flexing. Based on the evidence gathered by the Galileo and Cassini orbiters, scientists have theorized that these surface plumes are the result of these same geological processes.

The presence of this activity could also means that these moons have hydrothermal vents located at their core-mantle boundaries. On Earth, hydrothermal vents (located on the ocean floor) are believed to have played a major role in the emergence of life. As such, their existence on other bodies within the Solar System is viewed as a possible indication of extra-terrestrial life.

The effort to study these “Ocean Worlds” will be led by Geronimo Villanueva, a planetary scientist at NASA’s Goddard Space Flight Center. As he explained in a recent NASA press statement, he and his team will be addressing certain fundamental questions:

“Are they made of water ice? Is hot water vapor being released? What is the temperature of the active regions and the emitted water? Webb telescope’s measurements will allow us to address these questions with unprecedented accuracy and precision.”

Villanueva’s team is part of a larger effort to study the Solar System, which is being led by Heidi Hammel – the executive VP of the Association of Universities for Research in Astronomy (AURA). As she described the JWST’s “Ocean World” campaign to Universe Today via email:

We will be seeking signatures of plume activity on these ocean worlds as well as active spots. With the near-infrared camera of NIRCAM, we will have just enough spatial resolution to distinguish general regions of the moons that could be “active” (creating plumes). We will also use spectroscopy (examining specific colors of light) to sense the presence of water, methane and several other organic species in plume material.”

Possible spectroscopy results from one of Europa’s water plumes. This is an example of the data the Webb telescope could return. Credit: NASA-GSFC/SVS/Hubble Space Telescope/Stefanie Milam/Geronimo Villanueva

To study Europa, Villanueva and his colleagues will take high-resolution imagery of Europa using the JWST’s near-infrared camera (NIRCam). These will be used to study the moon’s surface and search for hot spots that are indicative of plumes and geological activity. Once a plume is located, the team will determine its composition using Webb’s near-infrared spectrograph (NIRSpec) and mid-infrared instrument (MIRI).

For Enceladus, the team will be analyze the molecular composition of its plumes and perform a broad analysis of its surface features. Due to its small size, high-resolution of the surface will not be possible, but this should not be a problem since the Cassini orbiter already mapped much of its surface terrain. All told, Cassini has spent the past 13 years studying the Saturn system and will conclude the “Grande Finale” phase of its mission this September 15th.

These surveys, it is hoped, will find evidence of organic signatures in the plumes, such as methane, ethanol and ethane. To be fair, there are no guarantees that the JWST’s observations will coincide with plumes coming from these moons, or that the emissions will have enough organic molecules in them to be detectable. Moreover, these indicators could also be caused by geological processes.

Nevertheless, the JWST is sure to provide evidence that will allow scientists to better characterize the active regions of these moons. It is also anticipated that it will be able to pinpoint locations that will be of interest for future missions, such as NASA’s Europa Clipper mission. Consisting of an orbiter and lander, this mission – which is expected to launch sometime in the 2020s – will attempt to determine if Europa is habitable.

As Dr. Hammel explained, the study of these two “Ocean Moons” is also intended to advance our understanding about the origins of life in the Universe:

“These two ocean moons are thought to provide environments that may harbor water-based life as we know it.  At this point, the issue of life elsewhere is completely unknown, though there is much speculation.  JWST can move us closer to understanding these potentially habitable environments, complementing robotic spacecraft missions that are currently in development (Europa Clipper) and may be planned for the future.   At the same time, JWST will be examining the far more distant potentially habitable environments of planets around other stars.  These two lines of exploration – local and distant – allow us to make significant advances in the search for life elsewhere.”

Once deployed, the JWST will be the most powerful space telescope ever built, relying on eighteen segmented mirrors and a suite of instruments to study the infrared Universe. While it is not meant to replace the Hubble Space Telescope, it is in many ways the natural heir to this historic mission. And it is certainly expected to expand on many of Hubble’s greatest discoveries, not the least of which are here in the Solar System.

