Everything About Kepler-432b is Extreme, Especially the Way it’s Going to Die

Illustration of the orbit of Kepler-432b (inner, red) in comparison to the orbit of Mercury around the Sun (outer, orange). Credit: Dr. Sabine Reffert.

Astronomers are calling Kepler-432b a ‘maverick’ planet because everything about this newly found exoplanet is an extreme, and is unlike anything we’ve found before. This is a giant, dense planet orbiting a red giant star, and the planet has enormous temperature swings throughout its year. In addition to all these extremes, there’s another reason you wouldn’t want to live on Kepler 432b: its days are numbered.

“In less than 200 million years, Kepler-432b will be swallowed by its continually expanding host star,” said Mauricio Ortiz, a PhD student at Heidelberg University who led one of the two studies of the planet. “This might be the reason why we do not find other planets like Kepler-432b – astronomically speaking, their lives are extremely short.”

Kepler-432b is one of the densest and massive planets ever found. The planet has six times the mass of Jupiter, but is about the same size. The shape and the size of its orbit are also unusual, as the orbit is very small (52 Earth days) and highly elongated. The elliptical orbit brings Kepler-432b both incredibly close and very far away from its host star.

“During the winter season, the temperature on Kepler-432b is roughly 500 degrees Celsius,” said Dr. Sabine Reffert from the Königstuhl observatory, which is part of the Centre for Astronomy. “In the short summer season, it can increase to nearly 1,000 degrees Celsius.”

Dr. Davide Gandolfi, also from the Königstuhl observatory, said that the star Kepler-432b is orbiting has already exhausted the nuclear fuel in its core and is gradually expanding. Its radius is already four times that of our Sun and it will get even larger in the future.

While Kepler-432b was previously identified as a transiting planet candidate by the NASA Kepler satellite mission, two research groups of Heidelberg astronomers independently made further observations of this rare planet, acquiring the high-precision measurements needed to determine the planet’s mass. Both groups of researchers used the 2.2-metre telescope at Calar Alto Observatory in Andalucía, Spain to collect data. The group from the state observatory also observed Kepler-432b with the Nordic Optical Telescope on La Palma (Canary Islands).

The results of this research were published in Astronomy & Astrophysics.

Source: University of Heidelberg

250 Years of Planetary Detection in 60 Seconds

An animated history of planetary detection, from 1750 to 2015. It shows the period (x-axis), mass (y-axis), radius (circle size) and detection method (color) of the 1800 plus planets now known. Credit and copyright: Hugh Osborn.

Early astronomers realized some of the “stars” in the sky were planets in our Solar System, and really, only then did we realize Earth is a planet too. Now, we’re finding planets around other stars, and thanks to the Kepler Space Telescope, we’re able to find planets that are even smaller than Earth.

This great new graphic of the history of planetary detection was put together by Hugh Osborn, a PhD student at the University of Warwick, who works with data from the WASP (Wide Angle Search for Planets) and NGTS (Next Generation Transit Survey) telescope surveys to discover exoplanets. It starts with the first real “discovery’ of a planet — Uranus in 1781 by William and Caroline Herschel.

“The idea of this plot is to compare our own Solar System (with planets plotted in dark blue) against the newly-discovered extrasolar worlds,” wrote Osborn on his website. “Think of this plot as a projection of all 1873 worlds onto our own solar system, with the Sun (and all other stars) at the far left. As you move out to the right, the orbital period of the planets increases, and correspondingly (thanks to Kepler’s Third Law), so does the distance from the star. Moving upwards means the mass of the worlds increase, from Moon-sized at the base to 10,000 times that of Earth at the top (30 Jupiter Masses).”

You’ll notice a few “clusters” as time moves along. The circles in dark blue are the planets in our Solar System; light blue are planets found by radial velocity. Then in maroon are planets found by direct imaging, followed by orange for microlensing and green for transits.

The first batch of exoplanets were the massive ‘Hot Jupiters’, which were the first exoplanets found “simply because they are easiest to find,” using the radial velocity method. Then you’ll see clusters found by the other methods ending with the big batch found by Kepler.

“This clustering shows that there are more Earth and super-Earth sized planets than any other,” said Osborn. “Hopefully we can begin to probe below it’s limit and into the Earth-like regime, where thousands more worlds should await!”

On reddit, Osborn also provided great, short explanations of the various methods used to detect planets, which we’ll include below:

Radial Velocity

Planets orbit thanks to gravitational attraction from their star’s mass. But the mass of the planet also has an effect on the star – pulling it around in a tiny circle once every orbit. Astronomers can split the light from a star up into it’s colours, which have an atomic barcode of absorption lines in. These lines shift position as the star moves – the light is effectively compressed to bluer colours when moving towards and pulled to redder colours when moving away.

So, by measuring this to-and-fro (radial) velocity, and finding periodic signals, astronomers can detect the tug of distant exoplanets.

Direct Imaging

This is easier to get your head around – point a big telescope at a star and directly image a planet around it. This only work for the biggest young planets as these are warmest, so glow brightest in the infra-red (like a red-hot piece of Iron). To find the planet in the glare of it’s star, the starlight needs to be suppressed. This is done by either blocking it out with a starshade, or digitally combining the images in such a way to remove the central star, revealing new exoplanets.

