Small, Tough Planets can Survive the Death of Their Star

Sad fact of the Universe is that all stars will die, eventually. And when they do, what happens to their babies? Usually, the prognosis for the planets around a dying star is not good, but a new study says some might in fact survive.

A group of astronomers have taken a closer look at what happens when stars, like our Sun for instance, become white dwarfs late in their lives. As it turns out, denser planets like Earth might survive the event. But, only if they’re the right distance away.

Continue reading “Small, Tough Planets can Survive the Death of Their Star”

Habitability of Planets Will Depend on Their Interiors

An illustration of the surface of the exoplanet Barnard's Star b. Image Credit: M. Kornmesser, ESA.

A lot of the headlines and discussion around the habitability of exoplanets is focused on their proximity to their star and on the presence of water. It makes sense, because those are severely limiting factors. But those planetary characteristics are really just a starting point for the habitable/not habitable discussion. What happens in a planet’s interior is also important.

Continue reading “Habitability of Planets Will Depend on Their Interiors”

Which Habitable Zones are the Best to Actually Search for Life?

Looking to the future, NASA and other space agencies have high hopes for the field of extra-solar planet research. In the past decade, the number of known exoplanets has reached just shy of 4000, and many more are expected to be found once next-generations telescopes are put into service. And with so many exoplanets to study, research goals have slowly shifted away from the process of discovery and towards characterization.

Unfortunately, scientists are still plagued by the fact that what we consider to be a “habitable zone” is subject to a lot of assumptions. Addressing this, an international team of researchers recently published a paper in which they indicated how future exoplanet surveys could look beyond Earth-analog examples as indications of habitability and adopt a more comprehensive approach.

Continue reading “Which Habitable Zones are the Best to Actually Search for Life?”

It Took 10 Years to Confirm the First Planet Ever Found by Kepler

An illustration of the Kepler 1658 and Kepler 1658 b. Image Credit: Gabriel Perez Diaz/Instituto de Astrofísica de Canarias

Even though astronomy people are fond of touting the number of exoplanets found by the Kepler spacecraft, those planets aren’t actually confirmed. They’re more correctly called candidate exoplanets, because the signals that show something’s out there, orbiting a distant star, can be caused by something other than exoplanets. It can actually take a long time to confirm their existence.

Continue reading “It Took 10 Years to Confirm the First Planet Ever Found by Kepler”

Complex Life Might Require a Very Narrow Habitable Zone

Kepler-452b

Since the Kepler Space Telescope was launched into space, the number of known planets beyond our Solar System (exoplanets) has grown exponentially. At present, 3,917 planets have been confirmed in 2,918 star systems, while 3,368 await confirmation. Of these, about 50 orbit within their star’s circumstellar habitable zone (aka. “Goldilocks Zone”) , the distance at which liquid water can exist on a planets’ surface.

However, recent research has raised the possibility that we consider to be a habitable zone is too optimistic. According to a new study that recently appeared online, titled “A Limited Habitable Zone for Complex Life“, habitable zones could be much narrower than originally thought. These finds could have a drastic impact on the number of planets scientists consider to be “potentially habitable”.

Continue reading “Complex Life Might Require a Very Narrow Habitable Zone”

Meet WFIRST, The Space Telescope with the Power of 100 Hubbles

WFIRST ain’t your grandma’s space telescope. Despite having the same size mirror as the surprisingly reliable Hubble Space Telescope, clocking in at 2.4 meters across, this puppy will pack a punch with a gigantic 300 megapixel camera, enabling it to snap a single image with an area a hundred times greater than the Hubble.

With that fantastic camera and the addition of one of the most sensitive coronagraphs ever made – letting it block out distant starlight on a star-by-star basis – this next-generation telescope will uncover some of the deepest mysteries of the cosmos.

Oh, and also find about a million exoplanets.

Continue reading “Meet WFIRST, The Space Telescope with the Power of 100 Hubbles”

Two Newly-Discovered Exoplanets are Probably the Result of a Catastrophic Collision

Simulation of a collision between two 10 Earth-mass planets. Image Credit: Zoe Leinhardt and Thomas Denman, University of Bristol

How can two planets so similar in some respects have such different densities? According to a new study, a catastrophic collision may be to blame.

In our Solar System, all the inner planets are small rocky worlds with similar densities, while the outer planets are gas giants with their own similar densities. But not all solar systems are like ours.

Continue reading “Two Newly-Discovered Exoplanets are Probably the Result of a Catastrophic Collision”

TESS Finds its Third Planet, a sub-Neptune with a 36-Day Orbit

An artist's illustration of the newly-discovered exoplanet HD21749b. Image Credit: By NASA/MIT/TESS - https://static01.nyt.com/images/2019/01/08/climate/08TESS2/merlin_148878360_2fd4c6fe-ad22-400b-a882-f6b3a698a573-superJumbo.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=75686540

After only three months of operation, NASA’s TESS (Transiting Exoplanet Survey Satellite) spacecraft is delivering on its mission to find more exoplanets. A new paper presents the latest finding: a sub-Neptune planet with a 36-day orbit around its star. This is the third confirmed exoplanet that TESS has found.

The planet orbits a K-dwarf star about 52 light years away, in the constellation Reticulum. In astronomical terms, this makes the planet pretty close to us, and a great candidate for follow-up observations. Even better, it may have a sibling planet about the same size as Earth.

Continue reading “TESS Finds its Third Planet, a sub-Neptune with a 36-Day Orbit”

Astronomy Cast Ep. 512: Direct Imaging of Exoplanets

Finding planets is old news, we now know of thousands and thousands of the places. But the terrible irony is that we can only see a fraction of the planets out there using the traditional methods of radial velocity and transits. But the new telescopes will take things to the next level and image planets directly.

We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

Want to support CosmoQuest? Here are specific ways you can help:
* Donate! (Streamlabs link) https://streamlabs.com/cosmoquestx
* Buy stuff from our Redbubble https://www.redbubble.com/people/cosmoquestx
* Help us find sponsors by sharing our program and fundraising efforts through your networks
* Become a Patreon of Astronomy Cast https://www.patreon.com/astronomycast
* Sponsor 365 Days of Astronomy http://bit.ly/sponsor365DoA
* A combination of the above!

NASA’s Technosignatures Report is Out. Every Way to Find Evidence of an Intelligent Civilization

Artist's impression of a Dyson Sphere. The construction of such a massive engineering structure would create a technosignature that could be detected by humanity. Credit: SentientDevelopments.com/Eburacum45

In 1961, famed astronomer Frank Drake created a formula for estimating the number of extra-terrestrial intelligences (ETIs) that could exist within our galaxy. Known as the “Drake Equation“, this formula demonstrated that even by the most conservative estimates, our galaxy was likely to host at least a few advanced civilizations at any given time. About a decade later, NASA officially kicked of its search for extra-terrestrial intelligence (SETI) program.

These efforts have experienced a major infusion of interest in recent decades thanks to the discovery of thousands of extrasolar planets. To address the possibility that life may exist out there, scientists are also relying on sophisticated tools to search for telltale indicators of biological processes (aka. biosignatures) and technological activity (technosignatures), which could indicate not only life but advanced intelligence.

Continue reading “NASA’s Technosignatures Report is Out. Every Way to Find Evidence of an Intelligent Civilization”