Be sure to check out this video on the kinds of spectrographic data the JWST will provide in the coming years, courtesy of NASA:

Further Reading: NASA

Cold-War Era Derived ICBM Blasts Military ORS-5 Surveillance and Space Junk Tracking Satellite to Orbit: Gallery

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff darting in and out of clouds to deliver the ORS-5 space situational awareness and debris tracking satellite to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station, FL – as seen from 5th Space Launch Squadron building roof on CCAFS. Credit: Ken Kremer/kenkremer.com
ICBM derived Minotaur IV overnight launch of the ORS-5 space situational awareness and debris tracking satellite for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A Cold War-era derived Peacekeeper ICBM missile formerly armed with multiple nuclear warheads and now modified as a payload orbiter successfully launched an urgently needed space situational awareness and space junk tracking satellite to equatorial orbit overnight this morning, Aug. 26, for the U.S. military from the Florida Space Coast.

Following a nearly 3 hour delay due to day long dismal weather causing locally heavy rain storms and lighting in central Florida, an Orbital ATK Minotaur IV rocket carrying the ORS-5 tracking satellite for the USAF finally lifted off in the wee hours Saturday morning, Aug. 26 at 2:04 a.m. EDT from Cape Canaveral Air Force Station in Florida.

The five stage solid fueled Minotaur IV roared rapidly off Space Launch Complex 46 (SLC-46) on a half million pounds of thrust and quickly disappeared into the clouds from the perspective of our nearby media launch viewing site on this inaugural launch of the rocket from the Cape.

Check back here to see the expanding gallery of launch photos and videos recorded by myself and space journalist colleagues!

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff carrying the ORS-5 space situational awareness and debris tracking satellite to orbit for the military at 2:04 a.m. EDT on August 26, 2017 from pad 46 on Cape Canaveral Air Force Station in Florida. Credit: Julian Leek

The gap filling ORS-5 space surveillance satellite is a low cost mission technology demonstration mission that will track orbiting threats for the U.S. Air Force – and offered a thrilling nighttime launch experience to those who stayed awake and braved the post midnight time slot.

The converted ICBM motor ignition produced a flash of extremely bright light that briefly turned night into day. The maiden Minotaur from the Cape gushed intensely at liftoff and left a huge exhaust trailing in its wake as it accelerated to orbit.

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff darting in and out of clouds to deliver the ORS-5 space situational awareness and debris tracking satellite to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station, FL – as seen from 5th Space Launch Squadron building roof on CCAFS. Credit: Ken Kremer/kenkremer.com

The ORS-5 is a single satellite constellation with a primary mission to provide space situational awareness of the geosynchronous orbit belt for Combatant Commanders’ urgent needs, according to Brig. Gen. Wayne Monteith, 45th Space Wing commander and mission Launch Decision Authority at Cape Canaveral Air Force Station

The ORS-5 mission, which stands for Operationally Responsive Space-5, marks the first launch of a Minotaur IV rocket from Cape Canaveral Air Force Station and the first use of SLC-46 since 1999.

SLC-46 is operated under license by Space Florida, which invested more than $6 million dollars of state funds into pad upgrades and renovations.

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff carrying the ORS-5 space situational awareness and debris tracking satellite to orbit for the military at 2:04 a.m. EDT on August 26, 2017 from pad 46 on Cape Canaveral Air Force Station in Florida. Credit: Michael Seeley/WeReportSpace

The ORS-5 satellite built for the USAF Operationally Responsive Space Office will provide the US military with space-based surveillance and tracking of other satellites both friend and foe as well as space debris in geosynchronous orbit, 22,236 miles above the equator.

ORS-5 is like a telescope wrapped in a satellite that will aim up to seek threats from LEO to GEO using cameras and spectrometer sensors.

Also known as SensorSat, ORS-5 is designed to scan for other satellites and debris to aid the U.S. military’s tracking of objects in geosynchronous orbit for a minimum of three years and possibly longer if its on board sensor and spacecraft systems continue functioning in a useful and productive manner.

The Minotaur IV is a five stage rocket comprised of three stages of a decommissioned Cold War-era Peacekeeper Intercontinental Ballistic Missile (ICBM) that has been modified to add two additional Orbital ATK Orion 38 solid rocket motors for the upper stages.

Approximately 28 minutes after liftoff at 2:04 a.m. EDT, the Minotaur IV deployed the ORS-5 satellite into its targeted low inclination orbit 372 miles (599 kilometers) above the earth, Orbital ATK confirmed.

“From this orbit, ORS-5 will deliver timely, reliable and accurate space situational awareness information to the United States Strategic Command through the Joint Space Operations Center.”