Microlensing

Einstein’s general theory of relativity shows that mass bends space time. This means that light can be bent by massive objects, and even act like a lens. Occasionally a star with a planetary system passes in front of a distant star. The light from the distant star is bent and lensed by both the star and the planet, giving two sharp increases in brightness over a few days – one for the star and one for the planet. The amount of lensing gives the mass of the planets, and the time between the events gives us the distance from their star. More info

Transits

When a planet crosses in front of it’s star, it blocks out a small portion of sunlight depending on it’s size. We only see the star as a single point, but we can infer the presence of a planet from the dip in light. When this repeats, we get a period. This is how we have found more than 1000 of the current crop of ~1800 exoplanets!

Thanks to Hugh Osborn for sharing his expertise with Universe Today!

Astronomy Cast Ep. 367: Spitzer does Exoplanets

We’ve spent the last few weeks talking about different ways astronomers are searching for exoplanets. But now we reach the most exciting part of this story: actually imaging these planets directly. Today we’re going to talk about the work NASA’s Spitzer Space Telescope has done viewing the atmospheres of distant planets.
Continue reading “Astronomy Cast Ep. 367: Spitzer does Exoplanets”

Oldest Planetary System Discovered, Improving the Chances for Intelligent Life Everywhere

An artist rendition of Kepler-444 planetary system, which hosts five planets, all smaller than Earth. Credit: Tiago Campante, University of Birmingham, UK.

Using data from the Kepler space telescope, an international group of astronomers has discovered the oldest known planetary system in the galaxy – an 11 billion-year-old system of five rocky planets that are all smaller than Earth. The team says this discovery suggests that Earth-size planets have formed throughout most of the Universe’s 13.8-billion-year history, increasing the possibility for the existence of ancient life – and potentially advanced intelligent life — in our galaxy.

“The fact that rocky planets were already forming in the galaxy 11 billion years ago suggests that habitable Earth-like planets have probably been around for a very long time, much longer than the age of our Solar System,” said Dr. Travis Metcalfe, Senior Research Scientist Space Science Institute, who was part of the team that used the unique method of asteroseismology to determine the age of the star.

The star, named Kepler-444, is about 25 percent smaller than our Sun and is 117 light-years from Earth. The system of five known planets is very compact, and all five planets orbit the parent star in less than 10 days, or within 0:08 AU, roughly one-fifth the size of Mercury’s orbit.

“The star is slightly cooler than the Sun (around 5000 K at the surface, compared to 5800 K),” Metcalfe told Universe Today, “but the planets in this system are still expected to be highly irradiated and inhospitable to life,” with little to no atmospheres.

The team wrote in their paper that the system’s habitable zone lies 0:47 AU from the parent star and so all planets orbit well interior to the inner edge of Kepler-444’s ‘Goldilocks zone.’

The team was led by Tiago Campante, a research fellow at the University of Birmingham in the UK.

The planets were found by analyzing four years of Kepler data, as the spacecraft had nearly continuous observations of Kepler-444 during Kepler’s active mission. The space telescope took high-precision measurements of changes in brightness in stars in its field of view. There are tiny changes in brightness when planets pass in front of their stars.

Transit signals indicated five planets orbiting Kepler-444, although this star has a binary companion, an M-dwarf, and it was a tedious process to tease out all the data to determine what were planets and not other stars, as well as which star the planets were orbiting.

An image of the Kepler-444 star system using the NIRC2 near-infrared imager on the Keck II telescope. Credit: Tiago Campante et al.
An image of the Kepler-444 star system using the NIRC2 near-infrared imager on the Keck II telescope. Credit: Tiago Campante et al.

Metcalfe said the the job of “validating” the planets by ruling out all of the other possible “false positive” scenarios is always a big challenge for Kepler targets.

But asteroseismology was used to directly measure the precise age of the star. Asteroseismology, or stellar seismology is basically listening to a star by measuring sound waves. The sound waves travel into the star and bring information back up to the surface. The waves cause oscillations that Kepler observes as a rapid flickering of the star’s brightness.

How can this help determine a star’s age?

“As a star ages, it converts hydrogen into helium in the core,” Metcalfe said via email. “This changes the mean density of the star over time, and asteroseismology provides a very precise measure of the mean density (from the regular spacing of the individual oscillation frequencies).”

Metcalfe said that in this case, the uncertainty on the age of the star (and thus the planets, which formed essentially at the same time) is only 9%, compared to a typical uncertainty of 30-50% from other methods based on rotation (gyrochronology) or other properties of the star.

The team also noted in their paper that this finding may also help to pinpoint the beginning of the era of planet formation.

“I think this system has a lot to teach us about planet formation and the long-term evolution of planetary systems,” said Darin Ragozzine, a professor at Florida Institute of Technology and a a member of the discovery team, who specializes in multi-transiting systems. “With an age of 11.2 billion years, it means that this system formed near the beginning of the age of the Universe.”

The team wrote that this finding implies that small, Earth-size, planets may have readily formed at early epochs in the Universe’s history, even when metals were more scarce.

“By the time Earth formed, this star and its planetary system were already older than our planet is today,” Ragozzine told Universe Today. “We don’t know for sure if this system has stayed the same the whole time, but it is amazing to think that the little inner planet has gone around the star about a trillion times!”

To find out more about asteroseismology, check out a website called the Pale Blue Dot Project. Metcalfe launched a non-profit organization to help raise research funds for the Kepler Asteroseismic Science Consortium. The Pale Blue Dot Project allows people to adopt a star to support asteroseismology, since there is no NASA funding for asteroseismology.

“Much of the expertise for this exists in Europe and not in the US, so as a cost saving measure NASA outsourced this particular research for the Kepler mission,” said Metcalfe, “and NASA can’t fund researchers in other countries.”

