Tidal Heating on Some Exoplanets May Leave Them Waterless

Venus as photographed by the Pioneer spacecraft in 1978. Some exoplanets may suffer the same fate as this scorched world. Credit: NASA/JPL/Caltech

[/caption]

As the number of exoplanets being discovered continues to increase dramatically, a growing number are now being found which orbit within their stars’ habitable zones. For smaller, rocky worlds, this makes it more likely that some of them could harbour life of some kind, as this is the region where temperatures (albeit depending on other factors as well) can allow liquid water to exist on their surfaces. But there is another factor which may prevent some of them from being habitable after all – tidal heating, caused by the gravitational pull of one star, planet or moon on another; this effect which creates tides on Earth’s oceans can also create heat inside a planet or moon.

The findings were presented at the January 11 annual meeting of the American Astronomical Society in Austin, Texas.

The habitability factor is determined primarily by the amount of heat coming from the planet’s star. The closer a planet is to its star, the hotter it will be, and the farther out it is, the cooler it will be. Simple enough, but tidal heating adds a new wrinkle to the equation. According to Rory Barnes, a planetary scientist and astrobiologist at the University of Washington, “This has fundamentally changed the concept of a habitable zone. We figured out you can actually limit a planet’s habitability with an energy source other than starlight.”

This effect could cause planets to become “tidal Venuses.” In these cases, the planets orbit smaller, dimmer stars, where in order to be in that star’s habitable zone, they would need to orbit much closer in to the star than Earth does with the Sun. The planets would then be subjected to greater tidal heating from the star, enough perhaps to cause them to lose all of their water, similar to what is thought to have happened with Venus in our own solar system (ie. a runaway greenhouse effect). So even though they are within the habitable zone, they would lack oceans or lakes.

What’s problematic is that these planets could subsequently actually have their orbits altered by the tidal heating so that they are no longer affected by it. They would then be more difficult to distinguish from other planets in those solar systems which may still be habitable. While technically still within the habitable zone, they would have effectively been sterilized by the tidal heating process.

Planetary scientist Norman Sleep at Stanford University adds: “We’ll have to be careful when assessing objects that are very near dim stars, where the tides are much stronger than we feel on present-day Earth. Even Venus now is not substantially heated by tides, and neither is Mercury.”

In some cases, tidal heating can be a good thing though. The tidal forces exerted by Jupiter on its moon Europa, for example, are thought to create enough heat to allow a liquid water ocean to exist beneath its outer ice crust. The same may be true for Saturn’s moon Enceladus. This makes these moons still potentially habitable even though they are far outside of the habitable zone around the Sun.

By design, the first exoplanets being found by Kepler are those that orbit closer in to their stars as they are easier to detect. This includes smaller, dimmer stars as well as ones more like our own Sun. The new findings, however, mean that more work will need to be done to determine which ones really are life-friendly and which ones are not, at least for “life-as-we-know-it” anyway.

When Stars Play Planetary Pinball

Artist's conception of a binary star sunset seen from the planet Kepler-16b. Credit: NASA/Ames Research Center/Kepler Mission

[/caption]

Many of us remember playing pinball at the local arcade while growing up; it turns out that some stars like it as well. Binary stars can play tug-of-war with an unfortunate planet, flinging it into a wide orbit that allows it to be captured by first one star and then the other, in effect “bouncing” it between them before it is eventually flung out into deep space.

The new paper, by Nick Moeckel and Dimitri Veras of the University of Cambridge, will be published in a future issue of Monthly Notices of the Royal Astronomical Society.

The gravitational pull of large gas giant planets can affect the orbits of smaller planets; that scenario is thought to have occurred in our own solar system. In some cases, the smaller planet may be flung into a much wider orbit, perhaps even 100 times wider than Pluto’s. In the case of single stars, that’s normally how it ends. In a binary star system, however, the two stars may play a game of “cosmic pinball” with the poor planet first.