Orbital ATK Minotaur IV rocket soars to orbit after blastoff darting artfully in and out of clouds to deliver the ORS-5 space situational awareness and debris tracking satellite to orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

“This was our first Minotaur launch from Cape Canaveral Air Force Station, demonstrating the rocket’s capability to launch from all four major U.S. spaceports,” said Rich Straka, Vice President and General Manager of Orbital ATK’s Launch Vehicles Division.

ICBM derived Minotaur IV overnight launch of the ORS-5 space situational awareness and debris tracking satellite for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

This Minotaur IV rocket is a retired Cold War-era ICBM missile once armed with nuclear warheads aimed at the former Soviet Union that can now launch satellites for purposes other than offensive nuclear war retaliation.

So on the event of a nuclear first or retaliatory strike, this is how the world could potentially end in utter destruction and nuclear catastrophy.

To get an up-close feeling of the sounds and fury watch this Minotaur IV/ORS-5 launch video compilation from colleague Jeff Seibert from our media launch viewing site from the roof of the 5th Space Launch Squadron building on Cape Canaveral Air Force Station, FL.

Video Caption: Orbital ATK launch of Minotaur ORS 5 at 2:04 a.m. EDT on Aug. 26, 2017. None of the videos are sped up, it really takes off that fast. The solid fuel Peacekeeper missile segments were repurposed to launch the ORS-5 satellite from Launch Complex 46 on CCAFS., Fl. Credit: Jeff Seibert

Overall the ORS-5 launch was the 26th blastoff in Orbital ATK’s Minotaur family of launch vehicles which enjoy a 100% success rate to date.

Today’s launch was the 6th for the Minotaur IV version.

“With a perfect track record of 26 successful launches, the Minotaur family has proven to be a valuable and reliable asset for the Department of Defense,” said Straka.

“Orbital ATK has launched nearly 100 space launch and strategic rockets for the U.S. Air Force,” said Scott Lehr, President of Orbital ATK’s Flight Systems Group. “We’re proud to be a partner they can count on.”

Orbital ATK Minotaur IV rocket streaks to orbit through low hanging clouds that instantly become brightly illuminated as the booster engines flames pass through, while leaving towering exhaust plume in its wake. The mission carried the ORS-5 satellite tracker to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The past two weeks have been a super busy time at the Kennedy Space Center and Cape Canaveral. This morning’s post midnight launch was the third in just 11 days – and the second in a week!

A ULA Atlas V launched the NASA TDRS-M science relay satellite last Friday, Aug 18. And a SpaceX Falcon 9 launched the Dragon CRS-12 cargo resupply mission to the International Space Station (ISS) on Monday, Aug. 14.

“The ORS-5 Minotaur IV launch was the true epitome of partnership,” Gen. Monteith said.

“A collaborative effort between multiple mission partners, each group came together flawlessly to revolutionize how we work together on the Eastern Range. Teamwork is pivotal to making us the ‘World’s Premier Gateway to Space’ and I couldn’t be prouder to lead a Wing that not only has launched over a quarter of the world’s launches this year, but also three successful, launches from three different providers, in less than two weeks.”

ORS-5 was designed and built by Massachusetts Institute of Technology’s Lincoln Laboratory facility in Lexington, Massachusetts at a cost of $49 million.


The ORS-5 or SensorSat satellite will provide the US military with space-based surveillance and tracking of other satellites both friend and foe and space debris in geosynchronous orbit 22,236 miles above the equator. Credit: MIT Lincoln Laboratory

In July 2015 the U.S. Air Force’s Operationally Responsive Space (ORS) Office awarded Orbital ATK a $23.6 million contract to launch the ORS-5 SensorSat on the Minotaur IV launch vehicle.

ORS-5/SensorSat was processed for launch and encapsulation inside the 2.3 meter diameter payload fairing at Astrotech Space Operations processing facility in Titusville, Florida.

Orbital ATK Minotaur IV rocket streaks to orbit after blastoff darting in and out of clouds to deliver the ORS-5 space situational awareness and debris tracking satellite to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station, FL – as seen from 5th Space Launch Squadron building roof on CCAFS. Credit: Ken Kremer/kenkremer.com
Orbital ATK Minotaur IV rocket streaks to orbit after blastoff darting in and out of clouds to deliver the ORS-5 space situational awareness and debris tracking satellite to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station, FL – as seen from 5th Space Launch Squadron building roof on CCAFS. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite Minotaur IV ORS-5, TDRS-M, CRS-12, and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital ATK Minotaur IV rocket streaks to orbit through low hanging clouds that instantly illuminate as the booster engines flames pass through. This first Minotaur launch from the Cape carried the ORS-5 satellite tracker to equatorial orbit for the U.S. Air Force at 2:04 a.m. EDT on August 26, 2017 from Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
Orbital ATK Minotaur IV rocket description. Credit: Orbital ATK/USAF
Minotaur IV ORS-5 mission patch

Is the “Alien Megastructure” around Tabby’s Star Actually a Ringed Gas Giant?