Metcalfe added that the “adopt a star” program supported the asteroseismic analysis of Kepler-444, “determining the precise age that makes this ancient planetary system so interesting… This private funding from citizens around the world has been an invaluable resource to facilitate our research and fuel amazing discoveries like this one.”

You can help this research by adopting one of the Kepler stars or planetary systems.

This research was published today in the Astrophysical Journal.

The team’s paper is titled, “An Ancient Extrasolar System with Five Sub-Earth-Size Planets.”

Weekly Space Hangout – Jan 9, 2015: Andy Weir of “The Martian”

Host: Fraser Cain (@fcain)
Special Guest: Andy Weir , author of “The Martian”
Andy was first hired as a programmer for a national laboratory at age fifteen and has been working as a software engineer ever since. He is also a lifelong space nerd and a devoted hobbyist of subjects like relativistic physics, orbital mechanics, and the history of manned spaceflight. “The Martian” is his first novel.

Guests:
Morgan Rehnberg (cosmicchatter.org / @cosmic_chatter)
Ramin Skibba (@raminskibba)
Brian Koberlein (@briankoberlein)
Dave Dickinson (@astroguyz / www.astroguyz.com)
Nicole Gugliucci (cosmoquest.org / @noisyastronomer)
Continue reading “Weekly Space Hangout – Jan 9, 2015: Andy Weir of “The Martian””

Hearing the Early Universe’s Scream: Sloan Survey Announces New Findings

A still photo from an animated flythrough of the universe using SDSS data. This image shows our Milky Way Galaxy. The galaxy shape is an artist’s conception, and each of the small white dots is one of the hundreds of thousands of stars as seen by the SDSS. Image credit: Dana Berry / SkyWorks Digital, Inc. and Jonathan Bird (Vanderbilt University)

Imagine a single mission that would allow you to explore the Milky Way and beyond, investigating cosmic chemistry, hunting planets, mapping galactic structure, probing dark energy and analyzing the expansion of the wider Universe. Enter the Sloan Digital Sky Survey, a massive scientific collaboration that enables one thousand astronomers from 51 institutions around the world to do just that.

At Tuesday’s AAS briefing in Seattle, researchers announced the public release of data collected by the project’s latest incarnation, SDSS-III. This data release, termed “DR12,” represents the survey’s largest and most detailed collection of measurements yet: 2,000 nights’ worth of brand-new information about nearly 500 million stars and galaxies.

One component of SDSS is exploring dark energy by “listening” for acoustic oscillation signals from the the acceleration of the early Universe, and the team also shared a new animated “fly-through” of the Universe that was created using SDSS data.

The SDSS-III collaboration is based at the powerful 2.5-meter Sloan Foundation Telescope at the Apache Point Observatory in New Mexico. The project itself consists of four component surveys: BOSS, APOGEE, MARVELS, and SEGUE. Each of these surveys applies different trappings to the parent telescope in order to accomplish its own, unique goal.

BOSS (the Baryon Oscillation Spectroscopic Survey) visualizes the way that sound waves produced by interacting matter in the early Universe are reflected in the large-scale structure of our cosmos. These ancient imprints, which date back to the first 500,000 years after the Big Bang, are especially evident in high-redshift objects like luminous-red galaxies and quasars. Three-dimensional models created from BOSS observations will allow astronomers to track the expansion of the Universe over a span of 9 billion years, a feat that, later this year, will pave the way for rigorous assessment of current theories regarding dark energy.

At the press briefing, Daniel Eistenstein from the Harvard-Smithsonian Center for Astrophysics explained how BOSS requires huge volumes of data and that so far 1.4 million galaxies have been mapped. He indicated the data analyzed so far strongly confirm dark energy’s existence.

This tweet from the SDSS twitter account uses a bit of humor to explain how BOSS works:

APOGEE (the Apache Point Observatory Galactic Evolution Experiment) employs a sophisticated, near-infrared spectrograph to pierce through thick dust and gather light from 100,000 distant red giants. By analyzing the spectral lines that appear in this light, scientists can identify the signatures of 15 different chemical elements that make up the faraway stars – observations that will help researchers piece together the stellar history of our galaxy.

MARVELS (the Multi-Object APO Radial Velocity Exoplanet Large-Area Survey) identifies minuscule wobbles in the orbits of stars, movements that betray the gravitational influence of orbiting planets. The technology itself is unprecedented. “MARVELS is the first large-scale survey to measure these tiny motions for dozens of stars simultaneously,” explained the project’s principal investigator Jian Ge, “which means we can probe and characterize the full population of giant planets in ways that weren’t possible before.”

At the press briefing, Ge said that MARVELS observed 5,500 stars repeatedly, looking for giant exoplanets around these stars. So far, the data has revealed 51 giant planet candidates as well as 38 brown dwarf candidates. Ge added that more will be found with better data processing.

A still photo from an animated flythrough of the universe using SDSS data. This image shows a small part of the large-scale structure of the universe as seen by the SDSS -- just a few of many millions of galaxies. The galaxies are shown in their proper positions from SDSS data. Image credit: Dana Berry / SkyWorks Digital, Inc.
A still photo from an animated flythrough of the universe using SDSS data. This image shows a small part of the large-scale structure of the universe as seen by the SDSS — just a few of many millions of galaxies. The galaxies are shown in their proper positions from SDSS data. Image credit: Dana Berry / SkyWorks Digital, Inc.

