In About 3 Million Years, WASP-12b Will Spiral into its Star and be Consumed

Astronomers estimate that in about four billion years, our Sun will exit the main sequence phase of its existence and become a red giant. This will consist of the Sun running out of hydrogen and expanding to several times its current size. This will cause Earth to become uninhabitable since this Red Giant Sun will either blow away Earth’s atmosphere (rendering the surface uninhabitable) or expand to consume Earth entirely.

In a lot of ways, Earth is getting off easy with these predicted scenarios. Other planets, such as WASP-12b, don’t have the luxury of waiting billions of years for their star to reach the end of its lifespan before eating them up. According to a recent study by a team of Princeton-led astrophysicists, this extrasolar planet is spiraling in towards its star and will be consumed in a fiery death just 3 million years from now.

Continue reading “In About 3 Million Years, WASP-12b Will Spiral into its Star and be Consumed”

This Simulation Shows what We’ll be Able to See with WFIRST

When it takes to space in 2025, the Wide-Field Infrared Survey Telescope (WFIRST) will be the most powerful observatory ever deployed, succeeding the venerable Hubble and Spitzer space telescopes. Relying on a unique combination of high resolution with a wide field of view, WFIRST will be able to capture the equivalent of 100 Hubble-quality images with a single shot and survey the night sky with 1,000 times the speed.

In preparation for this momentous event, astronomers at NASA’s Goddard Space Flight Center have been running simulations to demonstrate what the WFIRST will be able to see so they can plan their observations. To give viewers a preview of what this would look like, NASA’s Goddard Space Flight Center has shared a video that simulates the WFIRST conducting a survey of the neighboring Andromeda Galaxy (M31).

Continue reading “This Simulation Shows what We’ll be Able to See with WFIRST”

“Super-Puff” Exoplanets Aren’t Like Anything We’ve Got in the Solar System

The study of extrasolar planets has really exploded in recent years. Currently, astronomers have been able to confirm the existence of 4,104 planets beyond our Solar System, with another 4900 awaiting confirmation. The study of these many planets has revealed things about the range of possible planets in our Universe and taught us that there are many for which there are no analogs in our Solar System.

For example, thanks to new data obtained by the Hubble Space Telescope, astronomers have learned more about a new class of exoplanet known as “super-puff” planets. Planets in this class are essentially young gas giants that are comparable in size to Jupiter but have masses that are just a few times greater than that of Earth. This results in their atmospheres having the density of cotton candy, hence the delightful nickname!

Continue reading ““Super-Puff” Exoplanets Aren’t Like Anything We’ve Got in the Solar System”

Neptune-Sized Planet Found Orbiting a Dead White Dwarf Star. Here’s the Crazy Part, the Planet is 4 Times Bigger Than the Star

Astronomers have discovered a large Neptune-sized planet orbiting a white dwarf star. The planet is four times bigger than the star, and the white dwarf appears to be slowly destroying the planet: the heat from the white dwarf is evaporating material from the planet’s atmosphere, forming a comet-like tail.

Continue reading “Neptune-Sized Planet Found Orbiting a Dead White Dwarf Star. Here’s the Crazy Part, the Planet is 4 Times Bigger Than the Star”

Giant Meteor Impacts Might Have Triggered Early Earth’s Plate Tectonics

Plate tectonics have played a vital role in the geological evolution of our planet. In addition, many scientists believe that Earth’s geologically activity may have played an important role in the evolution of life – and could even be essential for a planet’s habitability. For this reason, scientists have long sought to determine how and when Earth’s surface changed from molten, viscous rock to a solid crust that is constantly resurfacing.

Read more

Astronomers Find Cyanide Gas in Interstellar Object 2I/Borisov, but Don’t Panic Like it’s 1910

When the mysterious object known as ‘Oumuamua passed Earth in October of 2017, astronomers rejoiced. In addition to being the first interstellar object detected in our Solar System, but its arrival opened our eyes to how often such events take place. Since asteroids and comets are believed to be material left over from the formation of a planetary system, it also presented an opportunity to study extrasolar systems.

Unfortunately, ‘Oumuamua left our Solar System before any such studies could be conducted. Luckily, the detection of comet C/2019 Q4 (Borisov) this summer provided renewed opportunities to study material left by outgassing. Using data gathered by the William Herschel Telescope (WHT), an international team of astronomers found that 2I/Borisov contains cyanide. But as Douglas Adams would famously say, “Don’t Panic!”

Continue reading “Astronomers Find Cyanide Gas in Interstellar Object 2I/Borisov, but Don’t Panic Like it’s 1910”

One Year, Almost 1,000 Planetary Candidates. An Update On TESS

NASA’s Transiting Exoplanet Survey Telescope launched back in April, 2018. After a few months of testing, it was ready to begin mapping the southern sky, searching for planets orbiting stars relatively nearby.

We’re just over a year into the mission now, and on July 18th, TESS has shifted its attention to the Northern Hemisphere, continuing the hunt for planets in the northern skies.

Continue reading “One Year, Almost 1,000 Planetary Candidates. An Update On TESS”

Prototype of a Future Interstellar Probe was Just Tested on a Balloon

At the University of California, Santa Barbara, researchers with the UCSB Experimental Cosmology Group (ECG) are currently working on ways to achieve the dream of interstellar flight. Under the leadership of Professor Philip Lubin, the group has dedicated a considerable amount of effort towards the creation of an interstellar mission consisting of directed-energy light sail and a wafer-scale spacecraft (WSS) “wafercraft“.

If all goes well, this spacecraft will be able to reach relativistic speeds (a portion of the speed of light) and make it to the nearest star system (Proxima Centauri) within our lifetimes. Recently, the ECG achieved a major milestone by successfully testing a prototype version of their wafercraft (aka. the “StarChip“). This consisted of sending the prototype via balloon into the stratosphere to test its functionality and performance.

Continue reading “Prototype of a Future Interstellar Probe was Just Tested on a Balloon”

Which Habitable Zones are the Best to Actually Search for Life?

Looking to the future, NASA and other space agencies have high hopes for the field of extra-solar planet research. In the past decade, the number of known exoplanets has reached just shy of 4000, and many more are expected to be found once next-generations telescopes are put into service. And with so many exoplanets to study, research goals have slowly shifted away from the process of discovery and towards characterization.

Unfortunately, scientists are still plagued by the fact that what we consider to be a “habitable zone” is subject to a lot of assumptions. Addressing this, an international team of researchers recently published a paper in which they indicated how future exoplanet surveys could look beyond Earth-analog examples as indications of habitability and adopt a more comprehensive approach.

Continue reading “Which Habitable Zones are the Best to Actually Search for Life?”