Artist's impression of a gigantic ring system around a distant exoplanet. Credit and ©: Ron Miller

KIC 8462852 (aka. Tabby’s Star) continues to be a source of both fascination and controversy. Ever since it was first seen to be undergoing strange and sudden dips in brightness (in October of 2015) astronomers have been speculating as to what could be causing this. Since that time, various explanations have been offered, including large asteroids, a large planet, a debris disc or even an alien megastructure.

The latest suggestion for a natural explanation comes from the University of Antioquia in Colombia, where a team of researchers have proposed that both the larger and smaller drops in brightness could be the result of a ringed planet similar to Saturn transiting in front of the star. This, they claim, would explain both the sudden drops in brightness and the more subtle dips seen over time. Continue reading “Is the “Alien Megastructure” around Tabby’s Star Actually a Ringed Gas Giant?”

Dragonfly Proposed to NASA as Daring New Frontiers Mission to Titan

Artist's concept of the dragonfly being deployed to Titan and commencing its exploration mission. Credit: Dragonfly would land on the surface of Saturn's moon Titan and then could fly from point to point on the moon's surface and settle to investigate and recharge. Credit: APL/Michael Carroll

In late 1970s and early 80s, scientists got their first detailed look at Saturn’s largest moon Titan. Thanks to the Pioneer 11 probe, which was then followed by the Voyager 1 and 2 missions, the people of Earth were treated to images and readings of this mysterious moon. What these revealed was a cold satellite that nevertheless had a dense, nitrogen-rich atmosphere.

Thanks to the Cassini-Huygens mission, which reached Titan in July of 2004 and will be ending its mission on September 15th, the mysteries of this moon have only deepened. Hence why NASA hopes to send more missions there in the near future, like the Dragonfly concept. This craft is the work of the John Hopkins University Applied Physics Laboratory (JHUAPL), which they just submitted an official proposal for.

Essentially, Dragonfly would be a New Frontiers-class mission that would use a dual-quadcopter setup to get around. This would enable vertical-takeoff and landing (VTOL), ensuring that the vehicle would be capable of exploring Titan’s atmosphere and conducting science on the surface. And of course, it would also investigate Titan’s methane lakes to see what kind of chemistry is taking place within them.

Image of Titan’s atmosphere, snapped by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute

The goal of all this would be to shed light on Titan’s mysterious environment, which not only has a methane cycle similar to Earth’s own water cycle, but is rich in prebiotic and organic chemistry. In short, Titan is an “ocean world” of our Solar System – along with Jupiter’s moons Europa and Ganymede, and Saturn’s moon of Enceladus – that could contain all the ingredients necessary for life.

What’s more, previous studies have shown that the moon is covered in rich deposits of organic material that are undergoing chemical processes, ones that might be similar to those that took place on Earth billions of years ago. Because of this, scientists have come to view Titan as a sort of planetary laboratory, where the chemical reactions that may have led to life on Earth could be studied.

As Elizabeth Turtle, a planetary scientist at JHUAPL and the principal investigator for the Dragonfly mission, told Universe Today via email:

“Titan offers abundant complex organics on the surface of a water-ice-dominated ocean world, making it an ideal destination to study prebiotic chemistry and to document the habitability of an extraterrestrial environment. Because Titan’s atmosphere obscures the surface at many wavelengths, we have limited information about the materials that make up the surface and how they’re processed.  By making detailed surface composition measurements in multiple locations, Dragonfly would reveal what the surface is made of and how far prebiotic chemistry has progressed in environments that provide known key ingredients for life, identifying the chemical building blocks available and processes at work to produce biologically relevant compounds.”

In addition, Dragonfly would also use remote-sensing observations to characterize the geology of landing sites. In addition to providing context for the samples, it would also allow for seismic studies to determine the structure of the Titan and the presence of subsurface activity. Last, but not least, Dragonfly would use meteorology sensors and remote-sensing instruments to gather information on the planet’s atmospheric and surface conditions.

The Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR) is another concept for an aerial explorer for Titan. Credit: Mike Malaska

While multiple proposals have been made for a robotic explorer mission of Titan, most of these have taken the form of either an aerial platforms or a combination balloon and a lander. The Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR), a proposal made in the past by Jason Barnes and a team of researchers from the University of Idaho, is an example of the former.

In the latter category, you have concepts like the Titan Saturn System Mission (TSSM), a concept that was being jointly-developed by the European Space Agency (ESA) and NASA. An Outer Planets Flagship Mission concept, the design of the TSSM consisted of three elements – a NASA orbiter, an ESA-designed lander to explore Titan’s lakes, and an ESA-designed Montgolfiere balloon to explore its atmosphere.

What separates Dragonfly from these and other concepts is its ability to conduct aerial and ground-based studies with a single platform. As Dr. Turtle explained:

“Dragonfly would be an in situ mission to perform detailed measurements of Titan’s surface composition and conditions to understand the habitability of this unique organic-rich ocean world.  We proposed a rotorcraft to take advantage of Titan’s dense, calm atmosphere and low gravity (which make flight easier on Titan than it is on Earth) to convey a capable suite of instruments from place to place — 10s to 100s of kilometers apart — to make measurements in different geologic settings.  Unlike other aerial concepts that have been considered for Titan exploration (of which there have been several), Dragonfly would spend most of its time on the surface performing measurements, before flying to another site.”

Dragonfly‘s suite of instruments would include mass spectrometers to study the composition of the surface and atmosphere; gamma-ray spectrometers, which would measure the composition of the subsurface (i.e. looking for evidence of an interior ocean); meteorology and geophysics sensors, which would measure wind, atmospheric pressure, temperature and seismic activity; and a camera suite to snap pictures of the surface.

Artist’s concept of the Titan Aerial Daughter quadcopter and its “Mothership” balloon. Credit: NASA/STMD

Given Titan’s dense atmosphere, solar cells would not be an effective option for a robotic mission. As such, the Dragonfly would rely on a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) for power, similar to what the Curiosity rover uses. While robotic missions that rely on nuclear power sources are not exactly cheap, they do enable missions that can last for years at a time and conduct invaluable research (as Curiosity has shown).

As Peter Bedini – the Program Manager at the JHUAPL Space Department and Dragonfly’s project manager – explained, this would allow for a long-term mission with significant returns:

“We could take a lander, put it on Titan, take these four measurements at one place, and significantly increase our understanding of Titan and similar moons. However, we can multiply the value of the mission if we add aerial mobility, which would enable us to access a variety of geologic settings, maximizing the science return and lowering mission risk by going over or around obstacles.”

In the end, a mission like Dragonfly would be able to investigate how far prebiotic chemistry has progressed on Titan. These types of experiments, where organic building blocks are combined and exposed to energy to see if life emerges, cannot be performed in a laboratory (mainly because of the timescales involved). As such, scientists hope to see how far things have progressed on Titan’s surface, where prebiotic conditions have existed for eons.

Titan's atmosphere makes Saturn's largest moon look like a fuzzy orange ball in this natural-color view from the Cassini spacecraft. Cassini captured this image in 2012. Image Credit: NASA/JPL-Caltech/Space Science Institute
Titan’s thick, nitrogen and hydrocarbon-rich atmosphere lends the planet a cloudy, yellowsh-brown appearance. Credit: NASA/JPL-Caltech/Space Science Institute

In addition, scientists will also be looking for chemical signatures that indicate the presence of water and/or hydrocarbon-based life. In the past, it has been speculated that life could exist within Titan’s interior, and that exotic methanogenic lifeforms could even exist on its surface. Finding evidence of such life would challenge our notions of where life can emerge, and greatly enhance the search for life within the Solar System and beyond.

As Dr. Turtle indicated, mission selection will be coming soon, and whether or not the Dragonfly mission will be sent to Titan should be decided in just a few years time:

“Later this fall, NASA will select a few of the proposed New Frontiers missions for further work in Phase A Concept Studies” she said. “Those studies would run for most of 2018, followed by another round of review.  And the final selection of a flight mission would be in mid-2019… Missions proposed to this round of the New Frontiers Program would be scheduled to launch before the end of 2025.”