SEGUE (the Sloan Extension for Galactic Understanding and Exploration) rounds out the quartet by analyzing visible light from 250,000 stars in the outer reaches of our galaxy. Coincidentally, this survey’s observations “segue” nicely into work being done by other projects within SDSS-III. Constance Rockosi, leader of the SDSS-III domain of SEGUE, recaps the importance of her project’s observations of our outer galaxy: “In combination with the much more detailed view of the inner galaxy from APOGEE, we’re getting a truly holistic picture of the Milky Way.”

One of the most exceptional attributes of SDSS-III is its universality; that is, every byte of juicy information contained in DR12 will be made freely available to professionals, amateurs, and lay public alike. This philosophy enables interested parties from all walks of life to contribute to the advancement of astronomy in whatever capacity they are able.

As momentous as the release of DR12 is for today’s astronomers, however, there is still much more work to be done. “Crossing the DR12 finish line is a huge accomplishment by hundreds of people,” said Daniel Eisenstein, director of the SDSS-III collaboration, “But it’s a big universe out there, so there is plenty more to observe.”

DR12 includes observations made by SDSS-III between July 2008 and June 2014. The project’s successor, SDSS-IV, began its run in July 2014 and will continue observing for six more years.

Here is the video animation of the fly-through of the Universe:

Prying Planets Out of The Shadows: The Gemini Planet Imager’s First Year of Light

Image credit: Marshall Perrin (Space Telescope Science Institute), Gaspard Duchene (UC Berkeley), Max Millar-Blanchaer (University of Toronto), and the GPI Team.

This year marks the 20th anniversary of 51 Peg b, the first exoplanet detected around a Sun-like star. And although the number of sheer detections in the years since have been remarkable, it’s also remarkable how little we still know about these alien worlds, save for their distances from their host stars, their radii, and sometimes their masses.

But the ability to directly image these worlds provides the opportunity to change all that. “It’s the tip of the iceberg,” said Marshall Perrin from the Space Telescope Science Institute in a press conference at the American Astronomical Society’s meeting earlier today. “In the long run, we think that imaging offers perhaps the best path to characterizing rocky planets on Earth-like orbits.”

Perrin highlighted two intriguing results from the Gemini Planet Imager (GPI), an instrument designed not only to resolve the dim light of an exoplanet, but also analyze a planet’s atmospheric temperature and composition.

HR 8799

The first system observed with GPI was the well-known HR 8799 system, a large star orbited by four planets, located 130 light-years away. Previously, the Keck telescope had measured the atmosphere of one of the planets, HR 8799c, in six hours of observing time. But GPI matched that in only a half hour of telescope time and in less-than-ideal weather too. So the team quickly turned to the planet’s twin, HR 8799d.

Image credit: Patrick Ingraham (Stanford University), Mark Marley (NASA Ames), Didier Saumon (Los Alamos National Laboratory) and the GPI Team.
The spectra of planets HR 8799c and HR 8799d. Image credit: Patrick Ingraham (Stanford University) / Mark Marley (NASA Ames) / Didier Saumon (Los Alamos National Laboratory) / the GPI Team.

“What we found really surprised us,” said Perrin. “These two planets have been known to have the same brightness and the same broadband colors. But looking at their spectra, they’re surprisingly different.”

Perrin and his colleagues think the likely culprit is clouds. It’s possible that one planet has a uniform cloud cover, whereas the other planet has a more patchy cloud cover, allowing astronomers to see deeper into the atmosphere. Perrin, however, cautions that this explanation is still under interpretation.

“The fact that GPI was able to extract new knowledge from these planets on the first commissioning run in such a short amount of time, and in conditions that it was not even designed to work, is a real testament to how revolutionary GPI will be to the field of exoplanets,” said GPI team member Patrick Ingraham from Stanford University in a news release.

HR 4796A

Perrin’s presentation also introduced never-seen details in the dusty ring around the young star HR 4796A. GPI also has the unique ability of detecting only polarized light, which sheds light on different physical properties.

Although the details are fairly technical, “the short version is that reconciling the patterns we see in polarized intensity and in total intensity has forced us to think of this not as a very diffuse disk but one that is actually dense enough to partially opaque,” said Perrin.

The disk may be roughly analogous to one of Saturn’s rings.

“GPI now is moving into an exciting phase of full operations,” said Perrin, concluding his talk. “We’ll be opening up a lot of new discoveries hopefully over the next few years. And in the long run taking these technologies and scaling them to future 30-meter telescopes, and perhaps large telescopes in space, to continue direct imaging and push down toward the Earth-like planet regime.”

Exoplanet-Hunting TESS Satellite to be Launched by SpaceX

A conceptual image of the Transiting Exoplanet Survey Satellite. Image Credit: MIT
A conceptual image of the Transiting Exoplanet Survey Satellite. Image Credit: MIT

The search for exoplanets is heating up, thanks to the deployment of space telescopes like Kepler and the development of new observation methods. In fact, over 1800 exoplanets have been discovered since the 1980s, with 850 discovered just last year. That’s quite the rate of progress, and Earth’s scientists have no intention of slowing down!

Hot on the heels of the Kepler mission and the ESA’s deployment of the Gaia space observatory last year, NASA is getting ready to launch TESS (the Transiting Exoplanet Survey Satellite). And to provide the launch services, NASA has turned to one of its favorite commercial space service providers – SpaceX.

The launch will take place in August 2017 from the Cape Canaveral Air Force Station in Florida, where it will be placed aboard a Falcon 9 v1.1 – a heavier version of the v 1.0 developed in 2013. Although NASA has contracted SpaceX to perform multiple cargo deliveries to the International Space Station, this will be only the second time that SpaceX has assisted the agency with the launch of a science satellite.