Moeckel and Dimitri conducted simulations of binary star systems, with two sun-like stars orbiting each other at distances between 250 and 1,000 times the distance of the Earth from the Sun. Each star had its own set of planets. The planetary systems would often become unstable, resulting in one of the planets being flung out, where it could be subsequently captured by the other star’s gravity. Since the new orbit around the second star would also tend to be quite wide, the planet would be vulnerable to recapture again by the first star. This could continue for a long time, and the simulations indicated that more than half of all planets initially ejected would get caught in this game of “cosmic pinball.”

In the end, some planets would settle back into an orbit around one of the stars, but the majority would escape both stars altogether, finally being flung out into deep space forever.

According to Moeckel, “Once a planet starts transitioning back and forth, it’s almost certainly at the beginning of a trip that will end in deep space.”

We are fortunate to live in a solar system where our planet is in a nice, stable orbit. For others out there who may not be so lucky, it would be like living through a disaster movie played out over eons.

The paper is available here.

Russia Will Begin Hunt For Extrasolar Planets

Russia to Start Own Search for Extrasolar Planets - Photo: Paul A. Kempton

[/caption]

Located just south of Saint Petersburg on Pulkovo Heights, one of the greatest Russian Observatories of all times – the Pulkovo Observatory – is about to embark on a very noble study. According to the head of the Institute for Space Research, Lev Zelyony, the Soviet telescopes are about to turn their eyes towards deep skies in search of extrasolar planets. “Scientists from the Pulkovo Observatory are planning to use ground-based instruments to study the transit of planets around their parent stars,” Zelyony said at a roundtable meeting at RIA Novosti headquarters in Moscow.

The observatory was absolutely state-of-the-art when it opened for business in 1839 and employed Wilhelm von Struve as its director. It houses some of the largest refractor telescopes in the world, including a 38-cm (15 in.) aperture refractor and a 30-inch (76 cm) refractor – both built by Alvan Clarke and Sons. Fifty years later, they added an astrophysical laboratory, a mechanical workshop and installed one of Europe’s largest lensed telescope, a 76-cm refractor (30 inch). Later additions to the observatory included a Littrow spectrograph and horizontal solar telescope and the facility blossomed into a world leader in stellar spectroscopy, cataloging and more. Modern improvements include astrograph equipment, an interferometer, radio telescope and even an additional 65-cm (26-inch) refractor. The Pulkovo Observatory is up to the task.

Pulkovo Observatory 2004 - Credit: Vladimir Ivanov

The hunt for exoplanets is one of the most popular aspects of modern astronomy and one of the fastest growing fields. In less than 25 years, 755 and an ever-increasing number of planets have been cataloged… and the research just doesn’t end. The United States Kepler Mission and French CoRoT space telescope have had their share of fun, but using a ground-based telescope could also be a viable source of planet detection, Zelyony said. He also cited the example of the Hungarian Automated Telescope Network (HATNet) which so far has discovered 29 exoplanets. By using the transit detection method, the Russian astronomers are eager to begin observations where a small change in magnitude could mean a big change in the way their telescopes perceive the stars.

“It is an interesting research, which should be pursued,” Zelyony said. “It will also help us look at our Solar System from a different perspective.”

Original Story Source: Rionovosti News Release.

Microlensing Study Says Every Star in the Milky Way has Planets

This artists’s cartoon view gives an impression of how common planets are around the stars in the Milky Way. The planets, their orbits and their host stars are all vastly magnified compared to their real separations. A six-year search that surveyed millions of stars using the microlensing technique concluded that planets around stars are the rule rather than the exception. The average number of planets per star is greater than one. Credit: ESO/M. Kornmesser

[/caption]

How common are planets in the Milky Way? A new study using gravitational microlensing suggests that every star in our night sky has at least one planet circling it. “We used to think that the Earth might be unique in our galaxy,” said Daniel Kubas, a co-lead author of a paper that appears this week in the journal Nature. “But now it seems that there are literally billions of planets with masses similar to Earth orbiting stars in the Milky Way.”