And be sure to check out this video of a possible Dragonfly mission, courtesy of the JHUAPL:

Further Reading: JHU Hub

Threat Tracking USAF Satellite Launching Nighttime Aug 25 on Cape Debut of Retired ICBM Minotaur Rocket: Watch Live

An Orbital ATK Minotaur IV rocket carrying the ORS-5 USAF surveillance satellite is slated for its maiden liftoff from Cape Canaveral Air Station, Florida at 11:15 p.m. EDT on August 25, 2017 on a retired ICBM. Credit: U.S. Air Force/Patrick AFB
An Orbital ATK Minotaur IV rocket carrying the ORS-5 USAF surveillance satellite is slated for its maiden liftoff from Cape Canaveral Air Station, Florida at 11:15 p.m. EDT on August 25, 2017 on a retired ICBM. Credit: U.S. Air Force/Patrick AFB

CAPE CANAVERAL AIR FORCE STATION, FL — A gap filling space surveillance satellite that will track orbiting threats for the U.S. Air Force is set for an thrilling nighttime blastoff Friday, Aug. 25 on the maiden mission of the Minotaur IV rocket from Cape Canaveral that’s powered by a retired Cold War-era ICBM missile – once armed with nuclear warheads.

The ORS-5 satellite will provide the US military with space-based surveillance and tracking of other satellites both friend and foe as well as space debris in geosynchronous orbit, 22,236 miles above the equator.

The Orbital ATK Minotaur IV rocket carrying the ORS-5 tracking satellite for the USAF Operationally Responsive Space Office is targeting liftoff just before midnight Friday at 11:15 p.m. EDT from Space Launch Complex-46 (SLC-46) at Cape Canaveral Air Force Station.

“We are go for launch of Orbital ATK’s Minotaur IV rocket Friday night,” Orbital ATK confirmed.

The ORS-5 mission, which stands for Operationally Responsive Space-5, marks the first launch of a Minotaur IV rocket from Cape Canaveral and the first use of SLC-46 since 1999.

The Minotaur IV is a five stage rocket comprised of three stages of a decommissioned Cold War-era Peacekeeper Intercontinental Ballistic Missile (ICBM) that has been modified to add two additional Orbital ATK Orion 38 solid rocket motors for the upper stages.

Being a night launch and the first of its kind will surely make for a spectacular sky show.

Plus if you want to see how the world could potentially end in nuclear catastrophy, come watch the near midnight launch of the Orbital ATK Minotaur IV rocket that’s a retired Peacekeeper ICBM once armed with nuclear warheads aimed at the Russians but now carrying the USAF ORS-5 surveillance satellite instead.

Its well worth your time if you can watch the Minotaur launch with your own eyeballs. It can be easily viewed from numerous local area beaches, parks, restaurants and more.

Minotaur IV rocket stands at pad 46 with the USAF ORS-5 surveillance satellite for its first launch from Cape Canaveral Air Station, Florida on August 25, 2017. Credit: Orbital ATK

Furthermore, its been in a super busy time at the Kennedy Space Center and Cape Canaveral. Because, if all goes well Friday’s midnight launch will be the third in just 11 days – and the second in a week!

A ULA Atlas V launched the NASA TDRS-M science relay satellite last Friday, Aug 18. And a SpaceX Falcon 9 launched the Dragon CRS-12 cargo resupply mission to the International Space Station (ISS) on Monday, Aug. 14.

You can watch the launch live via the Orbital ATK website here: www.orbitalatk.com

The live Orbital ATK broadcast will begin approximately 20 minutes before the launch window opens.

The webcast will be hosted by former CNN space reporter John Zarrella.

The launch window opens at 11:15 p.m. EDT August 25. It extends for four hours until 3:15 a.m. EDT August 26.

In the event of delay for any reason, the next launch opportunity is Saturday, Aug. 26. The launch window remains the same from 11:15 p.m. EDT August 26 to 3:15 a.m. EDT August 27.

The weather looks somewhat iffy at this time with only a 60% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. The primary concerns on Aug. 25 are for thick clouds and cumulus clouds.

The weather odds deteriorate to only 40% favorable for the 24 hour scrub turnaround day on Aug. 26. The primary concerns on Aug. 26 are for thick clouds, cumulus clouds and lightning.