This past September, NASA also signed a lucrative contract with SpaceX worth $2.6 billion to fly astronauts and cargo to the International Space Station. As part of the Commercial Crew Program, SpaceX’s Falcon 9 and Dragon spacecraft were selected by NASA to help restore indigenous launch capability to the US.

James Webb Space Telescope. Image credit: NASA/JPL
Artist’s impression of the James Webb Space Telescope, the space observatory scheduled for launch in 2018. Image Credit: NASA/JPL

The total cost for TESS is estimated at approximately $87 million, which will include launch services, payload integration, and tracking and maintenance of the spacecraft throughout the course of its three year mission.

As for the mission itself, that has been the focus of attention for many years. Since it was deployed in 2009, the Kepler spacecraft has yielded more and more data on distant planets, many of which are Earth-like and potentially habitable. But in 2013, two of four reaction wheels on Kepler failed and the telescope has lost its ability to precisely point toward stars. Even though it is now doing a modified mission to hunt for exoplanets, NASA and exoplanet enthusiasts have been excited by the prospect of sending up another exoplanet hunter, one which is even more ideally suited to the task.

Once deployed, TESS will spend the next three years scanning the nearest and brightest stars in our galaxy, looking for possible signs of transiting exoplanets. This will involve scanning nearby stars for what is known as a “light curve”, a phenomenon where the visual brightness of a star drops slightly due to the passage of a planet between the star and its observer.

By measuring the rate at which the star dims, scientists are able to estimate the size of the planet passing in front of it. Combined with measurements the star’s radial velocity, they are also able to determine the density and physical structure of the planet. Though it has some drawbacks, such as the fact that stars rarely pass directly in front of their host stars, it remains the most effective means of observing exoplanets to date.

Number of extrasolar planet discoveries per year through September 2014, with colors indicating method of detection:   radial velocity   transit   timing   direct imaging   microlensing. Image Credit: Public domain
Number of extrasolar planet discoveries on up to Sept. 2014, with colors indicating method of detection. Blue: radial velocity; Green: transit; Yellow: timing, Red: direct imaging; Orange: microlensing. Image Credit: Alderon/Wikimedia Commons

In fact, as of 2014, this method became the most widely used for determining the presence of exoplanets beyond our Solar System. Compared to other methods – such as measuring a star’s radial velocity, direct imaging, the timing method, and microlensing – more planets have been detected using the transit method than all the other methods combined.

In addition to being able to spot planets by the comparatively simple method of measuring their light curve, the transit method also makes it possible to study the atmosphere of a transiting planet. Combined with the technique of measuring the parent star’s radial velocity, scientists are also able to measure a planet’s mass, density, and physical characteristics.

With TESS, it will be possible to study the mass, size, density and orbit of exoplanets. In the course of its three-year mission, TESS will be looking specifically for Earth-like and super-Earth candidates that exist within their parent star’s habitable zone.

This information will then be passed on to Earth-based telescopes and the James Webb Space Telescope – which will be launched in 2018 by NASA with assistance from the European and Canadian Space Agencies – for detailed characterization.

The TESS Mission is led by the Massachusetts Institute of Technology – who developed it with seed funding from Google – and is overseen by the Explorers Program at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Further Reading: NASA, SpaceX

 

Defining Life II: Metabolism and Evolution as clues to Extraterrestrial Life

The James Webb Space Telescope, scheduled for launch in 2018 may be the first to be capable of detecting biomarker gasses in the atmospheres of extrasolar planets. When an exoplanet passes between its star and Earth, an event called a transit, light that has passed through the planet’s atmosphere can be detected from a vantage point near Earth. When light passes through the exoplanet’s atmosphere, some wavelengths are absorbed and others transmitted. By analyzing the transmitted light spectrum, astronomers can learn the composition of the planet’s atmosphere. Astrobiologists hope to find biomarker gasses indicating the metabolic waste products of life. The oxygen in Earth’s atmosphere is a waste product of photosynthesis in plants and bacteria. The Webb telescope may be capable of conducting this test for planets larger than Earth (super-earths) transiting small stars. Space telescopes capable of conducting such research on a larger scale have been delayed by budget cuts. Credit: NASA

In the movie “Avatar”, we could tell at a glance that the alien moon Pandora was teeming with alien life. Here on Earth though, the most abundant life is not the plants and animals that we are familiar with. The most abundant life is simple and microscopic. There are 50 million bacterial organisms in a single gram of soil, and the world wide bacterial biomass exceeds that of all plants and animals. Microbes can grow in extreme environments of temperature, salinity, acidity, radiation, and pressure. The most likely form in which we will encounter life elsewhere in our solar system is microbial.

Astrobiologists need strategies for inferring the presence of alien microbial life or its fossilized remains. They need strategies for inferring the presence of alien life on the distant planets of other stars, which are too far away to explore with spacecraft in the foreseeable future. To do these things, they long for a definition of life, that would make it possible to reliably distinguish life from non-life.

Unfortunately, as we saw in the first installment of this series, despite enormous growth in our knowledge of living things, philosophers and scientists have been unable to produce such a definition. Astrobiologists get by as best they can with definitions that are partial, and that have exceptions. Their search is geared to the features of life on Earth, the only life we currently know.

In the first installment, we saw how the composition of terrestrial life influences the search for extraterrestrial life. Astrobiologists search for environments that once contained or currently contain liquid water, and that contain complex molecules based on carbon. Many scientists, however, view the essential features of life as having to do with its capacities instead of its composition.