Over the past 16 years, astronomers have detected more than 3,035 exoplanets – 2,326 candidates and 709 confirmed planets orbiting other stars. Most of these extrasolar planets have been discovered using the radial velocity method (detecting the effect of the gravitational pull of the planet on its host star) or the transit method (catching the planet as it passes in front of its star, slightly dimming it.) Those two methods usually tend to find large planets that are relatively close to their parent star.

But another method, gravitational microlensing — where the light from the background star is amplified by the gravity of the foreground star, which then acts as a magnifying glass — is able to find planets over a wide range of mass that are further away from their stars.

Gravitational microlensing method requires that you have two stars that lie on a straight line in relation to us here on Earth. Then the light from the background star is amplified by the gravity of the foreground star, which thus acts as a magnifying glass.

An international team of astronomers used the technique of gravitational microlensing in six-year search that surveyed millions of stars. “We conclude that stars are orbited by planets as a rule, rather than the exception,” the team wrote in their paper.

“We have searched for evidence for exoplanets in six years of microlensing observations,” said lead author Arnaud Cassan from the Institut de Astrophysique in Paris. “Remarkably, these data show that planets are more common than stars in our galaxy. We also found that lighter planets, such as super-Earths or cool Neptunes, must be more common than heavier ones.”

The Milky Way above the dome of the Danish 1.54-metre telescope at ESO's La Silla Observatory in Chile. The central part of the Milky Way is visible behind the dome of the ESO 3.6-metre telescope in the distance. On the right the Magellanic Clouds can be seen. This telescope was a major contributor to the PLANET project to search for exoplanets using microlensing. The picture was taken using a normal digital camera with a total exposure time of 15 minutes. Credit: ESO/Z. Bardon

The astronomers surveyed millions of stars looking for microlensing events, and 3,247 such events in 2002-2007 were spotted in data from the European Southern Observatory’s PLANET and OGLE searches. The precise alignment needed for microlensing is very unlikely, and statistical results were inferred from detections and non-detections on a representative subset of 440 light curves.

Three exoplanets were actually detected: a super-Earth and planets with masses comparable to Neptune and Jupiter. The team said that by microlensing standards, this is an impressive haul, and that in detecting three planets, they were either incredibly lucky despite huge odds against them, or planets are so abundant in the Milky Way that it was almost inevitable.

The astronomers then combined information about the three positive exoplanet detections with seven additional detections from earlier work, as well as the huge numbers of non-detections in the six years’ worth of data (non-detections are just as important for the statistical analysis and are much more numerous, the team said.) The conclusion was that one in six of the stars studied hosts a planet of similar mass to Jupiter, half have Neptune-mass planets and two thirds have super-Earths.

This works out to about 100 billion exoplanets in our galaxy.

The survey was sensitive to planets between 75 million kilometers and 1.5 billion kilometers from their stars (in the Solar System this range would include all the planets from Venus to Saturn) and with masses ranging from five times the Earth up to ten times Jupiter.

This also shows that microlensing is a viable way to find exoplanets. Astronomers hope to use other methods in the future to find even more planets.

“I have a list of 17 different ways to find exoplanets and only five have been used so far,” said Virginia Trimble from the University of California, Irvine and the Las Cumbres Observatory, providing commentary at the American Astronomical Scoeity meeting this week, “I expect we’ll be finding many more planets in the future.”

Sources: Nature, ESO, AAS briefing

Seeing the Phases of Exoplanets

Phases of Venus. Image credit: ESO

[/caption]

Everyone is familiar with the fact that the moon changes phases. But what many don’t know is that planets also go through phases. Shown above are the phases for Venus. We look inwards on Venus from a more distant vantage point in our solar system, but in principle, planets in other solar systems would also go through phases as they orbited. While we are far too distant to resolve these phases any time soon, the percentage of reflected light may give clues about the size, composition, and atmosphere of a potential planet.

A new study by astronomers at the University of Bordeaux in France, analyzes differences in the way light would be reflected from various exoplanet configurations.