The ORS-5 or SensorSat satellite will provide the US military with space-based surveillance and tracking of other satellites both friend and foe and space debris in geosynchronous orbit 22,236 miles above the equator. Credit: MIT Lincoln Laboratory

ORS-5 is like a telescope wrapped in a satellite that will aim up to seek threats from LEO to GEO.

ORS-5, also known as SensorSat, is designed to scan for other satellites and debris to aid the U.S. military’s tracking of objects in geosynchronous orbit for a minimum of three years and possibly longer if its on boards sensor and satellite systems continue functioning in a useful and productive manner.

“The delivery and upcoming launch of ORS-5 marks a significant milestone in fulfilling our commitment to the space situational awareness mission and U.S. Strategic Command,” said Lt. Gen. John F. Thompson, commander of the Space and Missile Systems Center and Air Force program executive officer for Space. “It’s an important asset for the warfighter and will be employed for at least three years.”

The ORS-5 satellite has a payload mass of 140 kg. It will be launched into a low inclination equatorial orbit of 600 km x 600 km (373 mi x 373 mi) at zero degrees.

“This will be the largest low-Earth orbit inclination plane change in history – 28.5 degrees latitude to equatorial orbit,” says Orbital ATK.

“The Minotaur IV 4th stage will put ORS-5 into initial orbit & the payload insertion stage will make a hard left to get to equatorial orbit.”

The Cape Canaveral AFB launch site for this Minotaur IV was chosen, rather than NASA’s Wallops Flight Facility in Virginia based on the final orbit required for ORS-5, Orbital ATK told Universe Today at a prelaunch media briefing.

The Minotaur IV is not powerful enough to deliver ORS-5 to the desired orbit from Wallops.

ORS-5 was designed and built by Massachusetts Institute of Technology’s Lincoln Laboratory facility in Lexington, Massachusetts at a cost of $49 million.

In July 2015 the U.S. Air Force’s Operationally Responsive Space (ORS) Office awarded Orbital ATK a $23.6 million contract to launch the ORS-5 SensorSat on the Minotaur IV launch vehicle.

ORS-5/SensorSat was processed for launch and encapsulation inside the 2.3 meter diameter payload fairing at Astrotech Space Operations processing facility in Titusville, Florida.

The Minotaur IV is quite similar to Orbital ATK’s Minotaur V launch vehicle which successfully propelled NASA’s LADEE lunar orbiter to the Moon for NASA during a night launch from the agency’s Wallops Flight Facility in Virginia in Sept. 2013.

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, 2013 at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia. Credit: Ken Kremer/kenkremer.com

The Minotaur V also utilizes the first three stages of the decommissioned Peacekeeper ICBM missile.

Overall the ORS-5 launch will be the 26th blastoff in Orbital ATK’s Minotaur family of launch vehicles which enjoy a 100% success rate to date.

Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

The U.S. Air Force has a stockpile of about 180 surplus Peacekeeper motors, but not all are launch capable, the USAF told Universe Today at a prelaunch media briefing.

The USAF furnishes the Peacekeeper motors to Orbital ATK after first refurbishing the booster stages at Vandenberg AFB, Ca.

Orbital ATK then upgrades the stages by adding their own “flight-proven avionics, structures, software and other components that are common among Orbital ATK’s space launch vehicles” and integrating the firms Orion 38 solid rocket motors for the two upper stages.

“A combined government and contractor team of mission partners executed final ground activities including a Launch Base Compatibility Test to verify satellite integrity after shipment, an intersegment test to verify communication compatibility from the satellite to the on-orbit operations center and the final battery reconditioning for launch, prior to its integration with the Minotaur IV launch vehicle,” says the USAF.

Watch for Ken’s continuing onsite Minotaur IV ORS-5, TDRS-M, CRS-12, and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Minotaur IV ORS-5 Mission Trajectory. Credit: Orbital ATK

………….

Learn more about the 2017 Total Solar Eclipse, upcoming Minotaur IV ORS-5 military launch on Aug. 25, recent ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 , SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Aug 25-26: “2017 Total Solar Eclipse, Minotaur IV ORS-5, TDRS-M NASA comsat, SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Stacking the 4th stage of the Orbital ATK Minotaur IV rocket in preparation for the August 25, 2017 ORS-5 launch from Space Launch Complex 46, Cape Canaveral Air Station, Florida. Credit: Orbital ATK
Orbital ATK Minotaur IV rocket description. Credit: Orbital ATK/USAF
Minotaur IV ORS-5 mission patch

New Study of Antares Creates the Best Map Ever of a Distant Star

Using ESO’s Very Large Telescope Interferometer astronomers have constructed this remarkable image of the red supergiant star Antares. This is the most detailed image ever of this object, or any other star apart from the Sun.