In 1994, a NASA committee adopted a definition of life as a “self-sustaining chemical system capable of Darwinian evolution”, based on a suggestion by Carl Sagan. This definition contains two features, metabolism and evolution, that are typically mentioned in definitions of life.

Metabolism is the set of chemical processes by which living things actively use energy to maintain themselves, grow, and develop. According to the second law of thermodynamics, a system that doesn’t interact with its external environment will become more disorganized and uniform with time. Living things build and maintain their improbable, highly organized state because they harness sources of energy in their external environment to power their metabolism.

Plants and some bacteria use the energy of sunlight to manufacture larger organic molecules out of simpler subunits. These molecules store chemical energy that can later be extracted by other chemical reactions to power their metabolism. Animals and some bacteria consume plants or other animals as food. They break down complex organic molecules in their food into simpler ones, to extract their stored chemical energy. Some bacteria can use the energy contained in chemicals derived from non-living sources in the process of chemosynthesis.

In a 2014 article in Astrobiology, Lucas John Mix, a Harvard evolutionary biologist, referred to the metabolic definition of life as Haldane Life after the pioneering physiologist J. B. S. Haldane. The Haldane life definition has its problems. Tornadoes and vorticies like Jupiter’s Great Red Spot use environmental energy to sustain their orderly structure, but aren’t alive. Fire uses energy from its environment to sustain itself and grow, but isn’t alive either.

Despite its shortcomings, astrobiologists have used Haldane definition to devise experiments. The Viking Mars landers made the only attempt so far to directly test for extraterrestrial life, by detecting the supposed metabolic activities of Martian microbes. They assumed that Martian metabolism is chemically similar to its terrestrial counterpart.

One experiment sought to detect the metabolic breakdown of nutrients into simpler molecules to extract their energy. A second aimed to detect oxygen as a waste product of photosynthesis. A third tried to show the manufacture of complex organic molecules out of simpler subunits, which also occurs during photosynthesis. All three experiments seemed to give positive results, but many researchers believe that the detailed findings can be explained without biology, by chemical oxidizing agents in the soil.

Viking Lander
In 1976, two Viking spacecraft landed on Mars. The image is of a model of the Viking lander, along with astronomer and pioneering astrobiologist Carl Sagan. Each lander was equipped with life detection experiments designed to detect life based on its metabolic activities. These activities were assumed to be chemically similar to those of Earthly organisms. The three experiments included: 1) The labeled release experiment, in which radioactively labeled organic nutrients were added to Martian soil. If organisms were present, it was assumed that their metabolism would involve breaking down the nutrients for their energy content and releasing labeled carbon dioxide as a waste product. 2) The gas exchange experiment, in which Martian soil was provided with nutrients and light and monitored for the release of oxygen. On Earth, organisms that capture the energy of sunlight through the process of photosynthesis, like plants and some bacteria, release oxygen as a waste product. 3) The pyrolytic release experiment, in which Martian soil was placed in a chamber with radioactively labeled carbon dioxide. If there were organisms in the soil that photosynthesized like those on Earth, their metabolic processes would take up the gas and use the energy of sunlight to manufacture more complex organic molecules. Radioactive carbon would be given off when those more complex molecules were broken down by heating the sample. All three experiments produced what seemed like positive results. However, most scientists rejected this interpretation because the details of many of the results could be explained by supposing that there were chemical oxidizing agents in the soil instead of life, and because Viking failed to detect organic materials in Martian soil. This interpretation, especially for the labeled release experiment, remains controversial to this day and may need to be revisited based on recent findings.
Credits: NASA/Jet Propulsion Laboratory, Caltech

Some of the Viking results remain controversial to this day. At the time, many researchers felt that the failure to find organic materials in Martian soil ruled out a biological interpretation of the metabolic results. The more recent finding that Martian soil actually does contain organic molecules that might have been destroyed by perchlorates during the Viking analysis, and that liquid water was once abundant on the surface of Mars lend new plausibility to the claim that Viking may have actually succeeded in detecting life. By themselves, though, the Viking results didn’t prove that life exists on Mars nor rule it out.

The metabolic activities of life may also leave their mark on the composition of planetary atmospheres. In 2003, the European Mars Express spacecraft detected traces of methane in the Martian atmosphere. In December 2014, a team of NASA scientists reported that the Curiosity Mars rover had confirmed this finding by detected atmospheric methane from the Martian surface.

Most of the methane in Earth’s atmosphere is released by living organisms or their remains. Subterranean bacterial ecosystems that use chemosynthesis as a source of energy are common, and they produce methane as a metabolic waste product. Unfortunately, there are also non-biological geochemical processes that can produce methane. So, once more, Martian methane is frustratingly ambiguous as a sign of life.

Extrasolar planets orbiting other stars are far too distant to visit with spacecraft in the foreseeable future. Astrobiologists still hope to use the Haldane definition to search for life on them. With near future space telescopes, astronomers hope to learn the composition of the atmospheres of these planets by analyzing the spectrum of light wavelengths reflected or transmitted by their atmospheres. The James Webb Space Telescope scheduled for launch in 2018, will be the first to be useful in this project. Astrobiologists want to search for atmospheric biomarkers; gases that are metabolic waste products of living organisms.

Once more, this quest is guided by the only example of a life-bearing planet we currently have; Earth. About 21% of our home planet’s atmosphere is oxygen. This is surprising because oxygen is a highly reactive gas that tends to enter into chemical combinations with other substances. Free oxygen should quickly vanish from our air. It remains present because the loss is constantly being replaced by plants and bacteria that release it as a metabolic waste product of photosynthesis.