In a previous paper by the same team, they had analyzed how much light planets at different phases should reflect in different wavelengths of light in the infrared. Planets with atmospheres showed significant lack of emission at some wavelengths while rocky planets with no atmosphere reflected most strongly at one wavelength and faded smoothly off. The heavier the atmosphere, the more pronounced this effect was. As such, the team concluded that simply by looking at the reflected light in a few wavelengths, they could quickly determine whether the planet were likely to have an atmosphere.

The new paper adds to this by exploring what the effects of properties such as stellar type, orbital distance, radius of the planet, and inclination would have on these observations. They found that the presence of an atmosphere made determining many of these properties more difficult since it would be able to retain heat and reradiate it different manners instead of simply reflecting.

Rocky, airless planets were simpler and the light curves could be used more directly to determine the radius of the planet with an accuracy of about 10% with an instrument such as the James Webb Space Telescope. The orbital inclination could be narrowed down to within 10°. Currently, the only way astronomers can determine this property is if the planet is in the narrow ranges of inclination that allow it to transit the star, so while observing the phases to determine this property leaves large uncertainties, it is a start at the very least. These observations could also be used to determine the albedo, or reflectivity of the planet. This property could be used to help constrain the possible chemicals on the surface or in the atmosphere.

How Common are Terrestrial, Habitable Planets Around Sun-Like Stars?

Artst concept of the Kepler telescope in orbit. Credit: NASA

[/caption]

Once again news from the Kepler mission is making the rounds, this time with a research paper outlining a theory that Earth-like planets may be more common around class F, G and K stars than originally expected.

In the standard stellar classification scheme, these type of stars are similar or somewhat similar to our own Sun (which is a Class G star); Class F stars are hotter and brighter and Class K stars are cooler and dimmer. Given this range of stars, the habitable zones vary with different stars. Some habitable planets could orbit their host star at twice the distance Earth orbits our Sun or in the case of a dim star, less than Mercury’s orbit.

How does this recent research show that small, rocky, worlds may be more common that originally thought?

Dr. Wesley Traub, Chief Scientist with NASA’s Exoplanet Exploration Program outlines his theory in a recent paper submitted to the Astrophysical Journal.

A possible habitable world? Credit: NASA/JPL

Based on Traub’s calculations in his paper, he formulates that roughly one-third of class F, G, and K stars should have at least one terrestrial, habitable-zone planet. Traub bases his assertions on data from the first 136 days of Kepler’s mission.

Initially starting with 1,235 exoplanet candidates, Traub narrowed the list down to 159 exoplanets orbiting F class stars, 475 orbiting G class stars, and 325 orbiting K class stars – giving a total of 959 exoplanets in his model. For the purposes of Traub’s model, he defines terrestrial planets as those with a radius of between half and twice that of Earth. The mass ranges specified in the model work out to between one-tenth Earth’s mass and ten times Earth’s mass – basically objects ranging from Mars-sized to the theoretical super-Earth class.

The paper specifies three different ranges for the habitable zone: A “wide” habitable zone (HZ) from 0.72 to 2.00 AU, a more restrictive HZ from 0.80 to 1.80 AU, and a narrow/conservative HZ of 0.95 to 1.67 AU.

After working through the necessary math of his model, and coming up with a “power law” that gives a habitable zone to a star depending on its class and then working out how many planets ought to be at those distances, Traub estimated the frequency of terrestrial, habitable-zone planets around Sun-like (Classes F, G and K) stars at (34 ± 14)%.

He added that mid-size terrestrial planets are just as likely to be found around faint stars and bright ones, even though fewer small planets show up around faint stars. But that is likely because of the limits of our currently technology, where small planets are more difficult for Kepler to see, and it’s easier for Kepler to see planets that orbit closer to their stars.

Traub discussed how the quoted uncertainty is the formal error in projecting the numbers of short-period planets, and that the true uncertainty will remain unknown until Kepler observations of orbital periods in the 1,000-day range become available.