When stars exhaust their supply of hydrogen fuel, they exit the main sequence phase of their evolution and enter into what is known as the Red Giant Branch (RGB) phase. This is characterized by the stars expanding significantly and becoming tens of thousands of times larger than our Sun. They also become dimmer and cooler, which lends them a reddish-orange appearance (hence the name).

Recently, a team of astronomers used the ESO’s Very Large Telescope Interferometer (VLTI) to map one such star, the red supergiant Antares. In so doing, they were able to create the most detailed map of a star other than our Sun. The images they took also revealed some unexpected things about this supergiant star, all of which could help astronomers to better understand the dynamics and evolution of red giant stars.

The study which details their work, titled “Vigorous Atmospheric Motions in the Red Supergiant Supernova Progenitor Antares“, recently appeared in the journal Nature. As indicated in the study, the team – which was led by Keiichi Ohnaka, an associate professor at the UCN Institute of Astronomy in Chile = relied on the VLTI at the ESO’s Paranal Observatory in Chile to map Antares’s surface and measure the motions of its surface material.

Artist’s impression of the red supergiant star Antares, located 550 ly away in the constellation of Scorpius. Credit: ESO/M. Kornmesser

The purpose of their study was to chart how stars that have entered their RGB phase begin to change. The VLTI is uniquely suited to this task, since it is capable of combining light from four different telescopes – the 8.2-metre Unit Telescopes, or the smaller Auxiliary Telescopes – to create one virtual telescope that has the resolution of a telescope lens measuring 200 meters across.

This allows the VLTI to resolve fine details far beyond what can be seen with a single telescope. As Prof. Ohnaka explained in a recent ESO press statement:

How stars like Antares lose mass so quickly in the final phase of their evolution has been a problem for over half a century. The VLTI is the only facility that can directly measure the gas motions in the extended atmosphere of Antares — a crucial step towards clarifying this problem. The next challenge is to identify what’s driving the turbulent motions.”

For their study, the team relied on three of the VLTI Auxiliary Telescopes and an instrument called the Astronomical Multi-BEam combineR (AMBER). This near-infrared spectro-interferometric instrument combines three telescopic beams coherently, allowing astronomers to measure the visibilities and closure phases of stars. Using these instruments, the team obtained images of Antares’ surface over a small range of infrared wavelengths.

From these, the team was able to calculate the difference between the speed of atmospheric gas at different locations on Antares’ surface, as well as its average speed over the entire surface. This resulted in a two-dimensional velocity map of Antares, which is the first such map created of another star other than the Sun. As noted, it is also the most-detailed map of any star beyond our Solar System to date.

The study also made some interesting discoveries of what takes place on Antares’ surface and in its atmosphere. For example, they found evidence for high-speed upwellings of gas that reached distances of up to 1.7 Solar radii into space – much farther than previously thought. This, they claimed, could not be explained by convection alone, the process whereby cold material moves downwards and hot material upwards in a circular pattern.

This process occurs on Earth in the atmosphere and with ocean currents, but it is also responsible for moving pockets of hotter and colder gas around within stars. The fact that convection cannot explain the behavior of Antares extended atmosphere would therefore suggests that some new and unidentified process common to red giant stars must be responsible.

These results therefor offer new opportunities for research into stellar evolution, which is made possible thanks to next-generation instruments like the VTLI. As Ohnaka concluded:

“In the future, this observing technique can be applied to different types of stars to study their surfaces and atmospheres in unprecedented detail. This has been limited to just the Sun up to now. Our work brings stellar astrophysics to a new dimension and opens an entirely new window to observe stars.”

Not only is this kind of research improving our understanding of stars beyond our Solar System, it lets us know what to expect when our Sun exits it main sequence phase and begins expanding to become a red giant. Though that day is billions of years away and we can’t be certain humanity will even be around by that time, knowing the mechanics of stellar evolution is important to our understanding of the Universe.
It pays to know that even after we are gone, we can predict what will still be here and for how long. Be sure to check out this 3D animation of Antares, courtesy of the ESO:

Further Reading: ESO, Nature