Traces of methane are present in Earth’s atmosphere because of chemosynthetic bacteria. Since methane and oxygen react with one another, neither would stay around for long unless living organisms were constantly replenishing the supply. Earth’s atmosphere also contains traces of other gases that are metabolic byproducts.

In general, living things use energy to maintain Earth’s atmosphere in a state far from the thermodynamic equilibrium it would reach without life. Astrobiologists would suspect any planet with an atmosphere in a similar state of harboring life. But, as for the other cases, it would be hard to completely rule out non-biological possibilities.

Besides metabolism, the NASA committee identified evolution as a fundamental ability of living things. For an evolutionary process to occur there must be a group of systems, where each one is capable of reliably reproducing itself. Despite the general reliability of reproduction, there must also be occasional random copying errors in the reproductive process so that the systems come to have differing traits. Finally, the systems must differ in their ability to survive and reproduce based on the benefits or liabilities of their distinctive traits in their environment. When this process is repeated over and over again down the generations, the traits of the systems will become better adapted to their environment. Very complex traits can sometimes evolve in a step-by-step fashion.

Mix named this the Darwin life definition, after the nineteenth century naturalist Charles Darwin, who formulated the theory of evolution. Like the Haldane definition, the Darwin life definition has important shortcomings. It has trouble including everything that we might think of as alive. Mules, for example, can’t reproduce, and so, by this definition, don’t count as being alive.

Despite such shortcomings, the Darwin life definition is critically important, both for scientists studying the origin of life and astrobiologists. The modern version of Darwin’s theory can explain how diverse and complex forms of life can evolve from some initial simple form. A theory of the origin of life is needed to explain how the initial simple form acquired the capacity to evolve in the first place.

The chemical systems or life forms found on other planets or moons in our solar system might be so simple that they are close to the boundary between life and non-life that the Darwin definition establishes. The definition might turn out to be vital to astrobiologists trying to decide whether a chemical system they have found really qualifies as a life form. Biologists still don’t know how life originated. If astrobiologists can find systems near the Darwin boundary, their findings may be pivotally important to understanding the origin of life.

Can astrobiologists use the Darwin definition to find and study extraterrestrial life? It’s unlikely that a visiting spacecraft could detect to process of evolution itself. But, it might be capable of detecting the molecular structures that living organisms need in order to take part in an evolutionary process. Philosopher Mark Bedau has proposed that a minimal system capable of undergoing evolution would need to have three things: 1) a chemical metabolic process, 2) a container, like a cell membrane, to establish the boundaries of the system, and 3) a chemical “program” capable of directing the metabolic activities.

Here on Earth, the chemical program is based on the genetic molecule DNA. Many origin-of-life theorists think that the genetic molecule of the earliest terrestrial life forms may have been the simpler molecule ribonucleic acid (RNA). The genetic program is important to an evolutionary process because it makes the reproductive copying process stable, with only occasional errors.

Both DNA and RNA are biopolymers; long chainlike molecules with many repeating subunits. The specific sequence of nucleotide base subunits in these molecules encodes the genetic information they carry. So that the molecule can encode all possible sequences of genetic information it must be possible for the subunits to occur in any order.

Steven Benner, a computational genomics researcher, believes that we may be able to develop spacecraft experiments to detect alien genetic biopolymers. He notes that DNA and RNA are very unusual biopolymers because changing the sequence in which their subunits occur doesn’t change their chemical properties. It is this unusual property that allows these molecules to be stable carriers of any possible genetic code sequence.

DNA and RNA are both polyelectrolytes; molecules with regularly repeating areas of negative electrical charge. Benner believes that this is what accounts for their remarkable stability. He thinks that any alien genetic biopolymer would also need to be a polyelectrolyte, and that chemical tests could be devised by which a spacecraft might detect such polyelectrolyte molecules. Finding the alien counterpart of DNA is a very exciting prospect, and another piece to the puzzle of identifying alien life.

Structure of DNA
Deoxyribonucleic acid (DNA) is the genetic material for all known life on Earth. DNA is a biopolymer consisting of a string of subunits. The subunits consist of nucleotide base pairs containing a purine (adenine A, or guanine G) and a pyrimidine (thymine T, or cytosine C). DNA can contain nucleotide base pairs in any order without its chemical properties changing. This property is rare in biopolymers, and makes it possible for DNA to encode genetic information in the sequence of its base pairs. This stability is due to the fact that each base pair contains phosphate groups (consisting of phosphorus and oxygen atoms) on the outside with a net negative charge. These repeated negative charges make DNA a polyelectrolyte. Computational genomics researcher Steven Benner has hypothesized that alien genetic material will also be a polyelectrolyte biopolymer, and that chemical tests could therefore be devised to detect alien genetic molecules.
Credit: Zephyris

In 1996 President Clinton, made a dramatic announcement of the possible discovery of life on Mars. Clinton’s speech was motivated by the findings of David McKay’s team with the Alan Hills meteorite. In fact, the McKay findings turned out to be just one piece to the larger puzzle of possible Martian life. Unless an alien someday ambles past our waiting cameras, the question of whether or not extraterrestrial life exists is unlikely to be settled by a single experiment or a sudden dramatic breakthrough. Philosophers and scientists don’t have a single, sure-fire definition of life. Astrobiologists consequently don’t have a single sure-fire test that will settle the issue. If simple forms of life do exist on Mars, or elsewhere in the solar system, it now seems likely that that fact will emerge gradually, based on many converging lines of evidence. We won’t really know what we’re looking for until we find it.