Check out our previous coverage of exoplanet detections using the Kepler data at: http://www.universetoday.com/89120/big-find-citizen-scientists-discover-two-extrasolar-planets/

If you’d like to read Traub’s paper and follow the math involved in his analysis, you can do so at: http://arxiv.org/PS_cache/arxiv/pdf/1109/1109.4682v1.pdf

Learn more about the Kepler mission at: http://kepler.nasa.gov/

Source: arXiv:1109.4682v1 [astro-ph.EP]

HARPS Hauls in Over Fifty New Exoplanets

Artist’s impression of a Super-Earth planet orbiting a Sun-like star. Credit: ESO/M. Kornmesser

[/caption]

Yesterday astronomers with the High Accuracy Radial velocity Planet Searcher or HARPS, announced a record-breaking discovery of more than fifty new exoplanets. This is the largest batch of confirmed extra solar planets ever announced at once. Another reason the discovery is noteworthy is that sixteen of the planets that were detected fall under the “super-Earth” classification, meaning the planets are thought to be rocky worlds less than ten times Earth’s mass.

The HARPS team, led by Michel Mayor from the University of Geneva, used the 3.6-metre telescope at ESO’s La Silla Observatory in Chile and claim their spectrograph instrument on the telescope is the most successful planet-finder to date. The team’s data suggests that about 40% of stars similar to our Sun have at least one planet less massive than Saturn.

The announcement of the big planetary haul was made at the Extreme Solar Systems II exoplanet conference taking place this week in Wyoming in the US.

How did Mayor and his team discover so many planets, and how are they certain of their findings?

The HARPS instrument uses a technique called “radial velocity”. Essentially, the instrument detects the slight movement of a star moving toward and away from observers on Earth. The changes in radial velocity shift the star’s light spectrum. When the star moves away from observers on Earth, the light is shifted to longer, redder wavelengths, called redshifting. When the star moves toward Earth, the opposite happens and the star’s light is blueshifted. Through various hardware and software upgrades over the years, HARPS is now so sensitive, it can detect radial velocities of about 1 meter per second and exoplanets less than twice the mass of Earth.

The radial velocity method of exoplanet detection that HARPS uses is different from say, the Kepler mission which uses the “transit” method to detect exoplanet candidates. The transit method, comparatively speaking, still uses the light from a distant star, but instead of measuring redshift or blue shift, Kepler instead looks for a dimming of the star’s light as exoplanets pass in front of their host star.

HARPS has been operating for the past eight years, using the radial velocity technique to discover over 150 new planets. HARPS has also detected a considerable portion of the known exoplanets less massive than Neptune (seventeen Earth masses). “The harvest of discoveries from HARPS has exceeded all expectations and includes an exceptionally rich population of super-Earths and Neptune-type planets hosted by stars very similar to our Sun. And even better — the new results show that the pace of discovery is accelerating,” said Mayor.

Image of the star HD 85512 using red and blue filters. The diffraction spikes are due to the telescope itself and are not caused by the star . Image Credit: ESO/Davide De Martin and Digitized Sky Survey 2.
One particular exoplanet Mayor and his team cited was HD85512b, estimated to be just over 3.5 times Earth’s mass. “The detection of HD 85512 b is far from the limit of HARPS and demonstrates the possibility of discovering other super-Earths in the habitable zones around stars similar to the Sun,” added Mayor. HD 85512b also happens to be situated on the edge of the “habitable zone” around its parent star – a zone where conditions could allow for water on the surface of a planet orbited in said zone.

Based on these latest findings, as well as previous HARPS discoveries, the team plans to install an exact copy of the HARPS instrumentation on the Telescopio Nazionale Galileo in the Canary Islands. The duplicate HARPS will allow scientists to survey stars in the northern sky.

“In the coming ten to twenty years we should have the first list of potentially habitable planets in the Sun’s neighborhood,” Mayor said. “Making such a list is essential before future experiments can search for possible spectroscopic signatures of life in the exoplanet atmospheres.”

The total tally of confirmed planets orbiting other stars stands at about 600, depending on who you ask. The Jet Propulsion Laboratory’s PlanetQuest website, shows 564 exoplanets while the Extrasolar Planets Encyclopedia, a database kept by astrobiologist Jean Schneider of the Paris-Meudon Observatory, lists 645 alien worlds. The discrepancy comes because PlanetQuest doesn’t add to their total until an exoplanet has been completely confirmed.

Source: ESO Press Release

Ray Sanders is a Sci-Fi geek, astronomer and space/science blogger. Visit his website Dear Astronomer and follow on Twitter (@DearAstronomer) or Google+ for more space musings.

Backyard Science: How You Can Make a Difference

Three people enjoy the summer sky over the Delaware river, NJ, USA in August 2006. Image Credit: Wikimedia

[/caption]

It’s a great time to be an amateur astronomer!  Nowadays, “backyard” astronomers armed with affordable CCD imagers, high-quality tracking mounts, inexpensive PC’s and the internet at their fingertips are making real contributions to Astronomy science.

How are people in their backyards contributing to real science these days?

Consider that in 1991, the Hubble Space Telescope launched with a main camera of less than 1 megapixel.  (HST’s array was 800×800 pixels – just over half a megapixel).   Currently, “off-the-shelf” imaging equipment available for a few hundred dollars or less easily provides 1 megapixel or more.  Even with a “modest” investment, amateurs can easily reach the ten megapixel mark. Basically, the more pixels you have in your imaging array, the better resolution your image will have and the more detail you’ll capture (sky conditions notwithstanding).

With access to fairly high resolution cameras and equipment, many amateurs have taken breathtaking images of the night sky. Using similar equipment other hobbyists have imaged comets, supernovae, and sunspots. With easy access to super-precise tracking mounts and high-quality optics, it’s no wonder that amateur astronomers are making greater contributions to science these days.

One spectacular example of amateur discoveries was covered by Universe Today earlier this year. Kathryn Aurora Gray, a ten year old girl from Canada, discovered a supernova with the assistance of her father and another amateur astronomer, David Lane. The discovery of Supernova 2010lt (located in galaxy UGC 3378 in the constellation of Camelopardalis) was Kathryn’s first, her father’s seventh and Lane’s fourth supernova discovery. You can read the announcement regarding Ms. Gray’s discovery courtesy of The Royal Astronomical Society of Canada at: http://www.rasc.ca/artman/uploads/sn2010lt-pressrelease.pdf

Often times when a supernova is detected, scientists must act quickly to gather data before the supernova fades. In the image below, look for the blinking “dot. The image is a before and after image of the area surrounding Supernova 2010lt.

A before and after animation of Supernova 2010lt. Credit: Dave Lane

Before Kathyrn Gray, astronomer David Levy made headlines with his discovery of comet Shoemaker-Levy 9. In 1994, comet Shoemaker-Levy 9 broke apart and collided with Jupiter’s atmosphere. Levy has gone on to discover over twenty comets and dozens of asteroids. Levy has also published several books and regularly contributes articles to various astronomy publications. If you’d like to learn more about David Levy, check out his internet radio show at http://www.letstalkstars.com/, or visit his site at http://www.jarnac.org/

Hubble image of comet P/Shoemaker-Levy 9, taken on May 17, 1994. Image Credit: H.A. Weaver, T. E. Smith (Space Telescope Science Institute), and NASA
The International Space Station and Space Shuttle Atlantis transiting the sun. Image Credit: Thierry Legault

Rounding out news-worthy astronomers, astrophotographer Thierry Legault has produced many breathtaking images that have been featured here on Universe Today on numerous occasions. Over the past year, Thierry has taken many incredible photos of the International Space Station and numerous images of the last few shuttle flights. Thierry’s astrophotography isn’t limited to just the sun, or objects orbiting Earth. You can read more about the objects Thierry captures images of at: http://www.astrophoto.fr/ You can also read more about Thierry and the equipment he uses at: http://legault.perso.sfr.fr/info.html