References and further reading:

P. S. Anderson (2011) Could Curiosity Determine if Viking Found Life on Mars?, Universe Today.

S. K. Atreya, P. R. Mahaffy, A-S. Wong, (2007), Methane and related trace species on Mars: Origin, loss, implications for life, and habitability, Planetary and Space Science, 55:358-369.

M. A. Bedau (2010), An Aristotelian account of minimal chemical life, Astrobiology, 10(10): 1011-1020.

S. A. Benner (2010), Defining life, Astrobiology, 10(10):1021-1030.

E. Machery (2012), Why I stopped worrying about the definition of life…and why you should as well, Synthese, 185:145-164.

G. M. Marion, C. H. Fritsen, H. Eicken, M. C. Payne, (2003) The search for life on Europa: Limiting environmental factors, potential habitats, and Earth analogs. Astrobiology 3(4):785-811.

L. J. Mix (2015), Defending definitions of life, Astrobiology, 15(1) posted on-line in advance of publication.

P. E. Patton (2014) Moons of Confusion: Why Finding Extraterrestrial Life may be Harder than we Thought, Universe Today.

T. Reyes (2014) NASA’s Curiosity Rover detects Methane, Organics on Mars, Universe Today.

S. Seeger, M. Schrenk, and W. Bains (2012), An astrophysical view of Earth-based biosignature gases. Astrobiology, 12(1): 61-82.

S. Tirard, M. Morange, and A. Lazcano, (2010), The definition of life: A brief history of an elusive scientific endeavor, Astrobiology, 10(10):1003-1009.

C. R. Webster, and numerous other members of the MSL Science team, (2014) Mars methane detection and variability at Gale crater, Science, Science express early content.

Did Viking Mars landers find life’s building blocks? Missing piece inspires new look at puzzle. Science Daily Featured Research Sept. 5, 2010

NASA rover finds active and ancient organic chemistry on Mars, Jet Propulsion laboratory, California Institute of Technology, News, Dec. 16, 2014.

Exciting Exoplanet News from AAS: How Rocky Worlds are Made; Oceans on Super-Earths

Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)
Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)

Astronomers from around the world gathered in Seattle today for the 225th meeting of the American Astronomical Society. Although it’s just past noon on the West Coast, the discoveries are already beginning to unfurl. Here are some of the highlights from this morning’s exoplanet session. And the keyword seems to be “water.”

A Recipe for Earth-like Planets?

There’s no doubt that the term “Earth-like” is a bit of a misnomer. It requires only that a planet is both Earth-size and circles its host star within the habitable zone. It says nothing about the composition of that planet.

Now, Courtney Dressing from the Harvard-Smithsonian Center for Astrophysics (CfA) and her colleagues have taken detailed observations of small exoplanets in order to nail down a digestible recipe.

Dressing and her colleagues focused on only a handful of exoplanets because they had to take painstakingly long, but accurate measurements. They used the HARPS-N instrument on the 3.6-meter Telescope in the Canary Islands to precisely determine the planets’ densities.

Most recently the team targeted Kepler-93b, a planet 1.5 times the size of Earth and 4.01 times the mass of Earth. Kepler 93-b, as well as all other exoplanets with sizes less than 1.6 times Earth’s size and six times Earth’s mass, show a tight relationship between size and mass. In other words, when plotted by size vs. mass, they fit onto the same line as Venus and the Earth, suggesting they’re all rocky planets.

Larger and more massive exoplanets do not follow the same trend. Nature simply doesn’t want to make rocky planets that are more massive than six Earth masses. Instead, their densities are significantly lower, meaning their recipes include a large fraction of water or hydrogen and helium.

“Today if you’re not too worn out from all the holiday baking, when you get back home, I’d encourage you to check out this new recipe for rocky planets” said Dressing at the AAS press conference. The playful recipe requires one cup of magnesium, one cup of silicon, two cups of iron, two cups of oxygen, ½ teaspoon aluminum, ½ teaspoon nickel, ½ teaspoon calcium, and ¼ teaspoon sulfur.

Now you have to be patient. “Bake this for a couple million years until you start to see a thin, light brown crust form on the surface of the planet,” said Dressing. Then season it with a dash of water. “If you check back in a couple million years, maybe you’ll see some intelligent life on your planet.”

Super-Earths Have Long Lasting Oceans

Another team of astronomers took a closer look at that dash of water. There’s no doubt that life, as we know it, needs liquid water. The Earth’s oceans cover about 70 percent of the surface and have for nearly the entire history of our world. So the next logical step suggests that for life to develop on other planets, those planets would also need oceans.

Water, however, isn’t just on Earth’s surface. Studies have shown that Earth’s mantle holds several oceans’ worth of water that was dragged underground. If water weren’t able to return to the surface via volcanism, it would disappear entirely.

Laura Schaefer, also from the CfA, used computer simulations to see if this so-called deep water cycle could take place on Earth-like planets and super-Earths.

She found that small Earth-like planets outgas their water quickly, while larger super-Earths form their oceans later on. The sweet spot seems to be for planets between two and four times the mass of Earth, which are even better at establishing and maintaining oceans than our Earth. Once started, these oceans could persist for at least 10 billion years.

“If you want to look for life, you should look at older super-Earths,” said Schaefer. It’s a statement that applies to both realms of research presented today.

The AAS will continue throughout the week. So stay tuned because Universe Today will continue bringing you the highlights.