Performing science as an amateur isn’t limited to those with telescopes. There are many other research projects that ask for public assistance. Consider the Planet Hunters site at: http://www.planethunters.org/. What Planet Hunters aims to achieve is a more “hands-on” approach to interpreting the light curves from the publicly available data from the Kepler planet finding mission. Planet Hunters is part of the Zooniverse, which is a collection of citizen science projects. You can learn more about the complete collection of Zooniverse projects at: http://www.zooniverse.org

Sample light curve data. Image Credit: Zooniverse/PlanetHunters.org

Another citizen science effort recently announced is the Pro-Am White Dwarf Monitoring (PAWM) project. Led by Bruce Gary, the goal of the project is to explore the possibility of using amateur and professional observers to estimate the percentage of white dwarfs exhibiting transits by Earth-size planets in the habitable zone. The results from such a survey are thought to be useful in planning a comprehensive professional search for white dwarf transits. You can read more about the PAWM project at: http://www.brucegary.net/WDE/

Transit simulation. Image Credit: Manuel Mendez/PAWM

One very long standing citizen project is the American Association of Variable Star Observers (AAVSO). Founded in 1911, the AAVSO coordinates, evaluates, compiles, processes, publishes, and disseminates variable star observations to the astronomical community throughout the world. Currently celebrating their 100th year, the AAVSO not only provides raw data, but also publishes The Journal of the AAVSO, a peer-reviewed collection of scientific papers focused on variable stars. In addition to data and peer reviewed journals, the AAVSO is active in education and outreach, with many programs, including their mentor program designed to assist with disseminating information to educators and the public.

If you’d like to learn more about the AAVSO, including membership information, visit their site at: http://www.aavso.org/

Sample AAVSO light curve plot. Image Credit: AAVSO

For over a decade, space enthusiasts across the internet have been taking part in SETI@Home. The official description of SETI@home is “a scientific experiment that uses Internet-connected computers in the Search for Extraterrestrial Intelligence (SETI)”. By downloading special client software from the SETI@Home website at http://setiathome.berkeley.edu/, volunteers from around the world can help analyze radio signals and assist with SETI’s efforts to find “candidate” radio signals. You can learn more about SETI@Home by visiting http://setiathome.berkeley.edu/sah_about.php

The projects and efforts featured above are just a small sample of the many projects that non-scientists can participate in. There are many other projects involving radio astronomy, galaxy classification, exoplanets, and even projects involving our own solar system. Volunteers of all ages and educational backgrounds can easily find a project to help support.

Ray Sanders is a Sci-Fi geek, astronomer and space/science blogger. Visit his website Dear Astronomer and follow on Twitter (@DearAstronomer) or Google+ for more space musings.

Lone Planets “More Common Than Stars”

Artist's concept of a free-floating Jupiter-like planet. (NASA / JPL-Caltech)

[/caption]

We happen to live in a solar system where everything seems to be tucked neatly in place. Sun, planets, moons, asteroids, comets… all turning and traveling through space in relatively neat and orderly fashions. But that may not always be the case; sometimes planets can get kicked out of their solar systems entirely, banished to roam interstellar space without a sun of their own. And these “orphan planets” may be much more numerous than once thought.

Researchers in a joint Japan-New Zealand study surveyed microlensing events near the central part of our galaxy during 2006 and 2007 and identified up to 10 Jupiter-sized orphan worlds between 10,000 and 20,000 light-years away. Based on the number of planets identified and the area studied they estimate that there could literally be hundreds of billions of these lone planets roaming our galaxy….literally twice as many planets as there are stars.

“Although free-floating planets have been predicted, they finally have been detected, holding major implications for planetary formation and evolution models.”

– Mario Perez, exoplanet program scientist at NASA Headquarters in Washington.

From the NASA release:

Previous observations spotted a handful of free-floating, planet-like objects within star-forming clusters, with masses three times that of Jupiter. But scientists suspect the gaseous bodies form more like stars than planets. These small, dim orbs, called brown dwarfs, grow from collapsing balls of gas and dust, but lack the mass to ignite their nuclear fuel and shine with starlight. It is thought the smallest brown dwarfs are approximately the size of large planets.

On the other hand, it is likely that some planets are ejected from their early, turbulent solar systems, due to close gravitational encounters with other planets or stars. Without a star to circle, these planets would move through the galaxy as our sun and other stars do, in stable orbits around the galaxy’s center. The discovery of 10 free-floating Jupiters supports the ejection scenario, though it’s possible both mechanisms are at play.

“If free-floating planets formed like stars, then we would have expected to see only one or two of them in our survey instead of 10. Our results suggest that planetary systems often become unstable, with planets being kicked out from their places of birth.”

– David Bennett, a NASA and National Science Foundation-funded co-author of the study from the University of Notre Dame.

The study wasn’t able to resolve planets smaller than Saturn but it’s believed there are likely many more smaller, Earth-sized worlds than large Jupiter-sized ones.

Read the full NASA news release here.

The study, led by Takahiro Sumi from Osaka University in Japan, appears in the May 19 issue of the journal Nature.

The Flip Side of Exoplanet Orbits

New research reveals the possible cause of retrograde "hot Jupiters"

[/caption]

It was once thought that our planet was part of a “typical” solar system. Inner rocky worlds, outlying gas giants, some asteroids and comets sprinkled in for good measure. All rotating around a central star in more or less the same direction. Typical.

But after seeing what’s actually out there, it turns out ours may not be so typical after all…

Astronomers researching exoplanetary systems – many discovered with NASA’s Kepler Observatory – have found quite a few containing “hot Jupiters” that orbit their parent star very closely. (A hot Jupiter is the term used for a gas giant – like Jupiter – that resides in an orbit very close to its star, is usually tidally locked, and thus gets very, very hot.) These worlds are like nothing seen in our own solar system…and it’s now known that some actually have retrograde orbits – that is, orbiting their star in the opposite direction.

“That’s really weird, and it’s even weirder because the planet is so close to the star. How can one be spinning one way and the other orbiting exactly the other way? It’s crazy. It so obviously violates our most basic picture of planet and star formation.”

– Frederic A. Rasio, theoretical astrophysicist, Northwestern University

Now retrograde movement does exist in our solar system. Venus rotates in a retrograde direction, so the Sun rises in the west and sets in the east, and a few moons of the outer planets orbit “backwards” relative to the other moons. But none of the planets in our system have retrograde orbits; they all move around the Sun in the same direction that the Sun rotates. This is due to the principle of conservation of angular momentum, whereby the initial motion of the disk of gas that condensed to form our Sun and afterwards the planets is reflected in the current direction of orbital motions. Bottom line: the direction they moved when they were formed is (generally) the direction they move today, 4.6 billion years later. Newtonian physics is okay with this, and so are we. So why are we now finding planets that blatantly flaunt these rules?

The answer may be: peer pressure.

Or, more accurately, powerful tidal forces created by neighboring massive planets and the star itself.

By fine-tuning existing orbital mechanics calculations and creating computer simulations out of them, researchers have been able to show that large gas planets can be affected by a neighboring massive planet in such a way as to have their orbits drastically elongated, sending them spiraling closer in toward their star, making them very hot and, eventually, even flip them around. It’s just basic physics where energy is transferred between objects over time.

It just so happens that the objects in question are huge planets and the time scale is billions of years. Eventually something has to give. In this case it’s orbital direction.

“We had thought our solar system was typical in the universe, but from day one everything has looked weird in the extrasolar planetary systems. That makes us the oddball really. Learning about these other systems provides a context for how special our system is. We certainly seem to live in a special place.”

– Frederic A. Rasio

Yes, it certainly does seem that way.

The research was funded by the National Science Foundation. Details of the discovery are published in the May 12th issue of the journal Nature.

Read the press release here.

Main image credit: Jason Major. Created from SDO (AIA 304) image of the Sun from October 17, 2010 (NASA/SDO and the AIA science team) and an image of Jupiter taken by the Cassini-Huygens spacecraft on October 23, 2000 (NASA/JPL/SSI).